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STOCHASTIC GALERKIN METHOD FOR CONSTRAINED

OPTIMAL CONTROL PROBLEM GOVERNED BY AN ELLIPTIC

INTEGRO-DIFFERENTIAL PDE WITH RANDOM

COEFFICIENTS

W. SHEN, T. SUN, B. GONG, AND WENBIN LIU

Abstract. In this paper, a stochastic finite element approximation scheme is developed for
an optimal control problem governed by an elliptic integro-differential equation with random
coefficients. Different from the well-studied optimal control problems governed by stochastic
PDEs, our control problem has the control constraints of obstacle type, which is mostly seen
in real applications. We develop the weak formulation for this control and its stochastic finite
element approximation scheme. We then obtain necessary and sufficient optimality conditions
for the optimal control and the state, which are the base for deriving a priori error estimates
of the approximation in our work. Instead of using the infinite dimensional Lagrange multiplier
theory, which is currently used in the literature but often difficult to handle inequality control
constraints, we use a direct approach by applying the well-known Lions’ Lemma to the reduced

optimal problem. This approach is shown to be applicable for a wide range of control constraints.
Finally numerical examples are presented to illustrate our theoretical results.

Key words. Priori error estimates, stochastic Galerkin method, optimal control problem, integro-
differential equation, constraint of obstacle type.

1. Introduction

Optimal control problems governed by partial different equations have been a
major research topic in applied mathematics and control theory. Since the milestone
work of J.P Lions [33], a great deal of progress has been made in many aspects such
as stability, observability and numerical methods, which are too extensive to be
mentioned here even very briefly. Finite element approximation of optimal control
problems plays a very important role in numerical methods for these problems, and,
the finite element approximation of optimal control problems governed by various
partial differential equations, either linear or nonlinear, have been much studied
in the literature. For optimal control problems governed by the classic PDEs,
the optimality conditions and their finite element approximation and a prior error
estimates were established long ago, for example, see the early work in [11]. There
have been extensive studies on this aspect for such as elliptic equations, parabolic
equations, Stokes equations, and Niavoir-Stokes equations. Some of recent progress
in this area has been summarized in [20, 27, 31, 35, 43, 46, 56], and the references
cited therein. Systematic introductions of the finite element method for PDEs and
optimal control problems can be found in, for example, [43, 46, 56]. There also
exists an extensive body of studies adaptive finite element methods for various
optimal control problems, which is again too extensive to be mentioned here even
very briefly. For a recent summary in computational optimal control, we refer our
readers to the recent monograph [36].
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Recently, optimal control problems with more complicated state equations have
been considered, particularly those with the integro-differential state equations.
Integro-differential equations and their control of this nature appear in applica-
tions such as heat conduction in materials with memory, population dynamics, and
viscous-elasticity; cf., e.g., Friedman and Shinbrot [12], Heard [21], and Renardy,
Hrusa, and Nohel [47]. For equations with nonsmooth kernels, we refer to Grimmer
and Pritchard [17], Lunardi and Sinestrari [39], and Lorenzi and Sinestrari [38] and
references therein. One very important characteristic of all these models is that they
all express a conservation of a certain quantity mass momentum in any moment
for any subdomain. This in many applications is the most desirable feature of the
approximation method when it comes to numerical solution of the corresponding
initial boundary value problem. Furthermore finite element methods for parabolic
integro-differential equations problems with a smooth kernel have been discussed
in, e.g., Cannon and Lin [6], LeRoux and Thomée [30], Lin, Thomée, and Wahlbin
[32], Sloan and Thomée [54], Thomée and Zhang [55], and Yanik and Fairweather
[61].

Only very recently the finite element approximation of optimal control with the
integro-differential state equations has been systematically studied. For example,
the finite element method for the optimal control governed by elliptic integral equa-
tions and integro-differential equations has been made in [22], in which the a priori
and a posteriori error estimations were obtained. For optimal control problems
governed by linear parabolic (and quasi-parabolic) integro-differential equations,
a priori error estimates of finite element approximation were studied in [51, 52],
hyperbolic integro-differential equations [53]. It is, however, much more difficult
to study adaptive finite element methods for control problems governed by linear
parabolic integro-differential equations.

Uncertainty, such as uncertain parameters, arises in many complex real-world
problems of physical and engineering interests. It is well known that these prob-
lems can be described by different kinds of stochastic partial differential equations
(SPDEs). In recent years, finite element methods for stochastic elliptic and par-
abolic PDEs (here we mean the equations with stochastic perturbation in their
coefficients.) have been a subject of growing interest in the scientific community
(see e.g. [1, 2, 8, 50]), which have been widely used to model fluid flows in porous
media in many areas, e.g., transport of pollutants in groundwater and oil recovery
processes.

The well known Monte Carlo (MC) method is still the most popular method for
simulating stochastic elliptic PDEs and dealing with the statistic characteristics of
the solution, although it is a rather computationally expensive method (see e.g.
[9, 45]) for higher accuracy. Other alternatives to Monte Carlo method have been
employed in the field of stochastic mechanics. A popular technique is the perturba-
tion method, cf. [26]. Given certain smoothness conditions, the random functions
and operators involved in the differential equation are expanded in a Taylor series
about their respective mean values. Another approach is the Neumann expansion
series method, e.g. [1]. In this method the inverse of the boundary value problems
stochastic operator is approximated by its Neumann series. Based on a spectral
representation of the uncertainty, the spectral stochastic finite element method
(SSFEM), e.g. [16] was introduced. This method utilized the Karhunen-Loève ex-
pansion of correlated random functions, (cf. [37]), and obtaind the solution by a
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Galerkin method in a space of stochastic functions. More information, references
and reviews on stochastic finite elements can be found in [41]-[42].

Following [16], the stochastic Galerkin method has been applied to various sto-
chastic problems, e.g. [3, 14, 25, 50, 59, 60]. Such a Galerkin method allows us
to use polynomial chaos (PC) or generalized polynomial chaos (gPC) serving as a
complete basis to represent random processes as explicit functional of finite number
of independent random variables. Then, an explicit functional relationship between
the independent random variables and the solution is achieved and the stochastic
governing equations are transformed to a set of deterministic equations which can
be readily discretized via more standard numerical techniques like the finite element
or adaptive finite element methods for higher accuracy.

Here we utilize the stochastic Galerkin method to approximate the optimal con-
trol governed by the PDE with random fields in its coefficients. In many ap-
plications,optimization of physical and engineering systems can be formulated as
optimal control problems that are constrained by such stochastic PDEs. Never-
theless, the development of stochastic optimal control problem constrained by the
stochastic PDEs can still be considered to be in its infancy, see the very recent work
of [19]-[29]. The work [19] dealed with deterministic Neumann boundary control in
order to obtain a priori error estimate for the numerical approximation of stochas-
tic steady diffusion problem. In [48], numerical experiments were conducted with
‘pure’ stochastic control function as well as ‘semi’ stochastic control function for
an optimal control problem constrained by stochastic steady diffusion problem. In
[23] and [29], stochastic optimal control problems constrained by stochastic elliptic
PDEs with deterministic distributed control function are introduced. The authors
prove the existence of the optimal solution, establish the validity of the Lagrange
multiplier rule and obtain stochastic optimality system. Then, they use the Wiener-
Itô (W-I) chaos or the Karhunen-Loève (K-L) expansion as a main tool to convert
stochastic optimality system to deterministic optimality system. Finally, a priori
error estimates for Galerkin approximation of the optimality system in both physi-
cal space and stochastic space are provided. Let us emphasize these works use the
infinite dimensional Lagrange multiplier theory to deal with the PDE constraint in
the control problems, which is often complicated to extend to deal with the cases
where the control has inequality constraints such as obstacle types.

In this paper, we deal with a priori error estimate of Stochastic Galerkin Method
for optimal control problem governed by an integro-differential equation with ran-
dom fields in its coefficients, and with the control constraints of obstacle type, which
is mostly seen in applications. The objective is of a state tracking type adding the
weighted energy of tracking, and the deterministic control is of the obstacle con-
strained type. In Section 2, we introduce some function spaces and the stochastic
optimal control problem. In Section 3, we represent the stochastic elliptic PDE in
term of the generalized polynomial chaos (gPC) expansion and obtain the finite
dimensional optimal control problem. The important feature of this work is that:
instead of using the Lagrange multiplier method in infinite dimensional spaces,
which is currently used in the literature but often difficult to deal with inequality
control constraints, we use a direct approach by applying the well-known Lions’
Lemma to the reduced optimal problem. We then obtain the necessary and suf-
ficient optimality conditions. After constructing finite element spaces and theirs
approximation properties with respect to both the spatial space and the probabil-
ity space, the stochastic Galerkin approximation scheme is established in Section
4. Section 5 considers a priori error estimates for the state, the co-state and the
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control variables. Numerical examples are presented to illustrate our theoretical
results in Section 6.

2. Model control problem

2.1. Function spaces and notations. Let D ⊂ R
d be a convex bounded polyg-

onal spatial domain with boundary ∂D and 1 6 d 6 3. Let (Ω,F ,P) be a complete
probability space, where Ω is a set of outcomes, F is a σ-algebra of events and
P : F → [0, 1] is a probability measure. Denote by B(D) the Borel σ-algebra
generated by the open subset of D.

Throughout the paper, we adopt the standard notations for Sobolev spaces as in
[28, 33, 34, 57], such as Wm,q(Ω) on Ω with norm ‖ · ‖m,q,Ω, and semi-norm| · |m,q,Ω
for 1 6 q 6 ∞. Set Wm,q

0 (Ω) =
{

w ∈ Wm,q(Ω) : w|∂Ω = 0
}

. Also denote

Wm,2(Ω)(Wm,2
0 (Ω)) by Hm(Ω) (Hm

0 (Ω)), with norm‖·‖m,Ω, and semi-norm | · |m,Ω.
Denote by Ls(0, T ;Wm,q(Ω)) the Banach space of all Ls integrable functions from

(0, T ) into Wm,q(Ω) with norm ‖ v ‖Ls(0,T ;Wm,q(Ω))= (
∫ T

0
‖ v ‖sWm,q(Ω) dt)

1
s for

s ∈ [1,∞) and the standard modification for s = ∞. Similarly, one can define the
spacesH1(0, T ;Wm,q(Ω)) and Ck(0, T ;Wm,q(Ω)). The details can be found in [34].

With these standard Sobolev spaces, throughout this paper, we adopt the def-
inition of stochastic Sobolev spaces (see [3, 23, 29]). For a nonnegative integer s
and 1 6 q < +∞, let Lq(Ω;W s,q(D)) contain stochastic functions, v : Ω×D → R,
that are measurable with respect to the product σ-algebra F ⊗B(D) and equipped
with the averaged norms

‖v‖Lq(Ω;W s,q(D)) =
(

E[‖v‖qW s,q(D)]
)1/q

=
(

E[
∑

|α|6s

∫

D

|∂αv|qdx]
)1/q

,

and

‖v‖L∞Ω;W s,∞(D)) = max
|α|6s

(

ess sup
Ω×D

|∂αv|
)

,

where E is the expected value. Observe that if v ∈ Lq(Ω;W s,q(D)), then v(·, ω) ∈
W s,q(D) almost surly (a.s.) and ∂αv(x, ·) ∈ Lq(Ω) a.e. on D for |α| 6 s.

When s = 0, q = 2, the above space is just

L2(Ω;L2(D)) = {v : D × Ω → R | ‖v‖L2(Ω;L2(D)) <∞
}

,

with the norm

‖v‖2L2(Ω;L2(D)) =

∫

Ω

‖v‖2L2(D)dP = E‖v‖2L2(D).

One can define spaces L2(Ω;H1(D)) and L2(Ω;H1
0 (D)) similarly. Note that these

stochastic Sobolev spaces are Hilbert spaces.

2.2. Model stochastic optimal control problem. In our work, the following
control problem governed by an elliptic integro-differential equation with random
coefficients and a control constraint of an obstacle type:

(1) min
u∈K

J (u) = min
u∈K

E
(1

2

∫

D

|y − yd|2dx+
α

2

∫

D

|u|2dx
)

subject to
(2)

{

−∇ · [a(x, ω)∇y(x, ω)] −
∫

D g(s, x, ω)y(s, ω)ds = u(x), x ∈ D, ω ∈ Ω,

y(x, ω) = 0, x ∈ ∂D, ω ∈ Ω,
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where J is a cost functional, y : D̄×Ω → R is the state variable, yd : D̄×Ω → R is
a given target solution, a : D×Ω → R is a stochastic function with continuous and
bounded covariance function, g(·, ·, ·) D×D×Ω → R is another stochastic function
with continuous and bounded covariance function (precise regularity conditions
will be given later), u : D → R is a deterministic control, α is a positive constant
measuring the importance between two terms in J . The operator ∇ means the
gradient with respect to the spatial variable x ∈ D only. Here, K is a closed convex
subset in the control space L2(D). In the following context, we will discuss some
different cases on the choice of K.

If we denote by B(D) the Borel σ-algebra generated by the open subsets of D,
then a and g are assumed measurable with respect to the σ-algebras (B(D) ⊗ F)
and (B(D) ⊗ B(D) ⊗ F) , and independent. To ensure well-postness of the state
equation, we assume that there are positive constants amin and amax, such that

(3) amin 6 a(x, ω) 6 amax, a. e. (x, ω) ∈ D × Ω.

We also assume that there exists a positive constant c0 > 0 such that

(4) |g(s, x, ω)| 6 c0, a. e. (s, x, ω) ∈ D ×D × Ω,

where c0 is such that there is a positive constant ε satisfying

(5)

∫

D

a∇v∇v > (c0 + ε)|D| ‖ v ‖21,D, ∀ v ∈ H1(D), ε > 0,

where |D| =
∫

D 1. Then with these assumptions, the existence and uniqueness of a
weak solution y for (2) in a sense of average can be set and proved as below.

In the following, we will take the state space Y = L2(Ω;H1
0 (D)) and the control

space U = L2(D). In addition, C will denote general constants. To present the
weak formulation for equation (2) after average, we introduce the following bilinear
forms:

(6)

A[y, v] = E[

∫

D

a(x, ω)∇y(x, ω) · ∇v(x, ω)dx]

= E[

∫

D

a∇y · ∇vdx], ∀ y, v ∈ Y,

G[y, v] = E[

∫

D

(

∫

D

g(s, x, ω)y(s, ω)v(x, ω)ds)dx]

= E[

∫

D

(

∫

D

g(s, x)y(s)v(x)ds)dx], ∀ y, v ∈ L2(Ω;L2(D)),

and

(7)

[u, v] = E(

∫

D

u(x, ω)v(x, ω)dx) = E(

∫

D

uvdx) ∀ u, v ∈ L2(Ω;L2(D)),

(u, v) =

∫

D

u(x)v(x)dx, ∀ u, v ∈ U.

Then, we can derive the weak formulation of optimal control problem (1)-(2) by:

(8) min
u∈K

J (u) = min
u∈K

E
(1

2

∫

D

|y − yd|2dx+
α

2

∫

D

|u|2dx
)

subject to

(9) A[y, v]−G[y, v] = [u, v], ∀ v ∈ Y.

Here from the Lax-Milgram lemma (see [5]), we have the following theorem about
the existence and uniqueness of the solution for (9).
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Theorem 2.1. Let u ∈ L2(Ω, L2(D)). Then there exists a unique solution for the
following weak equations: find y, q ∈ Y , such that:

(10) A[y, v]−G[y, v] = [u, v], ∀ v ∈ Y,

and the dual equation:

(11) A[q, p]−G[q, p] = [u, q], ∀ q ∈ Y.

Proof. Note that from ellipticity condition (3) on a and the assumption (4) on g ,
there exist a positive constant C > 0 such that

(12) |A[y, v]−G[y, v]| 6 C ‖ y ‖L2(Ω,H1(D))‖ v ‖L2(Ω,H1(D)), ∀ v ∈ Y.

Furthermore by applying the Schwarz inequality

(13) G[y, y] 6 c0 ‖ y ‖2L2(Ω,L2(D))6 c0|D| ‖ y ‖2L2(Ω,H1(D)) ∀ y ∈ Y.

Thus it follows from the assumption (4) that there exists a positive constant c > 0
such that

(14) A[v, v]−G[v, v] > c ‖ v ‖2L2(Ω,H1(D)), ∀ v ∈ Y.

On the other hand, we can easily see that there is a constant C > 0 such that

(15) |[u, v]| 6 C ‖ u ‖L2(Ω,L2(D))‖ v ‖L2(Ω,H1(D)), ∀ v ∈ Y.

Hence, by the Lax-Milgram lemma, (9) has a unique solution. The equation (11)
can be dealt with similarly. �

Remark 2.2. The assumption (4) can be further relaxed to (see [22]): There exists
a constant c > 0 such that for any v ∈ Y exists a w ∈ Y

(16) A[v, w]−G[v, w] > c ‖ v ‖L2(Ω,H1(D))‖ w ‖L2(Ω,H1(D)) .

Then (9) has a unique solution. Furthermore the a priori error estimates derived
in Section 5 still hold if a discreitizd version (16) holds . For the details the readers
are referred to [22].

2.3. Optimality Conditions. It is essential to derive the optimality conditions
for the above constrained optimal control problem in order to set up its suitable
finite element approximation and obtain error estimates. In [23, 29], stochastic con-
trol problems with un-constrained control were studied, by using the infinite dimen-
sional Lagrange multiplier theory. It is not trivial to apply the infinite dimensional
Lagrange multiplier theory to our cases. Here, we use a different approach, which is
much simpler and widely used in the literature (see [36, 51], to be explained below:

It is well-known that the PDE-constrained optimal control problem (8)-(9) can
be recast to be the following minimization problem:

min
u∈K

J (u)

where

(17) J (u) = E
(1

2

∫

D

|y(u)− yd|2dx+
α

2

∫

D

|u|2dx
)

subject to

(18) A[y(u), v]−G[y(u), v] = [u, v], ∀ v ∈ Y.

Here Y and U are Hilbert spaces, functional J is strictly convex and K ⊂ U
is a closed convex set. According to Lions’ theorem ([33]), there exists a unique
minimizer, which satisfies the following variational inequality:

(19) J ′(u)(w − u) > 0, ∀ w ∈ K.
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Here, the directional derivative of functional J at u ∈ K along the direction w ∈ K
is defined by

(20) J ′(u)(w) = lim
t→0+

J ′(u+ tw)− J ′(u)

t
.

Applying the above theory to our control problem, we have the following theorem.

Theorem 2.3. There exists a unique solution of (8)-(9). Furthermore a pair (y, u)
is the solution iff there is a co-state variable p ∈ Y , such that the triplet (y, p, u)
satisfies the following optimality system:

(21)











A[y, v]−G[y, v] = [u, v], ∀ v ∈ Y,

A[q, p]−G[q, p] = [y − yd, q], ∀ q ∈ Y,

[p+ αu,w − u] > 0, ∀ w ∈ K.

Proof. Let J (u) = g(y(u)) + j(u), where g(y(u)) = E
(

1
2

∫

D |y(u) − yd|2dx
)

and

j(u) = E(α2
∫

D
|u|2dx). Applying the variational inequality, the optimal condition

reads

(22) j′(u)(v − u) + (g(y(u)))′(v − u) > 0, ∀ v ∈ K.

It is clear that

(23)

j′(u)(v − u) = lim
t→0+

1

t
E
(α

2

∫

D

[

|u+ t(v − u)|2 − |u|2
]

dx
)

=E(

∫

D

αu · (v − u)dx) = [αu, v − u],

and
(24)

(g(y(u)))′(v − u) = lim
t→0+

1

t

(

g(y(u+ t(v − u)))− g(y(u))
)

= lim
t→0+

1

2t
E
(

∫

D

[

|y(u+ t(v − u))− y(u)|2 + 2(y(u+ t(v − u))− y(u), y − zd)
]

)

=E
(

∫

D

y′(u)(v − u) · (y − zd)dx
)

= [y′(u)(v − u), y − zd].

Next, let us differentiate the state equation (36) at u in the direction v.
By (36), we have
(25)
1

t

{

A[y(u+t(v−u)−y(u), w]−G[y(u)(u+t(v−u))−y(u), w]
}

= [v−u,w], ∀ w ∈ Y.

Taking limits in (25) as t → 0, we obtain

(26) A[y′(u)(v − u), w]−G[y′(u)(v − u), w] = [v − u,w], ∀ v ∈ K, w ∈ Y.

Define the co-state p ∈ Y satisfying

(27) A[q, p]−G[q, p] = [y − zd, q], ∀ q ∈ Y,

here the existence of p is shown in Theorem 2.1.
Letting w = p in (26), we have
(28)
[v−u, p] = A[y′(u)(v−u), p]−G[y′(u)(v−u), p] = [y′(u)(v−u), y−zd] = (g(y(u)))′(v−u).
By (22)-(23) and (28), the optimality condition reads

(29) J ′(u)(v − u) = [αu + p, v − u] > 0, ∀ v ∈ K,

where p is defined in (27). This completes the proof of Theorem2.3. �
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It is known that the optimality conditions in (21) are necessary and sufficient.

3. Finite dimensional truncations of random fields

3.1. Finite expansion of random fields. In this paper, we will assume that the
source of randomness can be expressed by a finite number of random variables that
are mutually independent, and that we have finite expansions of input data. For
those reasons, following the theory of Babuska [3], Wiener [58], as well as Xiu and
Karniadakis [59], we can employ the following finite-dimensional noise assumption

Assumption 3.1. (finite dimensional noise) Any general second-order random
process X(ω), ω ∈ Ω can be represented in terms of a prescribed finite number of
random variables ξ = ξ(ω) = (ξ1(ω), · · · , ξN (ω)) with independent components
ξi(ω), i = 1, · · · , N ∈ N. Let Γi = ξi(Ω) ∈ R be a bounded interval for i =
1, · · · , N and ρi : Γi → [0, 1] be the probability density functions of the random
variables ξi(ω), ω ∈ Ω. Then we can use the joint probability density function

ρ(ξ) =
∏N
i=1 ρi(ξi) for random vector ξ with the support Γ =

∏N
i=1 Γi ⊂ R

N . On
Γ, we have the probability measure ρ(ξ)dξ.

As an example, we can use a finite-term expansion of the stochastic coefficient
a and g based on N random variables (cf. [48]) :

(30) a(x, ξ) =
S
∑

i=1

αi(x)Li(ξ), x ∈ D, ξ ∈ Γ,

(31) g(s, x, ξ) =
S
∑

i=1

γi(s, x)Li(ξ), s, x ∈ D, ξ ∈ Γ,

where αi(x) : D → R, γi(s, x) : D × D → R and Li : Γ → R. If a and g are
represented by truncated Karhunen-Loève (KL) expansions [3], then S = N + 1
with Li = ξi−1 and ξ0 = 1; if a generalized polynomial chaos expansion [59] is used,
Li is an N−variate polynomial of order p and S = (N + p)!/(N !p!).

As commented in [59], the above finite-term expansion allows us to conduct
numerical formulations in the finite dimensional (N -dimensional) random space Γ.
Let us denote L2

ρ(Γ) as the probabilistic Hilbert space [40], in which the random
processes based upon the random variables ξ reside. The inner product of this
Hilbert space is given by

〈X,Y 〉L2
ρ(Γ)

=

∫

Γ

X(ξ)Y (ξ)ρ(ξ)dξ, ∀ X, Y ∈ L2
ρ(Γ),

where we have exploited independence of the random variables to allow us to write
the measure as product of measures in each stochastic direction. We similarly define
the expectation of a random process X ∈ L2

ρ(Γ) as

E[X(ξ)] =

∫

Γ

X(ξ)ρ(ξ)dξ.

Additionally, we define the mapping f : (x, ξ) ∈ D × Γ → R be a set of random
processes, which are indexed by the spatial position x ∈ D. Such a set of processes
is referred to as a random field [25] and can also be interpreted as a function-valued
random variable, because for every ξ ∈ Γ the realization f(·, ξ) : D → R is a real
valued function on D.

For a vector-space W on D, let the class L2
ρ(Γ;W ) denote the space of random

fields whose realizations lie in W for a.e (almost every) ξ ∈ Γ. If W is a Banach
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space, a norm on L2
ρ(Γ;W ) is induced by ||f(x, ξ)||2L2

ρ(Γ;W )) = E[‖f(x, ξ)‖2W ]; for

example, on L2
ρ(Γ;L

2(D)) we have

||f(x, ξ)||2L2
ρ(Γ;L

2(D)) = E[‖f(x, ξ)‖2L2(D)] =

∫

Γ

∫

D

(f(x, ξ))2ρ(ξ)dxdξ,

which denotes the expected value of the L2(D)-norm of the function f(x, ξ).
We now give a Banach space that will be used as the solution space for the

stochastic optimality system of equations, cf. [10]. Here, a Banach space Cρ(Γ;H)
comprises all continuous functions f : Γ → H with a norm ‖f‖Cρ(Γ;H) ≡ sup

ξ∈Γ
‖f(·, ξ)‖H ,

where H is a Hilbert space. Similarly, Cpρ (Γ;H) is a Banach space with a norm

‖f‖Cp
ρ(Γ;H) = ‖f‖Cρ(Γ;H) +

N
∑

j=1

pj
∑

k=1

‖∂kξjf‖Cρ(Γ;H),

where p = (p1, p2, ..., pN ).

3.2. Finite dimensional representation of control problem. It follows from
Doob-Dynkin theory (cf. [44]) that the solution y corresponding to the stochastic
partial differential equation (2), can be described by just a finite number of random
variables, i.e., y(x, ω) = y(x, ξ) = y(x, ξ1(ω), · · · , ξN (ω)). The number N has to be
large enough so that the approximation error is sufficient small.

Thus the stochastic optimal control problem (1)-(2) can be recast as a determin-
istic PDE-constrained optimization problem as follows:

(32) min
u∈K

J (u) = min
u∈K

E
(1

2

∫

D

|y − yd|2dx+
α

2

∫

D

|u|2dx
)

subject to

(33)

{

−∇ · [a(x, ξ)∇y(x, ξ)] −
∫

D
g(s, x, ξ)y(s, ξ)ds = u(x), x ∈ D, ξ ∈ Γ,

y(x, ξ) = 0, x ∈ ∂D, ξ ∈ Γ.

Here, we will replace the aforementioned assumption (3) by

c‖v‖2H1(D) 6
(

a(x, ξ)∇v,∇v
)

L2(D)
−
(

∫

D

g(s, x, ξ)v(s, ξ)ds, v(x)
)

L2(D)

6 C‖v‖2H1(D), ∀ v ∈ H1(D), a.e. Γ.(34)

Using these finite dimensional representation the weak formulation of determin-
istic optimal control problem (32)-(33) can be rewritten as:

(35) min
u∈K

J (u) = min
u∈K

E
(1

2

∫

D

|y − yd|2dx+
α

2

∫

D

|u|2dx
)

subject to

(36) A[y, v]−G[y, v] = [u, v], ∀ v ∈ Yρ,

where we have taken the deterministic state space Yρ = L2
ρ(Γ;H

1
0 (D)), and

(37)

A[y, v] =

∫

Γ

∫

D

a(x, ξ)∇y(x, ξ)·∇v(x, ξ)ρ(ξ)dxdξ =

∫

Γ

∫

D

a∇y·∇vρdxdξ, ∀y, v ∈ Yρ,
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(38)

G[y, v] =

∫

Γ

∫

D

(

∫

D

g(s, x, ξ)y(s, ξ)v(x, ξ)ρ(ξ)ds
)

dxdξ

=

∫

Γ

∫

D

(

∫

D

g(s, x)y(s)v(x)ρ(ξ)ds
)

dxdξ, ∀y, , v ∈ Yρ,

and
(39)

[u, v] =

∫

Γ

∫

D

u(x, ξ)v(x, ξ)ρ(ξ)dxdξ =

∫

Γ

∫

D

uvρdxdξ, ∀ u, v ∈ L2(Γ;L2(D)).

Under the assumption (34), the existence of solutions to (35)-(36) can be proved
similarly.

It follows from [13, 33] that the optimal control problem (35)-(36) has a unique
solution (y, u) ∈ Yρ × K. Furthermore, a pair (y, u) is the solution of (35)-(36)
iff there is a co-state variable p ∈ Yρ, such that the triplet (y, p, u) satisfies the
following optimality system:

(40)











A[y, v]−G[y, v] = [u, v], ∀ v ∈ Yρ,

A[q, p]−G[q, p] = [y − yd, q], ∀ q ∈ Yρ,

[p+ αu,w − u] > 0, ∀ w ∈ K ⊂ U.

It is known that the inequality in (40) is just the necessary and sufficient optimality
condition.

The explicit solution of the variational inequality in (40) depends heavily on the
choice of the joint probability density ρ. If the joint probability density ρ is uniform
on Γ, we have the following explicit solution for some cases (see, e.g. [33, 36]). For
example

I: Let K be given by

(41) K = {u ∈ L2(D) : u(x) > d, ∀ x ∈ D}.
Then, the solution is

(42) u(x) = max
{

d,− 1

α
E[p(x, ξ)]

}

, a.e. (x, ξ) ∈ D × Γ.

II: Let K be given by

(43) K = {u ∈ L2(D) :

∫

D

u(x) > d, ∀ x ∈ D}.

Then, the solution is

(44) u(x) = − 1

α
E[p(x, ξ)] +max

{

d,
1

α
Ep

}

, a.e. (x, ξ) ∈ D × Γ,

where Ep =

∫

D E[p(x, ξ)]dx
∫

D dx
.

III: Let K be given by

(45) K = {u ∈ L2(D) : c 6 u(x) 6 d, ∀ x ∈ D},
where constants c, d ∈ R and c < d. Then, the solution is

(46) u(x) =



















c, if E[p(x, ξ)] + αu(x) > 0,

− 1

α
E[p(x, ξ)], if E[p(x, ξ)] + αu(x) = 0,

d, if E[p(x, ξ)] + αu(x) < 0,

a.e. (x, ξ) ∈ D × Γ.
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Also, we can rewrite the solution as

(47) u(x) = Proj[c,d]{−
1

α
E[p(x, ξ)]}, a.e. (x, ξ) ∈ D × Γ,

where Proj[c,d] denotes the projection mapping from R onto [c, d].

4. Stochastic Galerkin method: stochastic finite element on D × Γ

In this work we adopt the stochastic finite element spaces defined on D × Γ by
[4, 23].

We firstly consider finite element spaces defined on domain D ⊂ R
d. Let

{Th}h>0 be a family of regular triangulation of D such that D̄ = ∪τ∈Th
τ̄ . Let

hs = maxτ∈Th
hτ , where hτ denotes the diameter of the element τ . Consider two

finite element spaces Vhs
⊂ H1

0 (D) andWhs
⊂ L2(D), consisting of piecewise linear

(or constant) continuous functions on {Th}, respectively. Here Vhs
and Whs

satisfy
the following approximation properties [7]:

(i) for all φ ∈ H2(D) ∩H1
0 (D), there exists

(48) inf
φhs∈Vhs

‖φ− φhs
‖H1

0
(D) 6 Chs‖φ‖H2(D),

where C > 0 is a constant independent of φ and hs.
(ii) for all φ ∈ H1

0 (D), there exists

(49) inf
φhs∈Whs

‖φ− φhs
‖L2(D) 6 Chs‖φ‖H1

0
(D),

where C > 0 is a constant independent of φ and hs.
Then, we establish a finite dimensional space defined on Γ ⊂ R

N ([3]). Let Γ
be partitioned into a finite number of disjoint boxes BNi ⊂ R

N , that is, for a finite
index set I, we have

Γ =
⋃

i∈I
BNi =

⋃

i∈I

N
∏

j=1

(aji , b
j
i ),

where BNk ∩ BNl = ∅ for k 6= l ∈ I and (aji , b
j
i ) ⊂ Γj . A maximum grid size

parameter 0 < hr < 1 is denoted by

hr = max{|bji − aji |/2 : 1 6 j 6 N and i ∈ I}.
Let Shr

⊂ L2
ρ(Γ) be the finite element space of piecewise polynomials with degree

at most pj on each direction ξj . Thus if ψhr
∈ Shr

, then ψhr
|BN

i
∈ span{ΠNj=1ξ

nj

j :

nj ∈ N andnj 6 pj}. Letting the multi-index p = (p1, · · · , pN), we have (see [6])
the following property: for all ψ ∈ Cp+1(Γ),

(50) inf
ψhr∈Shr

‖ψ − ψhr
‖L2

ρ(Γ)
6 hγr

N
∑

j=1

‖∂pj+1
ξj

ψ‖L2
ρ(Γ)

(pj + 1)!
,

where γ = min
16j6N

{pj + 1}.
Combining spaces Vhs

,Whs
and Shr

together, one can obtain a tensor product
finite element space on D × Γ.

We will use Yh = Vhs
× Shr

to approximate the sate variable y and co-state
variable p, Uh = Whs

to approximate the control. Let Kh = Uh ∩ K be the
approximation of the admissible set K.

Now define the H1
0 (D)-projection operator Rhs

as follows: H1
0 (D) → Vhs

by

(51) (Rhs
φ, φhs

)H1
0
(D) = (φ, φhs

)H1
0
(D), ∀ φhs

∈ Vhs
, ∀ φ ∈ H1

0 (D),
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the L2(D)-projection operator Πhs
: L2(D) → Whs

by

(52) (Πhs
φ, φhs

)L2(D) = (φ, φhs
)L2(D), ∀ φhs

∈Whs
, ∀ φ ∈ L2(D).

In later theory derivation it is important to have Πhs
K ⊆ Kh. However this will

generally depend on the structure of K and the finite element spaces chosen. Here
we only show that if we use the piecewise constant space for Whs

, then we have
Πhs

K ⊆ K .
For example, we show the proof of Case III for K. The proofs of other cases are

similar. Notice that

(53) K = {u ∈ L2(D) : c 6 u(x) 6 d, ∀ x ∈ D},
where constants c, d ∈ R and c < d. If we choose φhs

= 1 in (52), we can see that
∫

τ Πhs
u =

∫

τ u. Noticing that Whs
is piecewise constant, we know

(54) cτ 6 τΠhs
u =

∫

τ

Πhs
u =

∫

τ

u 6 dτ.

Thus c 6 Πhs
u 6 d. This means Πhs

K ⊆ Kh.
Similarly, define the L2

ρ(Γ)-projection operator Πhr
as follows: Lρ2(Γ) → Shr

by

(55) (Πhr
ψ, ψhr

)Lρ2(Γ) = (ψ, ψhr
)Lρ2(Γ), ∀ ψhr

∈ Shr
, ∀ ψ ∈ Lρ2(Γ).

From (48), for all φ ∈ H2(D) ∩H1
0 (D)

(56) ‖φ−Rhs
φ‖H1

0
(D) 6 Chs‖φ‖H2(D),

and from (49) that for all φ ∈ H1(D)

(57) ‖φ−Πhs
φ‖L2(D) 6 Chs‖φ‖H1(D).

It follows from (50) that for all ψ ∈ Cp+1
ρ (Γ)

(58) ‖ψ −Πhr
ψ‖L2

ρ(Γ)
6 hγr

N
∑

j=1

‖∂pj+1
ξj

ψ‖L2
ρ(Γ)

(pj + 1)!
.

It follows from the inequalities (56) and (58) that we have the following approx-
imation property (cf.[3], Proposition 3.1): for all y ∈ Cp+1

ρ

(

Γ;H2(D) ∩H1
0 (D)

)

(59)

inf
yh∈Yh

‖y − yh‖L2
ρ(Γ;H

1
0
(D)) 6 C

{

hs‖y‖L2
ρ(Γ;H

2(D)) + hγr

N
∑

j=1

‖∂pj+1
ξj

y‖L2
ρ(Γ;H

1
0
(D))

(pj + 1)!

}

,

where positive constant C is independent of hs, hr, N and p.
Next we introduce a projection operator Ph that maps onto the tensor product

space Uh =Whs
× Shr

as follows:

(60) Phϕ = Πhs
Πhr

ϕ = Πhr
Πhs

ϕ, ∀ ϕ ∈ L2
ρ(Γ;L

2(D)).

Also we need the following decomposition

(61) ϕ− Phϕ = (ϕ−Πhs
ϕ) + Πhs

(I −Πhr
)ϕ, ∀ ϕ ∈ L2

ρ(Γ;L
2(D)).

The following assumption and lemmas on the regularity are needed in deriving
the error estimates later.
Assumption 4.1. Let y, p, u satisfy the following regularity condition

(62) y, p ∈ Cp+1
(

Γ;H2(D) ∩H1
0 (D)

)

, u ∈ H1(D).
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Lemma 4.1. [18] Let u ∈ L2(D). Then for any ξ ∈ Γ, y(·, ξ) ∈ H2(D) and there
exists C > 0 such that

(63) ‖y(·, ξ)‖H2(D) 6 C‖u‖L2(D).

Similar to Lemma 3.7 in [19], the following lemma will be also used. It can be
proved by an inductive argument after taking derivatives with respect to ξj of (33)
and using the Greens formulas.

Lemma 4.2. Let u ∈ L2(D) and ϕj ∈ L∞(D). Then for all j = 1, 2, · · · , N and
for any ξ ∈ Γ, there exists C > 0 such that

(64)
‖∂pj+1
ξj

y(·, ξ)‖H1
0
(D)

(pj + 1)!
6 C‖ϕj‖pj+1

L∞(D)‖u‖L2(D).

5. Galerkin approximation scheme and a priori error estimates

In this section we apply the stochastic Galerkin finite element to approximate
the optimal control problem (35)-(36), as formulated below:

(65) min
uh∈Kh

Jh(uh) = min
uh∈Kh

E
(1

2

∫

D

|yh − yd|2dx+
α

2

∫

D

|uh|2dx
)

subject to

(66) A[yh, vh]−G[yh, vh] = [uh, vh], ∀ vh ∈ Yh.

Similarly, we have (e.g., see [13, 33]) that the control problem (65)-(66) has a
unique pair solution (yh, uh) ∈ Yh ×Kh, if and only if there is a co-state variable
ph ∈ Yh, such that {yh, ph, uh} ∈ Yh × Yh ×Kh satisfies the following system

(67)











A[yh, vh]−G[yh, vh] = [uh, vh], ∀ vh ∈ Yh,

A[qh, ph]−G[qh, ph] = [yh − yd, qh], ∀ qh ∈ Yh,

[ph + αuh, wh − uh] > 0, ∀ wh ∈ Kh ⊂ Uh.

As in the continuous case of (20), the discrete directional derivative of functional
J reads:

(68) J ′
h(uh)(wh) = [ph, wh] + α[uh, wh], ∀ wh ∈ Kh ⊂ Uh,

(69) J ′
h(uh)(wh − uh) > 0, ∀ wh ∈ Kh ⊂ Uh.

In the follows we will derive a priori error estimates for the stochastic Galerkin
scheme. To this end we need to firstly introduce the following intermediate vari-
ational inequality for the semi-discrete problem where u is is not discrete. We
have

(70) J ′
h(u)(w − u) = [ph(u), w − u] + α[u,w − u] > 0, ∀ w ∈ K ⊂ U,

where ph(u) ∈ Yh is the solution of the system:

(71)







A[yh(u), vh]−G[yh(u), vh] = [u, vh], ∀ vh ∈ Yh,

A[qh, ph(u)]−G[qh, ph(u)] = [yh(u)− yd, qh], ∀ qh ∈ Yh.

We are now in the position of deriving a priori error estimates for our scheme.
To this end we need a series of lemmas, which will be proved below. Firstly we
have:

Lemma 5.1. Under the definition of (70), the following inequality holds:

(72) J ′
h(w)(w − u)− J ′

h(u)(w − u) > α‖w − u‖2L2
ρ(Γ;L

2(D)).
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Proof. By (70), we have

(73) J ′
h(w)(w − u)− J ′

h(u)(w − u) = [ph(w)− ph(u), w − u] + α[w − u,w − u].

Furthermore from (71) we have

[ph(w)− ph(u), w − u]

=A[yh(w) − yh(u), ph(w) − ph(u)]−G[yh(w) − yh(u), ph(w)− ph(u)]

=[yh(w)− yh(u), yh(w) − yh(u)].(74)

Hence, from (73) and (74) we can infer (72). �

Lemma 5.2. Let (y, p, u) be the solution of the optimal control problem (21) and
(yh, ph, uh) be the solution of the discretized problem (67). Let the Assumption 4.1
be fulfilled and Πhs

K ⊆ Kh. Then the following estimate holds:

‖u− uh‖L2
ρ(Γ;L

2(D)) 6‖p− ph(u)‖L2
ρ(Γ;L

2(D)) + Chs
{

‖u‖L2
ρ(Γ;H

1(D)) + ‖p‖L2
ρ(Γ;H

1(D))

}

+ Chγr

N
∑

j=1

‖∂pj+1
ξj

p‖L2
ρ(Γ;L

2(D))

(pj + 1)!
,(75)

where γ = min
16j6N

{pj + 1}.

Proof. It follows from (69), (70) and Lemma 5.1 that

(76)

α‖u− uh‖2L2
ρ(Γ;L

2(D)) 6 J ′
h(u)(u− uh)− J ′

h(uh)(u− uh)

= [αu+ ph(u), u− uh]− [αuh + ph, u− uh]

= [αu+ p, u− uh]− [p− ph(u), u− uh]

+[αuh + ph, uh −Πhs
u] + [αuh + ph,Πhs

u− u]

6 [ph(u)− p, u− uh] + [αuh + ph,Πhs
u− u].

Note that

[αuh + ph,Πhs
u− u]

=[αu+ p,Πhs
u− u)] +

[

α(uh − u),Πhs
u− u

]

+ [ph − ph(u),Πhs
u− u] + [ph(u)− p,Πhs

u− u]

6 [αu + p,Πhs
u− u] + C(δ)‖u−Πhs

u‖2L2
ρ(Γ;L

2(D)) + Cδ‖u− uh‖2L2
ρ(Γ;L

2(D))

+ Cδ‖ph − ph(u)‖2L2
ρ(Γ;L

2(D)) + Cδ‖ph(u)− p‖2L2
ρ(Γ;L

2(D)),(77)

where δ is an arbitrary small positive number. Furthermore

(78) ‖u−Πhs
u‖L2

ρ(Γ;L
2(D)) 6 Chs‖u‖L2

ρ(Γ;H
1(D)),

and
(79)
[αu + p,Πhs

u− u]= [αu+ p− Ph(αu+ p),Πhs
u− u]

6 C
{

h2s‖u‖2L2
ρ(Γ;H

1(D)) + C
{

h2s‖p‖2L2
ρ(Γ;H

1(D)) + h2γr

N
∑

j=1

(
‖∂pj+1
ξj

p‖L2
ρ(Γ;L

2(D))

(pj + 1)!

)2}
.



STOCHASTIC GM FOR CONSTRAINED OPTIMAL CONTROL PROBLEM 607

Then from (76)-(79) we have
(80)

α‖u− uh‖2L2
ρ(Γ;L

2(D))

6 C‖p− ph(u)‖2L2
ρ(Γ;L

2(D)) + Cδ‖u− uh‖2L2
ρ(Γ;L

2(D)) + Cδ‖ph − ph(u)‖2L2
ρ(Γ;L

2(D))

+C
{

h2s‖u‖2L2
ρ(Γ;H

1(D)) + h2s‖p‖2L2
ρ(Γ;H

1(D)) + h2γr

N
∑

j=1

(
‖∂pj+1
ξj

p‖L2
ρ(Γ;L

2(D))

(pj + 1)!

)2}
.

It follows from (67) and (71) that

(81) ‖ph−ph(u)‖L2
ρ(Γ;H

1(D)) 6 C‖yh− yh(u)‖L2
ρ(Γ;H

1(D)) 6 C‖u−uh‖L2
ρ(Γ;L

2(D)).

Then (75) follows from (80) and (81). This completes the proof of Lemma 5.2. �

Now, we give an estimate for the error in the adjoint states

Lemma 5.3. Let (y, p, u) be the solution of the optimal control problem (21) and
(yh(u), ph(u), u) be the solution of the auxiliary problem (71). Then the following
estimates hold:

(82) ||y − yh(u)||L2
ρ(Γ;H

1(D)) 6 Chs‖y‖L2
ρ(Γ;H

2(D)),

and

(83) ||p− ph(u)||L2
ρ(Γ;H

1(D)) 6 Chs
{

‖y‖L2
ρ(Γ;H

2(D)) + ‖p‖L2
ρ(Γ;H

2(D))

}

.

Proof. Let us firstly note the following Galerkin orthogonality equation from (21)
and (71):

(84) A[y − yh(u), vh]−G[y − yh(u), vh] = 0, ∀ vh ∈ Yh.

Now split the error y − yh(u) = (y − Rhs
y) + (Rhs

y − yh(u)), where the H1(D)-
projection Rhs

is given by (51). It follows from the elliptic condition (34) and (84)
that

(85)
c||y − yh(u)||2L2

ρ(Γ;H
1(D)) 6 A[y − yh(u), y − yh(u)]−G[y − yh(u), y − yh(u)]

= A[y − yh(u), y −Rhs
y]−G[y − yh(u), y −Rhs

y].

It follows from the approximation property (56) that

(86) ||y − yh(u)||L2
ρ(Γ;H

1(D)) 6 Chs‖y‖L2
ρ(Γ;H

2(D)).

Similarly there holds the another Galerkin orthogonality equation from the adjoint
equation:

(87) A[qh, p− ph(u)]−G[qh, p− ph(u)] = [y − yh(u), qh], ∀ qh ∈ Yh.

Again split the error p − ph(u) = (p − pI) + (pI − ph(u)), where pI ∈ Vhs
is the

Lagrange interpolation of p. It follows from the elliptic condition (34) and (87) that

c||p− ph(u)||2L2
ρ(Γ;H

1(D))

6A[p− ph(u), p− ph(u)]−G[p− ph(u), p− ph(u)]

=A[p− pI , p− ph(u)] +A(pI − ph(u), p− ph(u)]−G[p− pI , p− ph(u)]

−G[pI − ph(u), p− ph(u)]

6C
{

‖p− pI‖L2
ρ(Γ;H

1(D)) + ‖y − yh(u)‖L2
ρ(Γ;L

2(D))

}

||p− ph(u)||2L2
ρ(Γ;H

1(D)).(88)
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Then it follows from the standard approximation property of Lagrange interpolation
and (86) that

(89)
||p− ph(u)||L2

ρ(Γ;H
1(D)) 6 ||p− pI ||L2

ρ(Γ;H
1(D)) + ||y − yh(u)||L2

ρ(Γ;L
2(D))

6 Chs
{

‖y‖L2
ρ(Γ;H

2(D)) + ‖p‖L2
ρ(Γ;H

2(D))

}

.

Then, we complete the proof of Lemma 5.3. �

It follows from Lemmas 5.2 and 5.3 that the following error estimates with respect
to y − yh, p− ph and u− uh hold.

Theorem 5.4. Let (y, p, u) be the solution of the optimal control problem (21) and
(yh, ph, uh) be the solution of the discretized problem (67), respectively. Assume that
the conditions of Lemmas 5.1 to 5.3 are valid. Then the following error estimate
holds:

‖y − yh‖L2
ρ(Γ;H

1(D)) + ‖p− ph‖L2
ρ(Γ;H

1(D)) + ‖u− uh‖L2
ρ(Γ;L

2(D))

6Chs
{

‖y‖L2
ρ(Γ;H

2(D)) + ‖p‖L2
ρ(Γ;H

2(D)) + ‖u‖L2
ρ(Γ;H

1(D))

}

+ Chγr

N
∑

j=1

‖∂pj+1
ξj

p‖L2
ρ(Γ;L

2(D))

(pj + 1)!
,(90)

where γ = min
16j6N

{pj + 1}.

Proof. From (75) and (83) we have

(91)

‖u− uh‖L2
ρ(Γ;L

2(D))

6 Chs
{

‖y‖L2
ρ(Γ;H

2(D)) + ‖p‖L2
ρ(Γ;H

2(D)) + ‖u‖L2
ρ(Γ;H

1(D))

}

+Chγr

N
∑

j=1

‖∂pj+1
ξj

p‖L2
ρ(Γ;L

2(D))

(pj + 1)!
,

where γ = min
16j6N

{pj + 1}.
Furthermore, by using (81), (83) and (91) we have

(92)

‖y − yh‖L2
ρ(Γ;H

1(D)) + ‖p− ph‖L2
ρ(Γ;H

1(D))

6 ‖y − yh(u)‖L2
ρ(Γ;H

1(D)) + ‖yh(u)− yh‖L2
ρ(Γ;H

1(D))

+‖p− ph(u)‖L2
ρ(Γ;H

1(D)) + ‖ph(u)− ph‖L2
ρ(Γ;H

1(D))

6 C‖u− uh‖L2
ρ(Γ;L

2(D)) + Chs
{

‖y‖L2
ρ(Γ;H

2(D)) + ‖p‖L2
ρ(Γ;H

2(D))

}

6 Chs
{

‖y‖L2
ρ(Γ;H

2(D)) + ‖p‖L2(Γ;H2(D)) + ‖u‖L2
ρ(Γ;H

1(D))

}

+Chγr

N
∑

j=1

‖∂pj+1
ξj

p‖L2
ρ(Γ;L

2(D))

(pj + 1)!
.

Then (90) is obtained from (91) and (92). This completes the proof. �

6. Numerical experiments

In this section we study numerical algorithms resulted from the stochastic finite
element approximation set up in Section 5. We firstly examine the characteristic of
the matrix system of the finite approximation. Here we only consider the case where
space Shr

has no partition of Γ, i.e. the approximation is achieved by increasing the
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polynomial degree only. We use the tensor finite element space Shr
=

⊗N
n=1 Z

pn
n ,

where the one dimensional global polynomial subspaces reads Zpnn = {v : Γn →
R : v ∈ span(1, yn, · · · , ypnn )}, n = 1, · · · , N.

Let {ϕi(x)} be the a basis of the space Vhs
, {ψj(ξ)} be a basis of the space Shr

.
Assume the solutions of the discrete optimality system:

(93)











A[yh, vh]−G[yh, vh] = [uh, vh], ∀ vh ∈ Yh,

A[qh, ph]−G[qh, ph] = [yh − yd, qh], ∀ qh ∈ Yh,

[ph + αuh, wh − uh] > 0, ∀ wh ∈ Kh ⊂ Uh.

are presented by

(94)



















yh =
∑

i,j

yijϕi(x)ψj(ξ),

ph =
∑

i,j

pijϕi(x)ψj(ξ),

uh =
∑

i

uiϕi(x).

The above system will be solved by a well-known iterative method as described
in [36], where uh is given an initial value. Then the state and co-state equations
are solved in turns and the control uh is updated the explicit solution formula of
the inequality of (93). Similarly to the continuous case the explicit solution of the
inequality in (93) depends on the choice of the joint probability density ρ, and the
finite element base function used to approximate to uh. If ρ is uniform on Γ and
the finite element base function used to approximate uh is piecewise constant, we
can obtain the explicit discrete solution (see, e.g.[36, 51]). For example we have

(95) uh(x) = max{d,− 1

α|τ |

∫

τ

E(ph(x, ξ))dx}, ∀ x ∈ τ ⊂ Th , a.e. ξ ∈ Γ,

for K = {u ∈ L2(D) : u(x) > d, ∀ x ∈ D}.
Now we wish to examine the matrix structure of the two equations. As an

example, we show the matrix structure for the state equation in (93). Taking the
test function vh = ϕl(x)ψk(ξ), we have

∑

i,j

(

∫

Γ

ρ(ξ)ψk(ξ)ψj(ξ)(a∇ϕi,∇ϕl)L2(D)dξ

−
∫

Γ

ρ(ξ)ψk(ξ)ψj(ξ)(

∫

D

g(s, x, ξ)ϕi(s)ds, ϕl(x))L2(D)dξ
)

yij

=
∑

i

(

∫

Γ

ρ(ξ)ψk(ξ)(ϕi, ϕl)L2(D)dξ
)

ui, ∀ k, l,(96)

which can be reformulated as

(97)
∑

i,j

(

∫

Γ

ρ(ξ)ψk(ξ)ψj(ξ)Ki,l(ξ)dξ
)

yij =
∑

i

(

∫

Γ

ρ(ξ)ψk(ξ)Mi,ldξ
)

ui, ∀ k, l,

whereKi,l(ξ) = (a(·, ξ)∇ϕi,∇ϕl)L2(D)−(
∫

D g(s, x, ξ)ϕi(s)ds, ϕl(x))L2(D) andMi,l =
(ϕi, ϕl)L2(D) .

Furthermore when the diffusion coefficients a, g are expanded by finite terms

(30), i.e. a(x, ξ) =
S
∑

t=1
αt(x)Lt(ξ), g(s, x, ξ) =

S
∑

t=1
γt(s, x)Lt(ξ) the corresponding
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expression for the stiffness matrix reads

Ki,l(ξ) ≡
∫

D

(

S
∑

t=1

αt(x)Lt(ξ)
)

∇ϕi(x) · ∇ϕl(x) dx

−
∫

D

(

S
∑

t=1

∫

D

γt(s, x, ξ)ϕi(s)dsLt(ξ)
)

· ϕl(x) dx.(98)

Since ψk ∈ Shr
=

⊗N
n=1 Z

pn
n , we only need to take it as the product ψk(ξ) =

∏N
r=1 ψkr(ξr), where ψkr : Γr → R is a basis function of the subspace

Zprr = span{1, ξr, · · · , ξprr } = span{ψkr : kr = 1, · · · , pr + 1}.

Inserting this ψk into (97), we have

∑

i,j

(

∫

Γ

N
∏

r=1

ρr(ξr)ψkr(ξr)ψjr(ξr)Ki,l(ξ)dξ
)

yij

=
∑

i

(

∫

Γ

N
∏

r=1

ρr(ξr)ψkr(ξr)Mi,ldξ
)

ui, ∀ k, l.(99)

Using (98), we obtain the coefficient of yij as follows:

(100)

S
∑

t=1

Kt
i,l

∫

Γ

Lt(ξ)

N
∏

r=1

ρr(ξr)ψkr(ξr)ψjr(ξr)dξ,

where

(101) Kt
i,l =

∫

D

αt(x)∇ϕi(x) · ∇ϕl(x)dx −
∫

D

∫

D

γt(s, x)ϕi(s)ϕl(x)dsdx.

Similarly one can handle the other equations. Next, we should be able to solve
yij , pij and ui which are the coefficients of the solutions of the discrete optimality
system (93).

Remark 6.1. Actually, the base functions of the space Vhs
and the space Kh can be

taken differently. Often the control variable of a constrained control problem is less
regular than the state variable. Due to the limited regularity of the optimal control
in general, we normally use the piecewise constant space for approximation of the
control, though linear continuous finite element spaces will be used to approximate
the state and the co-state.

Below we present a numerical example to illustrate our proposed Galekin formu-
lation in Section 5 for stochastic control problem.

For simplicity in calculation, we take space domain D = [−1, 1] and each sto-

chastic domain Γi are [−
√
3,
√
3] after finite dimensional representing of random

fields. We assume each probability density function on Γi is uniform, i.e., ρi(ξi) =
1

2
√
3
, i = 1, · · · , N . Thus, the joint probability density function ρ(ξ) of random

variable ξ = (ξ1, ξ2, · · · , ξN ) is 1
(2

√
3)N

. In the following numerical example, we will

do the same K-L expansion as [29] for random coefficient a(x, ω), i.e.

aN (x, ξ) = Ea(x, ξ) +

N
∑

n=1

√

λnφn(x)ξn,
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where (λn, φn)16n6N are eigenpairs of
∫

D

e−|x1−x2|φn(x1)dx1 = λnφn(x2).

The first example we consider is the optimal control problem without any con-
straint on the control. We can see from Figure 1 and Table 1 that the values of
J (yh, uh) are decreasing as the value of α becomes smaller.
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Figure 1. N = 2,E(a) = 29.

Example 1 We consider the following model problem:

(102) min
u∈K

J (u) = min
u∈K

(1

2

∫

√
3

−
√
3

1

(2
√
3)N

∫ 1

−1

|y − yd|2dxdξ +
α

2

∫ 1

−1

|u|2dx
)

subject to
(103)
{

−∇ · [a(x, ξ)∇y(x, ξ)] −
∫

D(x− s)y(s, ξ)ds = u(x), x ∈ [−1, 1], ξ ∈ [−
√
3,
√
3]N ,

y(x, ξ) = 0, x ∈ {−1, 1}, ξ ∈ [−
√
3,
√
3]N ,

the target solution yd=sin(2πx) + 3x(1− x2).

Table 1. N = 2, p = (1, 1),E(a) = 29.

N p E(‖yh − yd‖2) ‖uh‖2 J (yh, uh) α
2 (1, 1) 2.08113091531565 0.0000169265093185939 1.04057392091248 1
2 (1, 1) 2.08082635323825 0.00169229096310293 1.04049779116728 10−1

2 (1, 1) 2.0777860549842 0.168869794671243 1.03973737646546 10−2

2 (1, 1) 2.04790687308469 16.5341986339144 1.0322205358593 10−3

In the following three examples, we consider constrained optimal control with
different types of constraints.
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Example 2 We consider the following model problem:

(104) min
u∈K

J (u) = min
u∈K

(1

2

∫

√
3

−
√
3

1

(2
√
3)N

∫ 1

−1

|y − yd|2dxdξ +
1

2

∫ 1

−1

|u|2dx
)

subject to

(105)











−∇ · [0.01a(x, ξ)∇y(x, ξ)]−
∫

D 0.5(x− s)y(s, ξ)ds = u(x),

x ∈ [−1, 1], ξ ∈ [−
√
3,
√
3]N ,

y(x, ξ) = 0, x ∈ {−1, 1}, ξ ∈ [−
√
3,
√
3]N ,

the target solution yd=10(sin(2πx) + 3x(1 − x2)) and the deterministic control is
constrained by the condition u > 0, x ∈ [−1, 1].
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Figure 2. N = 2,E(a) = 29, p = (1, 1)(left), p = (2, 2)(right).

Table 2. N = 2, p = (1, 1),E(a) = 29.

N p E(‖yh − yd‖2) ‖uh‖2 J (yh, uh) h
2 (1, 1) 201.528597323722 0.924911032008952 101.226754177865 1/4
2 (1, 1) 201.178840704619 1.02246463447778 101.100652669548 1/8
2 (1, 1) 201.111044577624 1.04385831776585 101.077451447695 1/16
2 (1, 1) 201.090356813128 1.0531131299507 101.071734971539 1/32

It follows from Figure 2 and Tables 2-3 that values of the objective function are
decreasing as the mesh size decreases.

Table 3. N = 2, p = (2, 2),E(a) = 29.

N p E(‖yh − yd‖2) ‖uh‖2 J (yh, uh) h
2 (2, 2) 201.528596545007 0.924910324740699 101.226753434873 1/4
2 (2, 2) 201.178839689944 1.02246397880542 101.100651834375 1/8
2 (2, 2) 201.111043610814 1.04385769516078 101.077450652987 1/16
2 (2, 2) 201.090355806642 1.05311250192411 101.071734154283 1/32

Example 3 Consider the model problem (104) and (105), where α = 1, µ = 0.03,
the target solution yd=10(sin(2πx) + 3x(1 − x2)) and the deterministic control is
constrained by the condition −3.5 6 u 6 3.

It is clear from Figure 3 and Tables 4-5 that the approximated control is in the
constraint, and values of the objective function decrease as the size of meshes does.
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Figure 3. N = 2,E(a) = 29, p = (1, 1)(left), p = (2, 2)(right)

Table 4. N = 2, p = (1, 1),E(a) = 29.

N p E(‖yh − yd‖2) ‖uh‖2 J (yh, uh) h
2 (1, 1) 187.084122161325 11.0208385551139 99.0524803582197 1/4
2 (1, 1) 185.717118679463 11.6456477556407 98.6813832175521 1/8
2 (1, 1) 185.27576541775 11.886350006688 98.5810577122192 1/16
2 (1, 1) 185.188207511686 11.9295404646998 98.5588739881933 1/32

Table 5. N = 2, p = (2, 2),E(a) = 29.

N p E(‖yh − yd‖2) ‖uh‖2 J (yh, uh) h
2 (2, 2) 187.084117222642 11.0208411177172 99.0524791701797 1/4
2 (2, 2) 185.717113110764 11.6456512722558 98.6813821915102 1/8
2 (2, 2) 185.275759842829 11.8863535896388 98.5810567162341 1/16
2 (2, 2) 185.188202170129 11.9295440354994 98.5588731028143 1/32

Example 4 Consider the model problem (104) and (105), the target solution
yd=10(sin(2πx) + 3x(1 − x2)) and the deterministic control is constrained by the

condition
∫ 1

−1 udx > 0.
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Figure 4. N = 2,E(a) = 29, p = (1, 1)(left), p = (2, 2)(right).

Table 6. N = 2, p = (1, 1),E(a) = 29.

N p E(‖yh − yd‖2) ‖uh‖2 J (yh, uh) h
2 (1, 1) 184.809790995933 12.0740992476723 98.441945121803 1/4
2 (1, 1) 182.983643748661 12.9607582106332 97.9722009796474 1/8
2 (1, 1) 182.49661209168 13.2041882360159 97.8504001638488 1/16
2 (1, 1) 182.372799177684 13.2704725910478 97.8216358843662 1/32
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Table 7. N = 2, p = (2, 2),E(a) = 29.

N p E(‖yh − yd‖2) ‖uh‖2 J (yh, uh) h
2 (2, 2) 184.80978128723 12.0741071621808 98.4419442247058 1/4
2 (2, 2) 182.983633162667 12.9607666885393 97.9721999256033 1/8
2 (2, 2) 182.496601270413 13.2041968452073 97.8503990578106 1/16
2 (2, 2) 182.372788296658 13.2704812248916 97.8216347607751 1/32

It follows from Figure 4 and Tables 6-7 that similar conclusions can be made for
this type of control constraints.
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