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A STABILIZED CHARACTERISTIC FINITE ELEMENT

METHOD FOR THE VISCOELASTIC OLDROYD FLUID

MOTION PROBLEM

TONG ZHANG AND JINYUN YUAN

Abstract. In this article, a characteristic scheme is considered for the viscoelastic Oldroyd fluid
flows based on the lowest equal-order finite element pair. The diffusion term in these equations is
discretized by using finite element method, the temporal differentiation and advection terms are
treated by characteristic scheme and the integral term is handled by applying right rectangle rule.
Unconditionally stability and optimal error estimates for the velocity and pressure are derived.
Finally, some numerical results are provided to verify the performance of the proposed method.

Key words. viscoelastic Oldroyd fluid motion problem, characteristic scheme, stabilized method,
stability, error estimate.

1. Introduction

In this work, let Ω be an open bounded domain in R
2 with smooth boundary

∂Ω. Consider the following viscoelastic Oldroyd fluid flows

ut − ν∆u+∇p+ (u · ∇)u −

∫ t

0

ρe−δ(t−s)∆uds = f,(1)

with x ∈ Ω, t ∈ (0, T ] and incompressible condition

div u(t, x) = 0 ∀ t ∈ (0, T ], x ∈ Ω,(2)

and the initial and boundary conditions

u(x, 0) = u0(x) x ∈ Ω; u|∂Ω = 0 for all t ∈ (0, T ],(3)

where ρ ≥ 0, 1/δ is the relaxation time, u represents the velocity, p the pressure, f
the prescribed external force, u0(x) the initial velocity, ν is the viscosity and T > 0
is a finite time.

From the expressions of equations (1)-(3), we know that (1)-(3) are the gen-
eralization of the initial boundary value problem for the Navier-Stokes equations,
and equations (1)-(3) are used as model in viscoelastic Oldroyd flows [15, 18]. The
importance of ensuring the compatibility of the approximations of velocity and
pressure by satisfying the inf-sup condition is widely known in [7]. Although sta-
ble mixed finite element pairs have been studied over the years [13, 16, 19], the
low order finite element pairs not satisfying the inf-sup condition may work well
not only in theoretical filed but also in computation (see [2, 3, 8, 14, 24] and the
reference therein). In these stabilized techniques, polynomial pressure projection
method which developed in [2] is the most attractive due to the following reasons:
(i) The method does not require the approximation of the pressure derivatives and
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the mesh-dependent parameters. (ii) The method is unconditionally stable. (iii)
The method can be applied to the existing codes with a little additional effort.
Therefore, much attention has been attracted to solve various kinds of problems by
using this stabilized technique, for example, we can refer to [14, 20, 22, 26].

On the other hand, characteristic scheme is designed to deal with convection-
diffusion problems. This scheme can treat the convection-dominated equations
efficiently [1, 3, 6]. Characteristic scheme has also been applied to solve the in-
compressible flow problems. For example, Pironneau analyzed the Navier-Stokes
equations and obtain the suboptimal convergence results in [17], Suli in [19] im-
proved the results of [17], Zhang et al. considered incompressible flows by com-
bining stabilized method with characteristic scheme in [23, 25] and [4, 6, 21] for
convection-dominated problems.

In this work, we try to combine the modified method of characteristics with sta-
bilized method to treat the viscoelastic Oldroyd flows. The combination is efficient
and keeps the advantages of two methods and avoids their deficits. The main con-
tribution of this article is to establish the stability and convergence of the stabilized
characteristic finite element solutions based on the uniqueness condition.

The rest of this paper is organized as follows. In Section 2, the notations and
some basic results for equations (1)-(3) are recalled. In Section 3, we provide
the boundedness for the numerical solutions based on some regularity conditions.
Section 4 is devoted to derive the optimal error estimates for the discrete variational
formulation of equations (1)-(3). Finally, some numerical experiments are tested to
confirm the established theoretical results and explore the effect of varying stabilized
parameters to the errors. In this work, the letter c denotes the general positive
constant, which depends on the smallest angle in the triangulation Th and domain
Ω, independents of the mesh size h and time-step ∆t.

2. Preliminaries

2.1. Basic results. In order to present the weak formulation for equations (1)-(3),
we need to introduce some Sobolev spaces:

X = H1
0 (Ω)

2, Y = L2(Ω)2, M = L2
0(Ω) = {q ∈ L2(Ω) :

∫

Ω

qdx = 0}.

The spaces L2(Ω)m (m = 1, 2) are endowed with the standard L2-scalar product
(·, ·) and norm ‖ · ‖0, the spaces H

1
0 (Ω) and X are equipped with the scalar product

(∇u,∇v) and norm ‖u‖1, ∀ u, v ∈ H1
0 (Ω) or X .

Let H−1 be a dual, with respect to L2-duality, space to H1
0 with the correspond-

ing norm:

‖f‖−1 = sup
06=u∈H1

0

(f, u)

‖u‖1
, f ∈ H−1.

Set

Au = −∆u, ∀ u ∈ D(A) = H2(Ω)2 ∩X.

In particular, D(A
1

2 ) = X, D(A0) = Y . It is known [3, 13] that

‖ v ‖
2
0 ≤ γ0‖v‖

2
1, ∀ v ∈ X ; ‖v‖21 ≤ γ0‖Av‖

2
0, ∀ v ∈ D(A),

where γ0 is a positive constant only depending on Ω.
We usually make the following assumption about the prescribed data for problem

(1)-(3) (see [9, 13]).
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(A1). Assume that u0 ∈ D(A) with divu0 = 0 and f, ft ∈ L2(0, T ;Y ). Moreover

‖u0‖2 + sup
t∈[0,T ]

{‖f‖0 + ‖ft‖0} ≤ c.

Furthermore, we define the continuous bilinear forms a(·, ·) and d(·, ·) on X × X
and X ×M , respectively, by

a(u, v) = ν(∇u,∇v), d(v, q) = (q, div v), ∀ v ∈ X, q ∈M.

The trilinear form on X ×X ×X is defined by

b(u, v, w) = ((u · ∇)v, w) +
1

2
((div u)v, w).

It is easy to verify that b(·, ·, ·) satisfies the following important properties for all
u, v, w ∈ X (see [7, 8, 9, 13]):

b(u, v, w) = −b(u,w, v), b(u, v, v) = 0,

|b(u, v, w)| ≤ N‖∇u‖0‖∇v‖0‖∇w‖0.

With above notations, the weak form of equations (1)-(3) reads as














Find (u, p) ∈ (X,M), ∀ t > 0, for all (v, q) ∈ (X,M), such that

(ut, v) +B((u, p), (v, q)) + b(u, u, v) + J(t, u, v) = (f, v),

u(0) = u0,

(4)

where

B((u, p), (v, q)) = a(u, v)− d(p, v) + d(q, u),

J(t, u, v) = ρe−δt

∫ t

0

eδs(Au(s), v)ds = ρe−δt

∫ t

0

eδs(∇u(s),∇v)ds.

The following results about problem (4) can been found in [11, 16].
Theorem 2.1. Under the conditions of (A1), assume

ν−2N‖f∞‖−1 ≤ 1, where N = sup
u,v,w∈H1

0
(Ω)2

b(u, v, w)

‖∇u‖0‖∇v‖0‖∇w‖0
.(5)

Then, for all s ≥ 0, the solution (u, p) of problem (4) satisfies

‖u(t)‖20 + ‖∇u‖20 + e−2δ0s

∫ s

0

e2δ0t(‖Au‖20 + ‖p‖21 + ‖ut‖
2
0)dt ≤ c,

σ(s)(‖Au‖20 + ‖ut‖
2
0 + ‖p‖21) + e−2δ0s

∫ s

0

e2δ0t(σ(t)‖∇ut‖
2
0 + ‖∇u‖20)dt ≤ c,

σ2(s)‖∇ut‖
2
0 + e−2δ0s

∫ s

0

e2δ0tσ2(t)(‖Aut‖
2
0 + ‖utt‖

2
0 + ‖pt‖

2
1)dt ≤ c,

where σ(·) = min{t, 1} and 0 < δ0 <
1
2 min{δ, ν/γ0}.

2.2. Finite element approximation. Let h ≥ 0 be a real positive parameter.
Suppose that the finite element subspace (Xh,Mh) of (X,M) is characterized by
Th = {K}, a partitioning of Ω into triangles, assumed to be regular in the usual
sense (see [5]). In this work, we consider the following mixed finite element spaces

Xh = {v ∈ X : vi|K ∈ P1(K), ∀K ∈ Th, i = 1, 2},

Mh = {q ∈M : q|K ∈ P1(K), ∀K ∈ Th},
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where P1(K) is the 1st-order polynomials on K. Note that this pair is unstable
in standard Babus̆ka-Brezzi sense (see [7]). Let πh : M → Wh be the standard
L2-projection with the following properties:

(p− πhp, qh) = 0 ∀ p ∈ L2(Ω), qh ∈ Wh,(6)

‖πhp‖0 ≤ C1‖p‖0 ∀ p ∈ L2(Ω),(7)

‖p− πhp‖0 ≤ C2h‖p‖1 ∀ p ∈ H1(Ω),(8)

where Wh ⊂ L2(Ω) denotes the piecewise constant space associated with Th. We
define the following difference operator [2, 14]

Gh(p, q) = α(p− πhp, q − πhq),(9)

where α is the stabilized parameter. Set

pi = [p0, p1, · · · , pN−1], qj = [q0, q1, · · · , qN−1],

Mij = (φi, φj), ph =
N−1
∑

i=0

piφi,

pi = ph(xi) ∀ph ∈Mh, i, j = 0, 1, · · · , N − 1,

where φi is the basis function for the pressure on the domain Ω such that its
value is one at the node xi and zero at other nodes. Mk, k ≥ 2 and M1 are
symmetric and positive-definite pressure mass matrices computed by using k-order
and 1-order Gauss integrations in each direction, respectively. Furthermore, pi and
qi, i = 0, 1, · · · , N − 1 are the values of ph and qh at the node xi. Due to (6) and
(9), it is valid that

Gh(ph, qh) = α(ph − πhph, qh − πhqh)

= α
[

(ph, qh)− (πhph, qh)− (ph, πhqh) + (πhph, πhqh)
]

= α
[

(ph, qh)− (πhph, qh)− (πhph, πhqh) + (πhph, πhqh)
]

= α(ph, qh)− α(πhph, qh).

Since ph ∈Mh ⊂M,πhph ∈Wh, it follows that

(ph, qh) = pTi Mkqj , (πhph, qh) = pTi M1qj ,

where pTi is the transpose of the vector pi. Then we have the following local
difference operator between a consistent and an under-integrated mass matrices
stabilized formulation

Gh(ph, qh) = αpTi (Mk −M1)qj = αpTi Mkqj − αpTi M1qj .

With the help of (9), the discrete finite element formulation for equations (1)-(3)
reads as:















Find (uh, ph) ∈ Xh ×Mh ∀ (vh, qh) ∈ (Xh,Mh), t ∈ (0, T ] such that

(uht, vh) + B((uh, ph), (vh, qh)) + b(uh, uh, vh) + J(t, uh, vh) = (f, vh),

uh(0) = u0h,

(10)

where u0h is an approximation of u0, and B((·, ·), (·, ·)) defined by

B((uh, ph), (vh, qh)) = a(uh, vh)− d(ph, vh) + d(uh, qh) +Gh(ph, qh).

The following theorem establishes the continuous and weak coercivity properties
for B((uh, ph); (vh, qh)) (see [2, 14]).



CHARACTERISTIC FEM FOR VISCOELASTIC FLOWS 621

Theorem 2.2. There exist two positive constants c and β, independent of h, for
all (uh, ph), (vh, qh) ∈ Xh ×Mh such that

|B((uh, ph); (vh, qh))| ≤ c(‖uh‖1 + ‖ph‖0)(‖vh‖1 + ‖qh‖0),

sup
06=(vh,qh)∈(Xh,Mh)

|B((uh, ph); (vh, qh))|

‖vh‖1 + ‖qh‖0
≥ β(‖uh‖1 + ‖ph‖0).

In order to obtain the error of numerical solution, we define the projection op-
erator (Rh, Qh) : (X,M) → (Xh,Mh) by

B((Rh(v, q), Qh(v, q)); (vh, qh)) = B((v, q); (vh, qh)),(11)

∀ (v, q) ∈ (X,M), (vh, qh) ∈ (Xh,Mh).

According to Theorem 2.2, (Rh, Qh) is well defined and satisfies the following
approximation properties (see [14]).
Lemma 2.3. Under the conditions of (A1) and (5), the projection (Rh, Qh) satisfies

‖∇(v −Rh(v, q))‖0 + ‖q −Qh(v, q)‖0 ≤ c(‖v‖1 + ‖q‖0)

for all (v, q) ∈ (X,M) and

‖v −Rh(v, q)‖0 + h(‖∇(v −Rh(v, q))‖0 + ‖q −Qh(v, q)‖0) ≤ Ch2(‖v‖2 + ‖q‖1)

for all (v, q) ∈ D(A) × (H1(Ω) ∩M).
Owing to u0 ∈ D(A), we can define p0 ∈ H1(Ω) ∩M (see [13]), following [12,

13] we set (uh(x, 0), ph(x, 0)) = (Rh(u0, p0), Qh(u0, p0)). Furthermore we denote
(eh, ηh) = (Rh(u, p)−uh, Qh(u, p)−ph). Combining Theorem 2.1 with Lemma 2.3,
one finds

e−2δ0s

∫ s

0

e2δ0tσ2(t)‖∇(ut −Rht(u, p))‖
2
0dt ≤ ch2 s > 0.(12)

Following the guidelines in [11, 12, 22], we can obtain the following results.
Theorem 2.4. Under the assumption of (A1) and condition (5), for all s > 0, the
solutions (uh, ph) of problem (10) satisfies

‖uh‖
2
0 + e−2δ0s

∫ s

0

e2δ0t(
ν

2
‖∇uh‖

2
0 +Gh(ph, ph))dt ≤ c,

ν‖∇uh‖
2
0 +Gh(ph, ph) + e−2δ0s

∫ s

0

e2δ0t‖uht(t)‖
2
0dt ≤ c,

σ(s)‖uht‖
2
0 + e−2δ0s

∫ s

0

e2δ0tσ(t)
(

ν‖∇uht‖
2
0 +Gh(pht, pht)

)

dt ≤ c,

σ(s)‖∇(u − uh)‖
2
0 + e−2δ0s

∫ s

0

e2δ0tσ(t)‖ut − uht‖
2
0dt ≤ ch2.

3. Stabilized characteristic finite element method

The characteristic scheme is based on the approximation of the material deriv-
ative term, that is, the time derivative term plus the convection term, works well
for convection-dominant problems (see [1, 6, 25]).

Let

ψ(x, t) = (1 + |u|2)
1

2 ,

where |u|2 = u21(x, t) + u22(x, t). The characteristic direction corresponding to the
hyperbolic part of (1), ut + (u · ∇)u, be denoted by τ , so (see [3, 17])

∂

∂τ
=

1

ψ(x, t)

∂

∂t
+

1

ψ(x, t)
u · ∇.
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Then the characteristic variational form of equations (1)-(3) reads as:














Find (u, p) ∈ (X,M), for all t ∈ (0, T ], (v, q) ∈ X ×M, such that

(ψ(x, t)∂u∂τ , v) +B((u, p); (v, q)) + J(t, u, v) = (f, v),

u(0) = u0.

(13)

Now, we consider the backward difference along the τ characteristic tangent as
the approximation of ψ(x, t)∂u∂τ . We choose the time step ∆t and denote discrete

times tn = n∆t, n = 0, 1, ..., N = T
∆t . Furthermore, we have (see [3, 4, 6, 17])

(ψ(x, t)
∂u

∂τ
)n ≈ ψ(x, t)

u(x, tn)− u(x, tn−1)
√

(x− x)2 +∆t2
=
un − un−1

∆t
,

where x = x− u(x, tn−1)△t, un stands for u(x, tn) and un−1 denotes u(x, tn−1).
In this work, we combine the modified method of characteristic with stabilized

method to treat the viscoelastic Oldroyd fluid flows of(1)-(3). For the time dis-
cretization of the integral term, we make analysis as in [16] and apply right rectangle
rule to the integral term:

Mn(φ) = ∆tρ
n
∑

i=1

e−δ(tn−ti)φi ≈ ρ

∫ tn

0

e−δ(tn−t)φ(t)dt.

Due to Theorem 2.4 and the fact that 1 + δ△t ≤ eδ△t ≤ c, we have

|Mn(∇uh)| ≤ ρ△te−δtn
n
∑

i=1

eδt
i

‖∇uh(t
i)‖0 ≤ c△te−δtn

n
∑

i=1

eδt
i

≤ c△teδ△t 1− eδt
n

eδ△t − 1
≤ c.(14)

The stabilized characteristic finite element algorithm for (1)-(3) reads as: Find
(unh, p

n
h) ∈ (Xh,Mh), for all (vh, qh) ∈ (Xh,Mh) such that

(
unh − un−1

h

∆t
, vh) + a(unh, vh)− d(vh, p

n
h) + d(unh, qh)

+Gh(p
n
h, qh) + (Mn(∇uh),∇vh) = (f, vh).(15)

Next, we will present the stability of scheme (15) and then provide the optimal
error estimates for the numerical solution (unh, p

n
h). Firstly, we recall the following

lemma that plays an important role in the numerical analysis.
Lemma 3.1. It holds that

(u, u)− (u, u) ≤ C∆t ∀ u ∈ X,

where u = u(x− u(x, t)∆t).
Proof. We can refer to the proof of Lemma 4.2 in [25].
Theorem 3.2. Under the assumptions of (A1) and the uniqueness condition of
(5), the solution (uih, p

i
h) of problem (15) satisfies

‖unh‖
2
0 + e−2δ0t

n

n
∑

i=1

e2δ0t
i
(

ν‖∇uih‖
2
0 + ‖pih‖

2
0

)

∆t ≤ c (0 < i ≤ n ≤ N).(16)

Proof. Choosing (vh, qh) = (uih, p
i
h) in (15) and multiplying by ∆t yields

(uih − ui−1
h , uih) +

[

ν‖∇uih‖
2
0 +Gh(p

i
h, p

i
h)
]

∆t

+(M i(∇uh),∇u
i
h)∆t = (f i, uih)∆t.(17)
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Applying the Cauchy inequality and (14), we arrive at

‖uih‖
2
0 +

[

ν‖∇uih‖
2
0 +G(hp

i
h, p

i
h)
]

∆t ≤ c(‖ui−1
h ‖20 +∆t+ ‖f i‖20∆t).(18)

We prove the boundedness of ‖uih‖0 by using the induction method. For i = 1,
one finds

‖u1h‖
2
0 +

[

ν‖∇u1h‖
2
0 +Gh(p

1
h, p

1
h)
]

∆t ≤ c(‖uh(0)‖
2
0 +∆t+ ‖f1‖20∆t).(19)

With Lemma 2.3, we know that (see [8, 9, 10, 12])

‖uh(0)‖0 = ‖uh(x, 0)‖0 = ‖Rh(u0, p0)‖0

≤ ‖u0‖1 + ‖∇(u0 −Rh(u0, p0))‖0 ≤ c(‖u0‖1 + ‖p0‖0).

Combining above inequality with (19), using assumption (A1) yields

‖u1h‖
2
0 +

[

ν‖∇u1h‖
2
0 +Gh(p

1
h, p

1
h)
]

∆t ≤ c.

For i = m− 1, if there holds

‖um−1
h ‖20 +

[

ν‖∇um−1
h ‖20 +Gh(p

m−1
h , pm−1

h )
]

∆t ≤ c ∀ x ∈ Ω.(20)

Then, for i = m, combining (18) with (20), one finds

‖umh ‖20 +
[

ν‖∇umh ‖20 +Gh(p
m
h , p

m
h )

]

∆t

≤
(

‖um−1
h (x)‖20 +∆t+ ‖fm‖20∆t

)

≤ c.(21)

Noting that ab ≤ 1
2 (a

2 + b2) we obtain

(uih − ui−1
h , uih) = (uih, u

i
h)− (ui−1

h , uih) ≥
1

2

[

(uih, u
i
h)− (ui−1

h , ui−1
h )

]

=
1

2

{

[(uih, u
i
h)− (ui−1

h , ui−1
h )] + [(ui−1

h , ui−1
h )− (ui−1

h , ui−1
h )]

}

.

Thanks to (14), we have

(M i(∇uh),∇u
i
h)∆t ≤ ‖M i(∇uh)‖0‖∇u

i
h‖0∆t

≤
ν

4
‖∇uih‖

2
0∆t+ ‖M i(∇uh)‖

2
0∆t ≤

ν

4
‖∇uih‖

2
0∆t+ c∆t.

Combing above estimates with (17), using the Lemma 3.1, Taylor’s formula and

multiplying e2δ0t
i

, we arrive at (see [25])

e2δ0t
i

‖uih‖
2
0 − e2δ0t

i−1

‖ui−1
h ‖20 + e2δ0t

i

ν‖∇uih‖
2
0∆t

≤ ce2δ0t
i

∆t+ c∆te2δ0t
i

‖ui−1
h ‖20.(22)

Summing (22) with respect to i from 1 to n, multiplying by e−2δ0t
n

and using (A1),
(21), we have

‖unh‖
2
0 + e−2δ0t

n

n
∑

i=1

e2δ0t
i

ν‖∇uih‖
2
0∆t

≤ e−2δ0tn‖u0h‖
2
0 + c∆te−2δ0t

n

n
∑

i=1

e2δ0t
i

(1 + ‖ui−1
h ‖20) ≤ c ∀ 0 < n ≤ N.(23)
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Furthermore, combining Theorem 2.2 with (15), using the Cauchy and Poincaré
inequalities, we get

βeδ0t
i

(‖uih‖1 + ‖pih‖0) ≤ sup
06=(vh,qh)∈(Xh,Mh)

|eδ0t
i

B((uih, p
i
h); (vh, qh))|

‖vh‖1 + ‖qh‖0

≤ sup
06=(vh,qh)∈(Xh,Mh)

eδ0t
i

(

|(
ui

h
−ui−1

h

∆t , vh)|+ |(f i, vh)|+ |(M i(∇uh),∇vh)|
)

‖vh‖1 + ‖qh‖0
.(24)

For uih − ui−1
h , we write it as a sum of two terms (uih − ui−1

h ) + (ui−1
h − ui−1

h ),
and use the results provided in [17] to obtain

eδ0t
i

(
uih − ui−1

h

∆t
, vh) ≤ (

eδ0t
i

uih − eδ0t
i−1

ui−1
h

∆t
, vh) + eδ0t

i

(
ui−1
h − ui−1

h

∆t
, vh)

≤
c

∆t
‖vh‖0

∫ ti

ti−1

(

eδ0t‖uht‖0 + δ0e
δ0s‖uh‖0

)

dt

+
ceδ0t

i

∆t
‖∇vh‖0‖u

i−1
h − ui−1

h ‖H−1(Ω)

≤
c

∆t1/2
‖∇vh‖0

(

∫ ti

ti−1

e2δ0t(‖uht‖
2
0 + ‖uh‖

2
0)dt

)
1

2

+ ceδ0t
i

‖∇vh‖0‖u
i−1
h ‖0.

With the help of (14), one finds

eδ0t
i

|(M i(∇uh),∇vh)| ≤ eδ0t
i

‖M i(∇uh)‖0‖∇vh‖0 ≤ ceδ0t
i

‖∇vh‖0.

Combining above estimates with (21)-(22), (24), squaring and summing (24) for i
from 1 to n, after multiplying by e−2δ0t

n

△t, we have

e−2δ0t
n

n
∑

i=1

e2δ0t
i

‖pih‖
2
0∆t

≤ ce−2δ0t
n

n
∑

i=1

e2δ0t
i

∆t+ e−2δ0t
n

∫ tn

0

e2δ0t(‖uht‖
2
0 + ‖uh‖

2
0)dt

+ce−2δ0t
n

n
∑

i=1

e2δ0t
i

‖ui−1
h ‖20∆t ≤ c.(25)

We end the proof of (16) by combining (23) with (25).

4. Error estimates.

In this section, our aim is devoted to establish the convergence of the solution
(unh, p

n
h) for problem (15). Firstly, we borrow the definition θn(φ) from [16]

θn(φ) =

∫ tn

0

ρe−δ(tn−t)φ(t)dt −Mn(φ).(26)

Combining the relationship

φ(tn)−
1

△t

∫ tn

tn−1

φ(t)ds =
1

△t

∫ tn

tn−1

(t− tn−1)φt(t)ds,
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and Theorem 2.4, one finds

‖θn(∇uh)‖
2
0 ≤ ρ2‖

n
∑

i=1

∫ ti

ti−1

e−δtn(t− ti−1)
∂

∂t
(eδt∇uh)dt‖

2
0

≤ c‖
n
∑

i=1

∫ ti

ti−1

eδ(t−tn)(t− ti−1)(δ∇uh +∇uht)dt‖
2
0

≤ c
(

n
∑

i=1

∫ ti

ti−1

e2α0(t−tn)|t− ti−1|2dt
)

·

(

e−2δ0t
n

n
∑

i=1

∫ ti

ti−1

e2δ0t(‖∇uh‖
2
0 + ‖∇uht‖

2
0)dt

)

≤ c△t2
∫ tn

0

e2α0(t−tn)dt · e−2δ0t
n

∫ tn

0

e2δ0t(‖∇uh‖
2
0 + ‖∇uht‖

2
0)dt

≤ c∆t2 (where α0 = δ − δ0).(27)

Theorem 4.1. Let (u, p) be the solution of (4), under the conditions of (A1) and
the uniqueness condition of (5), for all 0 < n ≤ m ≤ N , the solution (unh, p

n
h) of

(15) satisfies

σ2(tn)‖un − unh‖
2
0 ≤ c(∆t2 + h4),

e−2δ0t
m

ν∆t

m
∑

n=1

e2δ0t
n

σ2(tn)
(

‖∇(un − unh)‖
2
0 + ‖pn − pnh‖

2
0

)

≤ c(∆t2 + h2).

Proof. The proof consists of Theorem 2.4 and Lemmas 4.2-4.3.
Lemma 4.2. Under the assumptions of Theorem 4.1, the following error estimate
holds for all 0 < m ≤ N .

σ2(tm)‖emh ‖20 + e−2δ0t
m

∆t

m
∑

n=1

e2δ0t
n

σ2(tn)ν‖∇enh‖
2
0 ≤ c(∆t2 + h4).(28)

Proof. Thanks to (26) and (11), we can obtain the following error equation from
(13) and (15) at t = tn

(
enh − en−1

h

∆t
, vh) + B((enh, η

n
h ), (vh, qh)) + (θn(∇uh),∇vh)

= −(ψ(x, tn)
∂un

∂τ
−
un − un−1

∆t
, vh)

+(
(un−1 −Rh(u

n−1, pn−1))− (un−1 −Rh(u
n−1, pn−1))

∆t
, vh)

+(
(un−1 −Rh(u

n−1, pn−1))− (un −Rh(u
n, pn))

∆t
, vh) ≡

3
∑

i=1

Ti.(29)

Taking (vh, qh) = (enh, η
n
h) in (29) and using a(a− b) ≥ 1

2 (a
2 − b2) to yield

(
enh − en−1

h

∆t
, enh) + Bh((e

n
h , η

n
h), (e

n
h, η

n
h ))

≥
1

2∆t

[

‖enh‖
2
0 − ‖en−1

h ‖20 + (‖en−1
h ‖20 − ‖en−1

h ‖20)
]

+ ν‖∇enh‖
2
0 +G(ηnh , η

n
h).

|(θn(∇uh),∇e
n
h)| ≤ c‖θn(∇uh)‖

2
0 +

ν

16
‖∇enh‖

2
0.
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Applying the results provided in [6, 19], we can treat the terms T1-T3 as follows

|T1| ≤ c‖ψ(x, tn)
∂un

∂τ
−
un − un−1

∆t
‖0‖e

n
h‖0

≤ c∆t

∫ tn

tn−1

‖
∂2u

∂τ2
‖20dt+

ν

16
‖∇enh‖

2
0,

|T2| ≤
c

∆t
‖(un−1 −Rh(u

n−1, pn−1))− (un−1 −Rh(u
n−1, pn−1))‖−1 · ‖∇e

n
h‖0

≤ c‖un−1 −Rh(u
n−1, pn−1)‖0 · ‖∇e

n
h‖0

≤ c‖un−1 −Rh(u
n−1, pn−1)‖20 +

ν

16
‖∇enh‖

2
0,

|T3| ≤
ce−δ0t

n

∆t
‖eδ0t

n

(un −Rh(u
n, pn))− eδ0t

n

(un−1 −Rh(u
n−1, pn−1))‖0‖e

n
h‖0

≤
ce−δ0t

n

∆tσ(tn)

[

‖σ(tn)eδ0t
n

(un −Rh(u
n, pn))

−σ(tn−1)eδ0t
n−1

(un−1 −Rh(u
n−1, pn−1))‖0

+‖σ(tn)eδ0t
n

(un−1 −Rh(u
n−1, pn−1))

−σ(tn−1)eδ0t
n−1

(un−1 −Rh(u
n−1, pn−1))‖0

]

· ‖∇enh‖0

≤
ce−δ0t

n

∆tσ(tn)

[

∫ tn

tn−1

‖
∂(σ(t)eδ0t(Rh(u, p)− u))

∂t
‖0dt

+(σ(tn)− σ(tn−1))eδ0t
n−1

‖un−1 −Rh(u
n−1, pn−1)‖0

+σ(tn)(eδ0t
n

− eδ0t
n−1

)‖un−1 −Rh(u
n−1, pn−1)‖0

]

· ‖∇enh‖0

≤
ce−δ0t

n

∆tσ(tn)

[

∫ tn

tn−1

(

eδ0tσ(t)‖ut −Rht(u, p)‖0 + δ0e
δ0tσ(t)‖u −Rh(u, p)‖0

+eδ0t‖u−Rh(u, p)‖0
dσ(t)

dt

)

dt

+(σ(tn)− σ(tn−1))eδ0t
n−1

‖un−1 −Rh(u
n−1, pn−1)‖0

+σ(tn)(eδ0t
n

− eδ0t
n−1

)‖un−1 −Rh(u
n−1, pn−1)‖0

]

· ‖∇enh‖0.

Noting that 0 < σ(t) < t, dσ(t)dt ≤ 1(∀t ≥ 0) and σ(tn) ≤ σ(tn−1)+∆t, using Taylor

formula and the fact that e−δ0∆t ≤ 1, the above estimate can be rewritten as

|T3| ≤
ce−δ0t

n

∆tσ(tn)

[

(

∫ tn

tn−1

e2δ0tσ2(t)‖ut −Rht(u, p)‖
2
0dt)

1

2 (

∫ tn

tn−1

1dt)
1

2

+(

∫ tn

tn−1

e2δ0t‖u−Rh(u, p)‖
2
0dt)

1

2 (

∫ tn

tn−1

(1 + σ2(t))dt)
1

2

]

· ‖∇enh‖0

+(1 + δ0)‖u
n−1 −Rh(u

n−1, pn−1)‖0 · ‖∇e
n
h‖0

≤
ce−δ0t

n

∆t
1

2σ(tn)

[

(

∫ tn

tn−1

e2δ0tσ2(t)‖ut −Rht(u, p)‖
2
0dt)

1

2

+(

∫ tn

tn−1

e2δ0t‖u−Rh(u, p)‖
2
0dt)

1

2

]

· ‖∇enh‖0

+(1 + δ0)‖u
n−1 −Rh(u

n−1, pn−1)‖0 · ‖∇e
n
h‖0
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≤
ce−2δ0t

n

∆tσ2(tn)

[

(

∫ tn

tn−1

e2δ0tσ2(t)‖ut −Rht(u, p)‖
2
0dt)

+(

∫ tn

tn−1

e2δ0t‖u−Rh(u, p)‖
2
0dt)

]

+ c‖un−1 −Rh(u
n−1, pn−1)‖20 +

ν

16
‖∇enh‖

2
0,

Combining above estimates with (29), using Lemma 2.3 and (27), multiplying by
e2δ0t

n

△tσ2(tn) yields

e2δ0t
n

σ2(tn)‖enh‖
2
0 + ν∆te2δ0t

n

σ2(tn)‖∇enh‖
2
0 +∆te2δ0t

n

σ2(tn)Gh(η
n
h , η

n
h)

≤ c
[

(1 + ∆t)e2δ0t
n

σ2(tn)‖en−1
h ‖20 +

∫ tn

tn−1

e2δ0tσ2(t)‖ut −Rht(u, p)‖
2
0dt

+

∫ tn

tn−1

e2δ0t‖u−Rh(u, p)‖
2
0dt+∆te2δ0t

n

σ2(tn)‖un−1 −Rh(u
n−1, pn−1)‖20

+∆t2∆te2δ0tnσ2(tn) + ∆t2e2δ0t
n

σ2(tn)

∫ tn

tn−1

‖
∂2u

∂τ2
‖20dt

]

.(30)

Multiplying (30) by e−2δ0t
n

, for n = 1, noting that

e0h = Rh(u0, p0)− uh(x, 0) = 0.

Thanks to (12), (21) and Theorem 2.4, we get

σ2(t1)‖e1h‖
2
0 + ν∆tσ2(t1)‖∇e1h‖

2
0 +∆tσ2(t1)Gh(η

1
h, η

1
h)

≤ c
[

e−2δ0t
1

∫ t1

0

e2δ0tσ2(t)‖ut −Rht(u, p)‖
2
0dt+∆t2σ2(t1)

∫ t1

0

‖
∂2u

∂τ2
‖20dt

+σ2(t1)∆t3 + e−2δ0t1

∫ t1

0

e2δ0t‖u−Rh(u, p)‖
2
0dt

]

+σ2(t1)∆t‖u0 −Rh(u0, p0)‖
2
0

≤ c(h4 +∆t2).

If n = m− 1, we still have

σ2(tm−1)‖em−1
h ‖20 ≤ c(h4 +∆t2),(31)

then, as n = m, by using (12), (21), (31) and Theorem 2.4 yields

σ2(tn)‖emh ‖20 + ν∆tσ2(tn)‖∇emh ‖20 +∆tσ2(tn)Gh(η
m
h , η

m
h )

≤ c
[

(1 + ∆t)σ2(tn)‖em−1
h ‖20 + e−2δ0t

m

∫ tm

tm−1

e2δ0tσ2(t)‖ut −Rht(u, p)‖
2
0dt

+∆t2σ2(tn)

∫ tm

tm−1

‖
∂2u

∂τ2
‖20dt+ e−2δ0t

m

∫ tm

tm−1

e2δ0t‖u−Rh(u, p)‖
2
0dt

+σ2(tn)∆t3 +∆tσ2(tn)‖um−1 −Rh(u
m−1, pm−1)‖20

]

≤ c(h4 +∆t2).(32)

Using the fact that

eδ0t
n

= eδ0t
n−1

eδ0△t ≤ eδ0t
n−1

(1 + δ0△t+
eδ0△t(δ0△t)

2

2
)

≤ eδ0t
n−1

(1 + cδ0△t)(33)
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and summing (30) for n from 1 to m, with (12), (16), (32), (33), Theorem 2.4, after
multiplying e−2δ0t

m

, we have

σ2(tm)‖emh ‖20 + e−2δ0t
m

∆t

m
∑

n=1

e2δ0t
n

σ2(tn)
(

ν‖∇enh‖
2
0 +Gh(η

n
h , η

n
h )
)

≤ c
[

e−2δ0t
m

∆t

m
∑

n=1

e2δ0t
n

σ2(tn)‖en−1
h ‖20

+e−2δ0t
m

∫ tm

0

e2δ0tσ2(t)‖ut −Rht(u, p)‖
2
0dt

+e−2δ0t
m

∫ tm

0

e2δ0t‖u−Rh(u, p)‖
2
0dt+∆t2e−2δ0t

m

m
∑

n=1

e2δ0t
n

∆tσ2(tn)

+∆te−2δ0t
m

m
∑

n=1

e2δ0t
n

σ2(tn)‖un−1 −Rh(u
n−1, pn−1)‖20

+∆t2σ2(tn)

∫ tm

0

‖
∂2u

∂τ2
‖20dt

]

≤ c(h4 +∆t2) ∀ 0 < m ≤ N.

Lemma 4.5. Under the conditions of Theorem 4.1, the solution (unh, p
n
h) of problem

(15) satisfies

e−2δ0t
m

∆t

m
∑

n=1

e2δ0t
n

σ2(tn)‖ηnh‖
2
0 ≤ c(h2 +∆t2).(34)

Proof. From Theorem 2.2 and (29), we find that

βσ(tn)(‖enh‖1 + ‖ηnh‖0) ≤ sup
06=(vh,qh)∈(Xh,Mh)

|σ(tn)B((enh, η
n
h); (vh, qh))|

‖vh‖1 + ‖qh‖0

≤ sup
06=(vh,qh)∈(Xh,Mh)

1

‖vh‖1 + ‖qh‖0

[

|σ(tn)(ψ(x, tn)
∂un

∂τ
−
un − un−1

∆t
, vh)|

+|σ(tn)(
(un − unh)− (un−1 − un−1

h )

∆t
, vh)|+ |σ(tn)(θn(∇u0h),∇vh)|

]

.(35)

Now, we estimate the right hand terms of (35). Using the results provided in [19]
and (27) we get

∣

∣

∣
σ(tn)(ψ(x, tn)

∂un

∂τ
−
un − un−1

∆t
, vh)

∣

∣

∣
≤ cσ(tn)∆t

1

2

(

∫ tn

tn−1

‖
∂2u

∂τ2
‖20dt

)
1

2

‖∇vh‖0,

|σ(tn)(θn(∇uh),∇vh)| ≤ cσ(tn)‖θn(∇uh)‖0‖∇vh‖0

≤ cσ(tn)∆t‖∇vh‖0.
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From the definitions of σ(t), we know that σ(tn) ≤ σ(tn−1) + ∆t, with this rela-
tionship in mind, thanks to the help of triangular inequality, we arrive at

∣

∣

∣
σ(tn)(

(un − unh)− (un−1 − un−1
h )

∆t
, vh)

∣

∣

∣

≤
∣

∣

∣
(
σ(tn)[(un − unh)− (un−1 − un−1

h )]

∆t
, vh)

∣

∣

∣

+
∣

∣

∣
(
σ(tn)[(un−1 − un−1

h )− (un−1 − un−1
h )]

∆t
, vh)

∣

∣

∣

≤
∣

∣

∣
(
σ(tn)(un − unh)− σ(tn−1)(un−1 − un−1

h )

∆t
, vh)

∣

∣

∣

+
∣

∣

∣
((un−1 − un−1

h )− (un−1 − un−1
h ), vh)

∣

∣

∣

+
∣

∣

∣
(
σ(tn−1)[(un−1 − un−1

h )− (un−1 − un−1
h )]

∆t
, vh)

∣

∣

∣

+
∣

∣

∣
((un−1 − un−1

h ), vh)
∣

∣

∣

≡

4
∑

i=1

Ti.

For T1, due to σ(tn) ≤ σ(tn−1) + ∆t, 0 < σ(t) ≤ t ⇒ dσ(t)
dt ≤ 1(∀t > 0) and

e−δ0∆t ≤ 1, using Taylor formula to obtain

e−δ0t
n
∣

∣

∣
(
eδ0t

n

σ(tn)(un − unh)− eδ0t
n

σ(tn−1)(un−1 − un−1
h )

∆t
, vh)

∣

∣

∣

≤ e−δ0t
n
∣

∣

∣
(
eδ0t

n

σ(tn)(un − unh)− eδ0t
n−1

σ(tn−1)(un−1 − un−1
h )

∆t
, vh)

∣

∣

∣

+e−δ0t
n

· eδ0t
ǫ

δ0σ(t
n−1)(un−1 − un−1

h , vh) where tǫ ∈ [tn−1, tn]

≤
ce−δ0t

n

∆t

∫ tn

tn−1

∥

∥

∥

∂(eδ0tσ(t)(u − uh))

∂t

∥

∥

∥

0
dt · ‖vh‖0 + c‖un−1 − un−1

h ‖0‖vh‖0

≤
ce−δ0t

n

∆t

∫ tn

tn−1

(eδ0tσ(t)‖ut − uht‖0 + (1 + δ0)e
δ0t‖u− uh‖0)dt · ‖vh‖0

+c‖un−1 − un−1
h ‖0‖vh‖0

≤
ce−δ0t

n

∆t
1

2

[

(

∫ tn

tn−1

e2δ0tσ(t)‖ut − uht‖
2
0dt)

1

2 + (

∫ tn

tn−1

e2δ0t‖u− uh‖
2
0dt)

1

2

]

· ‖vh‖0

+c‖un−1 − un−1
h ‖0‖vh‖0.

For T2, T3 and T4, using Lemma 3.1 to obtain

T2 = |((un−1 − un−1
h )− (un−1 − un−1

h ), vh)|

≤ c‖(un−1 − un−1
h )− (un−1 − un−1

h )‖H−1(Ω)‖∇vh‖0

≤ c∆t‖un−1 − un−1
h ‖0‖∇vh‖0,

T3 = |(
σ(tn−1)[(un−1 − un−1

h )− (un−1 − un−1
h )]

∆t
, vh)|

≤ cσ(tn−1)‖
(un−1 − un−1

h )− (un−1 − un−1
h )

∆t
‖H−1(Ω)‖∇vh‖0

≤ c‖un−1 − un−1
h ‖0‖∇vh‖0,

T4 = |((un−1 − un−1
h ), vh)| ≤ c‖un−1 − un−1

h ‖0‖∇vh‖0.
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Combining above inequalities with (35), squaring and multiplying by e2δ0t
n

∆t,
summing for n from 1 to m, using Theorem 2.4 and (14), (16), after multiplying
by e−2δ0t

m

, we get

e−2δ0t
m

∆t

m
∑

n=1

e2δ0t
n

σ2(tn)(‖∇enh‖
2
0 + ‖ηnh‖

2
0)

≤ c
[

∆t2
∫ tm

0

‖
∂2u

∂τ2
‖20dt+ h2e−2δ0t

m

∆t

m
∑

n=1

e2δ0t
n

‖∇unh‖
2
0

+∆t2e−2δ0t
m

∆t

m
∑

n=1

e2δ0t
n

+ e−2δ0t
m

∫ tm

0

e2δ0tσ(t)‖ut − uht‖
2
0ds

+e−2δ0t
m

∫ tm

0

e2δ0t‖u− uh‖
2
0ds+∆te−2δ0t

m

m
∑

n=1

e2δ0t
n

‖un−1 − un−1
h ‖20

]

≤ c(h2 +∆t2) ∀ 0 < m ≤ N.

Hence, we finish the proof of (34).

5. Numerical examples

In this section, we present some numerical results to illustrate the effectiveness
of stabilized characteristic finite element method (SCFEM) for the viscoelastic Ol-
droyd fluid flows. We consider the problem (1)-(3) on the unit square Ω = [0, 1]2

in all experiments.

Table 1. Numerical results by using SCFEM with ν = 0.1: P1-P1 element.

1/h ‖ph−p‖0

‖p‖0

‖uh−u‖0

‖u‖0

||uh−u||1
‖u‖1

pL2 rate uL2 rate uH1 rate

10 0.0349235 0.0733102 0.305472
20 0.00879073 0.0179178 0.150022 1.9901 2.0326 1.0259
30 0.00413155 0.00791444 0.0978188 1.8622 2.0152 1.0548
40 0.00246407 0.00451106 0.072288 1.7966 1.9541 1.0514
50 0.00166013 0.002973 0.057313 1.7698 1.8686 1.0403

5.1. An analytical solution: Convergence validation. Firstly, we set ν =
0.1, ρ = ν, ∆t = 0.0001, δ = 100. The exact solution for the velocity and pressure
are

u1 = 10x2(x− 1)2y(y − 1)(2y − 1)e−2νπ2t,

u2 = −10x(x− 1)(2x− 1)y2(y − 1)2e−2νπ2t,

p = 20(2x− 1)(2y − 1)e−4νπ2t.

We present the numerical solution at the number of the iterations n = 25 with
stabilized parameter α = 0.1. Compared with the characteristic finite element
method (CFEM) and standard Galerkin finite element method (GFEM) with sta-
ble MINI element, the errors of velocity among three methods are consistent, while
the errors of pressure obtained by P1-P1 element bigger than MINI element’s, see
Tables 1-3. Of course, our method takes less CPU time than others, see Table 4.

Secondly, we consider the effect of varying parameter α on the errors with a
fixed mesh size h = 1

40 . Figure 1 indicates the effect of α to the error of both
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Table 2. Numerical results by using CFEM with ν = 0.1: MINI element.

1/h ‖ph−p‖0

‖p‖0

‖uh−u‖0

‖u‖0

||uh−u||1
‖u‖1

pL2 rate uL2 rate uH1 rate

10 0.0102549 0.0897054 0.867995
20 0.00197681 0.0194421 0.370599 2.3751 2.2060 1.2278
30 0.000873554 0.00662801 0.182261 2.0142 2.6541 1.7503
40 0.0004945 0.00320231 0.111201 1.9780 2.5286 1.7175
50 0.000320948 0.00191897 0.077685 1.9372 2.2949 1.6074

Table 3. Numerical results by using GFEM with ν = 0.1: MINI element.

1/h ‖ph−p‖0

‖p‖0

‖uh−u‖0

‖u‖0

||uh−u||1
‖u‖1

pL2 rate uL2 rate uH1 rate

10 0.0102731 0.0896931 0.867844
20 0.00197971 0.0194401 0.370536 2.3755 2.2060 1.2278
30 0.000872481 0.00662683 0.182232 2.0208 2.6543 1.7503
40 0.000491257 0.00319926 0.111185 1.9966 2.5313 1.7175
50 0.000315096 0.00191276 0.0776747 1.9902 2.3051 1.6073

Table 4. CPU(s) time of different methods.

1/h 10 20 30 40 50
SCFEM P1-P1 element 1.5 6.453 14.765 26.406 41.719
CFEM MINI element 1.938 8.266 18.954 34.062 54.204
GFEM MINI element 3.594 14.594 33.25 59.515 94.953

velocity and pressure at different Reynolds numbers. From Fig.1 (a)-(b), we can
see that the error of velocity becomes bigger as the parameter α increasing, while
the error of pressure arrives the minimum when α = 0.1, see Fig.1(c). Figure 2
shows the errors of velocity and pressure at different Reynolds numbers with some
fixed parameters α. From these figures, we can see that the errors of velocity and
pressure become larger as the parameter increasing. It seems that we can get good
results by choosing suitable parameter.

5.2. Lid-Driven cavity problem. Lid-driven cavity flow serves as a standard
test case in computational fluid dynamics. We set f = 0 and the boundary condition
u = 0 on [{0}×(0, 1)]∪[(0, 1)×{0}]∪[{1}×(0, 1)] and u = (1, 0)T on (0, 1)×{1}, see
Figure 3. The mesh size h = 1

40 , time step size △t = 0.01, the final time T = 100.
Figure 4 displays the velocity profiles passing through the geometric center of the

cavity with different parameters. In order to verify the performance of SCFEM, we
compute the lid-driven cavity problem by using characteristic method with P2-P1

element in h = 1
100 and compare these results with our algorithm’s. From these

figures, we can see that the velocity profiles are in better agreement with the P2-
P1’s results as the parameter increases. The reason may be that the condition
number of the coefficient matrix which is obtained by the variational formulation
becomes smaller and smaller. Generally, the following linear algebra equations can
be obtained from the discrete system from system (15)

(

A −D
DT G

)(

U
P

)

=

(

F
0

)

,
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Figure 1. Effects of varying α at different Reynold numbers. (a)
L2 error of velocity, (b) H1 error of velocity, (c) L2 error of pres-
sure.
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Figure 2. Effects of varying α at different Reynold numbers. (a)
L2 error of velocity, (b) H1 error of velocity, (c) L2 error of pres-
sure.

Figure 3. Lid-driven cavity flow.

where the matrices A,D and G are deduced in the usual manner from the bilinear
forms a(·, ·),M(·, ·), d(·, ·) and G(·, ·), F is the variation of the source term. The
norm of matrix A gets smaller as the Reynolds number increases. In order to obtain

a good behavior of matrix

(

A −D
DT G

)

, we should choose a proper G, i.e., we

should choose appropriate size of stabilized parameter α. This may explain why
the numerical results with α = 10 are better than the data obtained with α = 0.01.
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Figure 4. The computed velocity profiles passing through the
geometric center at T=100 at Re = 3000 with different α, (a)
horizontal velocity, (b) vertical velocity.
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Figure 5. The computed velocity profiles passing through the
geometric center at T=100 at Re = 3000 with α = 1000, (a)
horizontal velocity, (b) vertical velocity.

Nevertheless, it does not mean the larger the parameter, the better the numerical
results, see Figure 5. Therefore, we can say that the stabilized characteristic finite
element method is stable and efficient for the viscoelastic fluid problem with the
suitable parameter.

6. Conclusion

In this paper, we combine the characteristic scheme with stabilized method to
solve the viscoelastic Oldroyd fluid flows. This combination is efficient and retains
the advantages of both algorithms and avoids their deficits. Unconditional stabil-
ity and optimal error estimates are derived, Finally, some numerical results are
presented to illustrate the performance of our method.
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