
INTERNATIONAL JOURNAL OF c© 2015 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 12, Number 3, Pages 516–535

A FINITE ELEMENT DUAL SINGULAR FUNCTION METHOD

TO SOLVE THE STOKES EQUATIONS INCLUDING CORNER

SINGULARITIES

JAE-HONG PYO

(Communicated by Dongwoo Sheen)

Abstract. The finite element dual singular function method [FE-DSFM] has been constructed
and analyzed accuracy by Z. Cai and S. Kim to solve the Laplace equation on a polygonal domain
with one reentrant corner. In this paper, we impose FE-DSFM to solve the Stokes equations
via the mixed finite element method. To do this, we compute the singular and the dual singular
functions analytically at a non-convex corner. We prove well-posedness by using the contraction
mapping theorem and then estimate errors of the algorithm. We obtain optimal accuracy O(h) for

velocity in H1(Ω) and pressure in L2(Ω), but we are able to prove only O(h1+λ) error bounds for
velocity in L2(Ω) and stress intensity factor, where λ is the eigenvalue (solution of (4)). However,
we get optimal accuracy results in numerical experiments.

Key words. Stokes equations, dual singular function method, corner singularity, incompressible
fluids.

1. Introduction

Solutions of elliptic boundary value problems on a domain with corners have
singular behaviors near the corners. This occurs even when the given data of the
governed equations is very smooth. Such singular behavior affects the accuracy of
the finite element method throughout the whole domain. In order to overcome the
singularity problem, the finite element dual singular function method [FE-DSFM]
has been constructed in [3] to solve the Laplace equation and performed numerical
tests in [4]. And then it is extended to solve the Helmholtz equation in [9] and the
interface problem in [8]. The goal of this paper is to reconstruct FE-DSFM to solve
Stokes equations:

(1)

−µ△u+∇p = f , in Ω,

∇ · u = 0, in Ω,

u = 0, on ∂Ω,

with f is a given function in H−1(Ω), Ω is a computational domain, and µ = Re−1

is the reciprocal of the Reynolds number. Here the unknowns are the (vector)
velocity field u ∈ H1

0(Ω) and the (scalar) pressure p ∈ L2
0(Ω).

If the solution of (1) is smooth enough, namely (u, p) ∈ Hs+1(Ω)×Hs(Ω) with
s ≥ 1, and if a suitable finite element pair is imposed for velocity and pressure, then
the finite element solution (uh, ph) using the standard mixed method has optimal
error bounds as shown in [1, 6]:

(2) ‖u− uh‖0 + h‖u− uh‖1 + h‖p− ph‖0 ≤ Chs+1
(

‖u‖s+1 + ‖p‖s
)

,
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where h is the biggest mesh size. However, if s < 1, then the error bounds of the
method become only

(3) ‖u− uh‖0 + hs‖u− uh‖1 + hs‖p− ph‖0 ≤ Ch2s
(

‖u‖s+1 + ‖p‖s
)

.

So we call (u, p) a singular solution for the case s < 1, otherwise a regular solution.
Because the singularity is due to reentrant corners of computational domain Ω, we
assume that Ω is an open and bounded polygonal domain in R

2 with one reen-
trant corner. Extension to the domain with a finite number of reentrant corners is
straightforward.

Let ω be the internal angle. Without the loss of generality, we assume that the
corresponding vertex is at the origin and that the internal angle ω is spanned by
the two half-lines θ = 0 and θ = ω. We denote Γin for 2 edges on the boundary
including the reentrant corner and Γout for other parts of the boundary. Even
though the singular functions are already computed in [10], we will derive those
again in §6 to get more advanced properties of the singular functions and newly
find out the dual singular functions in (8) below.

The singular function (us, ps), where us = (us, vs), can be summarized with the
eigenvalue λ(> 0) which is the solution of

(4) sin2(λω) = λ2 sin2(ω),

by

(5)





ud
vd
pd



 = d1

















−r−λ λ

µ
sin(θ) sin((1 + λ)θ)

−r−λ 1

µ
(sin(λθ) − λ sin(θ) cos((1 + λ)θ))

2r−λ−1λ cos((1 + λ)θ)

















+ d2

















r−λ 1

µ
(sin(λθ) + λ sin(θ) cos((1 + λ)θ))

r−λ λ

µ
sin(θ) sin((1 + λ)θ)

2r−λ−1λ sin((1 + λ)θ)

















,

where

C1 = sin(λω) + λ sin(ω) cos((1 − λ)ω) and C2 = λ sin(ω) sin((1− λ)ω).

We note that the singular function (us, ps) is the solution of homogeneous Stokes
equations with vanishing Dirichlet boundary condition at Γin. And λ has to be a
positive real number and (us, ps) ∈ H1+λ(Ω)×Hλ(Ω). As the conclusion in Lemma
6.1 below, λ = 1 for any ω ≤ π, so (us, ps) ∈ H2(Ω)×H1(Ω) is a regular solution
and it becomes a singular solution for the case λ < 1, namely ω > π. Moreover
(4) has a unique non-trivial solution λ ∈ R for the case π < ω ≤ βπ. where
β :≈ 1.430296653124203. And (4) has 2 non-trivial real solutions 0.5 < λ1 < λ2 < 1
for the case ω ∈ (βπ, 2π). In addition, λ = 0.5 is the unique non-trivial solution for
ω = 2π.

Let η be a smooth cut-off function which is equal one identically in neighborhood
of origin, and the support of η is small enough so that the functions ηus vanishes
identically on ∂Ω. Then, in general, the solution (u, p) including singular parts of
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(1) can be rewritten with 2 singular functions as

(6)

(

u

p

)

=

(

w

q

)

+ α1

(

η1us,1

η1ps,1

)

+ α2

(

η2us,2

η2ps,2

)

,

where α1 and α2 are the stress intensity factors and (w, q) ∈ H2(Ω) × H1(Ω).
However, for a simpler explanation, we consider (u, p) including only one singular
function, namely,

(7)

(

u

p

)

=

(

w

q

)

+ α

(

ηus

ηps

)

,

because FE-DSFM can be extended to problems with 2 singular solutions of the
form (6) by applying the adjusted Sherman-Morrison-Woodbury formula without
any additional skill, as mentioned in Remark 2.4 below.

The goal of this paper is to construct FE-DSFM to have optimal error decay
(2) for the Stokes equations (1) in a non-convex domain with ω > π. The main
strategy of FE-DSFM is to compute the regular solution (w, q) and the stress
intensity factors α by applying the finite element method. To built FE-DSFM,
we need to use the following dual singular functions (ud, pd), where ud = (ud, vd),
which is derived in §6.2:

(8)





ud
vd
pd



 = d1

















−r−λ λ

µ
sin(θ) sin((1 + λ)θ)

−r−λ 1

µ
(sin(λθ) − λ sin(θ) cos((1 + λ)θ))

2r−λ−1 cos((1 + λ)θ)

















+ d2

















r−λ 1

µ
(sin(λθ) + λ sin(θ) cos((1 + λ)θ))

r−λ λ

µ
sin(θ) sin((1 + λ)θ)

2r−λ−1 sin((1 + λ)θ)

















,

where

d1 = sin(λω) + λ sin(ω) cos((1 + λ)ω) and d2 = λ sin(ω) sin((1 + λ)ω).

The paper is organized as follows. FE-DSFM to find the smooth part (wh, qh)
of the solution and stress intensity factor αh is constructed in (20) and (21) in §2.
And we establish the well-posedness of the variational form of FE-DSFM in §3. We
carry out the following error estimates in §4 by proving several lemmas.

Theorem 1 (Main theorem). Let Assumption 1 below hold. If h is small enough,
then we have

(9) |α− αh|+ ‖w−wh‖0 ≤ Ch1+λ and ‖w−wh‖1 + ‖q − qh‖0 ≤ Ch.

The sub-optimality for |α − αh| + ‖w −wh‖0 is due to the weak regularity of
the functions in duality argument, as discussed in Remark 4.4. In §5, we perform
numerical tests with known solution to compare to theoretical results in the Theo-
rem 1. In these tests, we obtain the optimal accuracy (2) which is better than (9).
Finally, we present the singular and the dual singular functions in §6.
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2. The finite element dual singular function method

In this section, we build a new variational formulation to find the regular part
of solution (w, q) and the stress intensity factor α. We start this section with
introducing the following lemma for the properties of the singular and the dual
singular functions.

Lemma 2.1 (Properties of singular and dual singular functions). The singular func-
tion (us, ps) ∈ H1+λ(Ω)×Hλ(Ω) and the dual singular function (ud, pd) /∈ H1(Ω)×
L2(Ω) are solutions of

(10)
−µ△us +∇ps = 0, in Ω,

∇ · us = 0, in Ω,

and

(11)
−µ△ud +∇pd = 0, in Ω,

∇ · ud = 0, in Ω,

respectively. The boundary conditions of us and ud vanish on Γin, but the boundary
value of ud is not defined at the origin. Both of us and ud are not 0 on Γout.

In order to derive a explicit form of the singular functions, we set

B(r1; r2) = {(r, θ) : r1 < r < r2 and 0 < θ < ω} ∩ Ω

and

B(r1) = B(0; r1),

and define a smooth enough cut-off function of r, ηρ, as follows:

ηρ =







1, in B(12ρR),
very smooth function, in B(12ρR; ρR),
0, in Ω \ B̄(ρR),

where ρ is a parameter in (0, 2] andR is a fixed real number which will be determined
later so that the singular part of η2ρus has 0 on whole ∂Ω. Here and thereafter,
we choose that η = ηρ in (7) and assume that 0 < ρ < 1. That is, the singular
function representation of the solution of problem (1) has the form

(

u

p

)

=

(

w

q

)

+ α

(

ηρus

ηρps

)

,

where w ∈ H1
0(Ω) ∩H2(Ω) and q ∈ L2

0(Ω) ∩H
1(Ω) satisfy

(12)
(−µ△w+∇q) + α (−µ△(ηρus) +∇(ηρps)) = f , in Ω,

∇ · (w + αηρus) = 0, in Ω.

For the sake of a clear explanation, we note that the inner product of vectors
a = (a1, a2) and b = (b1, b2) is

〈a , b〉 = 〈a1 , b1〉+ 〈a2 , b2〉

and

〈∇a , ∇b〉 = 〈∂xa1 , ∂xb1〉+ 〈∂xa2 , ∂xb2〉+ 〈∂ya1 , ∂yb1〉+ 〈∂ya2 , ∂yb2〉 .

Then we can obtain the weak form for (12) by the standard finite element technique:
find (w, q) ∈ H1

0(Ω)× L2(Ω) satisfying, for all v ∈ H1
0(Ω) and φ ∈ L2(Ω),

(13)
µ 〈∇w , ∇v〉+ 〈∇q , v〉 + α 〈−µ△(ηρus) +∇(ηρps) , v〉 = 〈f , v〉 ,

〈∇ ·w , φ〉 + α 〈∇ · (ηρus) , φ〉 = 0.
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Because 3 unknown variables (w, q) and α are involved in 2 equations of (13), we
need one more linearly independent equation with (13). We test η2ρud /∈ H1(Ω)
and η2ρpd /∈ L2(Ω) with the first and the second equations in (12), respectively, to
get the additional equation

(14)
〈−µ△w+∇q , η2ρud〉+ α 〈−µ△(ηρus) +∇(ηρps) , η2ρud〉 = 〈f , η2ρud〉 ,

〈∇ · (w + αηρus) , η2ρpd〉 = 0.

Because the dual singular functions are not smooth enough to apply the integration
by parts directly in (14), the following lemma is crucial.

Lemma 2.2 (Integration by parts for dual singular functions). For ρ ∈ (0, 1], we have
that

(15) −µ 〈△w , η2ρud〉 − 〈∇ ·w , η2ρpd〉 = 〈w , −µ△(η2ρud) +∇(η2ρpd)〉

and

(16) 〈∇q , η2ρud〉 = −〈q , ∇ · (η2ρud)〉 .

Proof. We can obtain (15) by integration by parts, if all functions inside the
inner products are smooth enough. So, in light of density argument of Hilbert
space, we need to show boundedness of both sides. Since w ∈ H1

0(Ω) ∩ H2(Ω)
and η2ρud ∈ L2(Ω) and since ∇ ·w = 0 in B(12ρ), we can get the boundedness of
the left hand side in (15). On the other hand, the right hand side in (15) is also
bounded, because of (11) and the definition of η2ρ. So we conclude (15). By the
same manner, the properties q ∈ H1(Ω), η2ρud ∈ L2(Ω), and ∇ · (η2ρud) = 0 in
B(ρ) yield (16).

We subtract the second equation from the first equation in (14) and then apply
Lemma 2.2 to obtain

(17)
α(βm − βp) = βf − 〈−µ△w+∇q , η2ρud〉+ 〈∇ ·w , η2ρpd〉

= βf − 〈w , −µ△(η2ρud) +∇(η2ρpd)〉+ 〈q , ∇ · (η2ρud)〉 ,

where
βf := 〈f , η2ρud〉 ,

βm := 〈−µ△(ηρus) +∇(ηρps) , η2ρud〉 ,

βp := 〈∇ · (ηρus) , η2ρpd〉 .

Finally we arrive at the following lemma to compute the stress intensity factor α.

Lemma 2.3 (Formula for the stress intensity factor α). The values |βf |, |βm|, and
|βp| are bounded and the stress intensity factor α can be expressed in terms of (w, q)
by the following extraction formula:

(18) α =
1

βm − βp
(βf − 〈w , −µ△(η2ρud) +∇(η2ρpd)〉+ 〈q , ∇ · (η2ρud)〉) .

Proof. Because (18) comes directly from (17), it is enough to show boundedness
of 3 values βf , βm, and βp. First, |βf | < ∞ is trivial, because of both f and
η2ρud ∈ L2(Ω). In light of the definition of ηρ, (10) yields−µ△(ηρus)+∇(ηρps) = 0

on B(12ρ) ∪ (Ω−B(ρ)), or −µ△(ηρus) +∇(ηρps) is a smooth enough function. So
we readily get |βm| < ∞. By the same manner, we can readily obtain |βp| < ∞
from ∇ · (ηρus) = 0 in B(12ρ).

We note that both −µ△(η2ρud) +∇(η2ρpd) and ∇ · (η2ρud) are smooth enough
functions, because the singular parts are removed by the properties −µ△(η2ρud)+
∇(η2ρpd) = 0 and ∇ · (η2ρud) = 0 in B(ρ). So we can compute (18) without any
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special technique to treat singular functions. In order to solve the coupled system
(13) and (18) to find 3 unknown variables (w, q) and α, we insert α in (18) into
(13), and then we obtain a mixed formula

(19)

µ 〈∇w , ∇v〉+ 〈∇q , v〉 + (a(w) + b(q)) c(v) = 〈f , v〉 −
βf

βm − βp
c(v),

〈∇ ·w , φ〉 + (a(w) + b(q)) d(φ) = −
βf

βm − βp
d(φ),

where

a(w) =
−1

βm − βp
〈w , −µ△(η2ρud) +∇(η2ρpd)〉 , b(q) =

1

βm − βp
〈q , ∇ · (η2ρud)〉 ,

c(v) = 〈−µ△(ηρus) +∇(ηρps) , v〉 , d(φ) = 〈∇ · (ηρus) , φ〉 .

In order to introduce the finite element discretization, we need further notations.
Let T = {K} be a shape-regular quasi-uniform partition of Ω of meshsize h into
closed elements K [1, 2, 6]. The vector and scalar finite element spaces are:

Wh := {wh ∈ L2(Ω) : wh|K ∈ P(K) ∀K ∈ T}, Vh := Wh ∩H1
0(Ω),

Ph := {qh ∈ L2
0(Ω) ∩C 0(Ω) : qh|K ∈ Q(K) ∀K ∈ T},

where P(K) and Q(K) are spaces of polynomials with degree bounded uniformly
with respect to K ∈ T. We stress that the space Ph is composed of continuous
functions to use integration by parts: for all qh ∈ Ph

〈∇ · vh , qh〉 = −〈vh , ∇qh〉 , ∀vh ∈ Vh.

Finally, we arrive at FE-DSFM from (18) and (19): find (wh, qh) ∈ Vh × Ph as
the solution of, for all vh ∈ Vh and for all φh ∈ Ph,
(20)

µ 〈∇wh , ∇vh〉+ 〈∇qh , vh〉+ (a(wh) + b(qh)) c(vh) = 〈f , vh〉 −
βf

βm − βp
c(vh),

〈∇ ·wh , φh〉+ (a(wh) + b(qh)) d(φh) = −
βf

βm − βp
d(φh),

and then find αh ∈ R by computing

(21) αh =
βf

βm − βp
+ a(wh) + b(qh).

We note that a(·), b(·), c(·), and d(·) are the same functionals within (19).
The matrix form of the coupled system (20) becomes

(22)

[ (

A BT

B 0

)

+

(

c
d

)

(

a, b
)

](

w

q

)

=

(

L

l

)

,

and it is solvable by the Sherman-Morrison-Woodbury formula in [7].

(M + U · V T )−1 =M−1 −
M−1UV TM−1

1 + V TM−1U

and then we find αh by computing (21). So we conclude that FE-DSFM (20) and
(21) is an applicable algorithm.

Even though we consider the solution including only one singular part in this
paper, FE-DSFM can be applied to find a solution including 2 singular parts by
the following remark:
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Remark 2.4 (The solution with 2 singular parts). If the solution has 2 stress in-
tensity factors, then the solution is expressed by the form (6) and the matrix form
(22) becomes

[

(

A BT

B 0

)

+

2
∑

i=1

(

ci
di

)

(

ai, bi
)

]

(

w

q

)

=

(

L

l

)

.

It is also solvable by using the generalized Sherman-Morrison-Woodbury formula:

(M + U1 · V
T
1 + U2 · V

T
2 )−1 =M−1 −M−1[U1, U2]Q

−1[V1, V2]
TM−1,

where Q is 2× 2 matrix given by

Q =

[

1 + V T
1 M

−1U1, V T
1 M

−1U2

V T
2 M

−1U1, 1 + V T
2 M

−1U2

]

.

3. Well-posedness

In this section, we establish the well-posedness of the coupled system (19) by
the use of the contraction mapping theorem. Because solving the system (19) is
equivalent to solving equations of (13) and (18), we will prove the well-posedness
of the system (13) and (18). To do this, we first check the compatibility condition
of (13) as

∫

Ω

∇ · (ηρus)dx =

∫

∂Ω

ηρus · νννds = 0,

where ννν is the outward unit normal vector. The system (13) is a standard saddle
point problem and has a unique solution for all given α ∈ R and for all f ∈ L2(Ω)
in [1, 2, 6]. So we can define a mapping Tf from R to H1(Ω)×L2

0(Ω) by the unique
solution of (13) for any given f ∈ L2(Ω). It means that Tf (α) := (wα, qα) is the
solution of (13) with α ∈ R. Also we define a mapping Tα from H1(Ω)× L2

0(Ω) to
R by using (18) as
(23)

Tα (w, q) :=
1

βm − βp
(βf − 〈w , −µ△(η2ρud) +∇(η2ρpd)〉+ 〈q , ∇ · (η2ρud)〉) .

Then the composition Tα ◦ Tf is a mapping from R to R. To prove the well-
posedness of the problem (19) is equivalent to prove existence of the unique fixed
point of Tα ◦Tf , and it is equivalent to prove ‖Tα ◦ Tf‖ < 1. We now start to prove
‖Tα ◦ Tf‖ < 1 by applying the contraction mapping theorem [11]. To do this, we
choose arbitrary real numbers α1 and α2, and let

(24) Tf (α1) = (wα1
, qα1

) and Tf (α2) = (wα2
, qα2

) .

Then we can get from (13),

(25)

µ 〈∇ (wα1
−wα2

) , ∇v〉+ 〈∇ (qα1
− qα2

) , v〉

= − (α1 − α2) 〈−µ△(ηρus) +∇(ηρps) , v〉 ,

〈∇ · (wα1
−wα2

) , φ〉 = − (α1 − α2) 〈∇ · (ηρus) , φ〉 .

And we define the following Stokes type problem:

(26)

−µ△x+∇k = −µ△(η2ρud) +∇(η2ρpd), in Ω,

∇ · x = ∇ · (η2ρud), in Ω,

x = 0, on ∂Ω.
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We note here that the right hand side terms are smooth functions which come from
Lemma 2.1. In order to assert the existence and uniqueness of the solution of (26),
we need to check the compatibility condition. Since we have

∫

Ω

∇ · xdx =

∫

∂Ω

x · νννds = 0,

it is enough to prove
∫

Ω∇ · (η2ρud) = 0. Because ∇ · (η2ρud) = 0 in B(ρ) and

η2ρud = 0 on ∂Ω except the origin, there exists a function y ∈ H1
0 (Ω) satisfying

〈∇ · y , φ〉 = 〈∇ · (η2ρud) , φ〉, for all φ ∈ L2(Ω) and y = 0 on ∂Ω. So we can get

(27)

∫

Ω

∇ · (η2ρud)dx =

∫

Ω

∇ · ydx =

∫

∂Ω

y · νννds = 0

and we obtain
∫

Ω
∇ · xdx =

∫

Ω
∇ · (η2ρud)dx = 0. Thus we conclude that there

exist a unique solution (x, k) ∈ H1(Ω)× L2
0(Ω) of (26).

We apply (24), (23) and (26) as a sequence and then use the integration by parts
to obtain
∣

∣

∣Tα ◦ Tf (α1)− Tα ◦ Tf (α2)
∣

∣

∣ =
∣

∣

∣Tα (wα1
, qα1

)− Tα (wα2
, qα2

)
∣

∣

∣

=
∣

∣

∣

1

βm − βp

(

− 〈wα1
−wα2

, −µ△(η2ρud) +∇(η2ρpd)〉+ 〈qα1
− qα2

, ∇ · (η2ρud)〉
)

∣

∣

∣

=
∣

∣

∣

1

βm − βp

(

− 〈wα1
−wα2

, −µ△x+∇k〉+ 〈qα1
− qα2

, ∇ · x〉
)∣

∣

∣

=
∣

∣

∣

1

βm − βp

(

− µ 〈∇ (wα1
−wα2

) , ∇x〉

+ 〈∇ · (wα1
−wα2

) , k〉 − 〈∇ (qα1
− qα2

) , x〉
)∣

∣

∣.

Invoking (25) with v = x and φ = k, we have
∣

∣

∣
Tα ◦ Tf (α1)− Tα ◦ Tf (α2)

∣

∣

∣

=
∣

∣

∣

α1 − α2

βm − βp

(

〈−µ△(ηρus) +∇(ηρps) , x〉 − 〈∇ · (ηρus) , k〉
)∣

∣

∣.

Integration by parts derives
∣

∣

∣Tα ◦ Tf (α1)− Tα ◦ Tf (α2)
∣

∣

∣=
∣

∣

∣

α1 − α2

βm − βp

(

〈ηρus , −µ△x+∇k〉 − 〈ηρps , ∇ · x〉
)∣

∣

∣.

We now test ηρus and ηρps with the first and the second equations in (26) to obtain

〈−µ△x+∇k , ηρus〉 = 〈−µ△(η2ρud) +∇(η2ρpd) , ηρus〉 ,

〈∇ · x , ηρps〉 = 〈∇ · (η2ρud) , ηρps〉

We can check easily that the right hand side terms of above equations are identically
zero by Lemma 2.1, because of the distinct supports of ηρ and η2ρ. Therefore, we
complete well-posedness of the problem (19).

4. Error Analysis for the finite element dual singular function method

In this section, we will prove Theorem 1 which are errors of FE-DSFM (20)∼(21)
by comparing them with (18)∼(19). To do this, we first introduce an assumption.

Assumption 1 (Discrete inf-sup). For given ph ∈ Ph, there exists a constant γ > 0
such that

γ‖ph‖0 ≤ sup
vh∈Vh

〈∇ · vh , ph〉

‖vh‖1
.
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In order to introduce a useful lemma in [5], we consider the Stokes equations:

(28)

−µ△x+∇k = f , in Ω,

∇ · x = χ, in Ω,

x = 0, on ∂Ω.

Lemma 4.1 (Upper bound of regular solution). Let Ω be a polygonal domain with
non-convex vertices. If f ∈ H−1(Ω) and χ ∈ L2

0(Ω), then there exist a unique
solution (x, k) ∈ H1

0(Ω)× L2
0(Ω) of (28), with

‖x‖1 + ‖k‖0 ≤ C
(

‖f‖−1 + ‖χ‖0
)

.

Moreover, if f ∈ L2(Ω) and χ ∈ H1(Ω), then the solution (x, k) ∈ H1
0(Ω) × L2

0(Ω)
can be rewritten in the form of x = xR+α1η1us1+α2η2us2 and k = kR+α1η1ps1+
α2η2ps2, with (xR, kR) ∈

(

H1
0(Ω) ∩H2(Ω)

)

×
(

L2
0(Ω) ∩H

1(Ω)
)

satisfying

‖xR‖2 + ‖kR‖1 + |α1|+ |α2| ≤ C (‖f‖0 + ‖χ‖1) ,

where (η1us1, η1ps1) and (η1us2, η1ps2) are singular functions.

We evaluate errors under the notations:

E := w−wh, Eh := Ihw −wh, IhE := w− Ihw,
e := q − qh, eh := Ihq − qh, Ihe := q − Ihq,

and

ε := α− αh,

where Ih the Clement interpolant. Because (w, q) ∈ H2(Ω) ×H1(Ω), we can use
the well known results

(29) ‖IhE‖0 + h‖IhE‖1 ≤ Ch2‖w‖2 and ‖Ihe‖0 ≤ Ch‖q‖1.

In proof of the main theorem, We will use the solution (z, r) of, for all v ∈ H1
0(Ω)

and for all φ ∈ L2(Ω),

(30)
µ 〈∇z , ∇v〉+ 〈∇r , v〉 + (1− κ) (c(z)− d(r)) a(v) = 〈E , v〉 ,

〈∇ · z , φ〉 − (1− κ) (c(z)− d(r)) b(φ) = 0,

where κ is an arbitrary small positive constant. We will establish the well-posedness
of equations (30) via the same manner within §3. To do this, we rewrite (30) with
ᾱ := (1− κ)(c(z) − d(r)) and

(31)
µ 〈∇z , ∇v〉+ 〈∇r , v〉 + ᾱa(v) = 〈E , v〉 ,

〈∇ · z , φ〉 − ᾱb(φ) = 0.

We will prove well-posedness of (30) in next lemma, by verifying existence and
uniqueness of the solution (z, r, ᾱ) of (31).

Lemma 4.2 (Well-posedness and regularity of (30)). If κ is any number in (0, 1),
then equations (30) have a unique solution (z, r) in H1

0(Ω)×L
2
0(Ω) and there exists

a positive constant C1 satisfying

(32) ‖z‖1 + ‖r‖0 ≤ C1‖E‖0.

Proof. We first show the compatibility condition for (30). since we have
∫

Ω

∇ · zdx =

∫

∂Ω

z · νννds = 0,

where ννν is the outward unit normal vector, we conclude
∫

Ω∇ · zdx =
∫

Ω∇ ·
(η2ρud)dx=0, because of b(1) = 0 in (27).
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We now start to prove existence and uniqueness of solution of (30). It is well
known that (31) has unique solution (zᾱ, rᾱ) for any ᾱ ∈ R, if E ∈ L2(Ω). So we
can define a mapping FE from R to H1

0(Ω)×L2
0(Ω) by FE(ᾱ) := (zᾱ, rᾱ) to be the

solution of (31), for any ᾱ ∈ R. And we define Fᾱ from H1
0(Ω)× L2

0(Ω) to R by

(33)
Fᾱ(z, r) : = (1− κ) (c(z)− d(r))

= (1− κ) (〈−µ△(ηρus) +∇(ηρps) , z〉 − 〈∇ · (ηρus) , r〉) .

Then Fᾱ ◦ FE becomes a mapping from R to R. So we need to show, by the
contraction mapping theorem [11], that Fᾱ ◦ FE has a unique fixed point to finish
this proof. And it is equivalent to proving ‖Fᾱ ◦ FE‖ < 1. To show this, let ᾱ1 and
ᾱ2 be arbitrary real numbers and let

(34) FE (ᾱ1) = (zᾱ1
, rᾱ1

) and FE (ᾱ2) = (wᾱ2
, rᾱ2

) .

From (31), we obtain

(35)

µ 〈∇ (zᾱ1
− zᾱ2

) , ∇v〉+ 〈∇ (rᾱ1
− rᾱ2

) , v〉

=
ᾱ1 − ᾱ2

βm − βp
〈−µ△(η2ρud) +∇(η2ρpd) , v〉 ,

〈∇ · (zᾱ1
− zᾱ2

) , φ〉 =
ᾱ1 − ᾱ2

βm − βp
〈∇ · (η2ρud) , φ〉 .

And we define the Stokes equations

(36)

−µ△x+∇k = −µ△(ηρus) +∇(ηρps), in Ω,

∇ · x = ∇ · (ηρus), in Ω,

x = 0, on ∂Ω.

We note here that the right hand side terms are smooth functions which come
from Lemma 2.1 and the compatibility condition hold because of

∫

Ω ∇· (ηρus)dx =
∫

∂Ω
(ηρus) · νννds = 0. So (36) has a unique solution (x, k) ∈ H1

0(Ω) × L2
0(Ω). We

now apply (34), (33) and (36) as a sequence and then we use integration by parts
to get
∣

∣

∣
Fᾱ ◦ FE(ᾱ1)− Fᾱ ◦ FE(ᾱ2)

∣

∣

∣
=
∣

∣

∣
Fᾱ (zᾱ1

, rᾱ1
)− Fᾱ (wᾱ2

, rᾱ2
)
∣

∣

∣

=
∣

∣

∣(1− κ) (〈−µ△(ηρus) +∇(ηρps) , zᾱ1
− zᾱ2

〉 − 〈∇ · (ηρus) , rᾱ1
− rᾱ2

〉)
∣

∣

∣

=
∣

∣

∣(1− κ) (〈−µ△x+∇k , zᾱ1
− zᾱ2

〉 − 〈∇ · x , rᾱ1
− rᾱ2

〉)
∣

∣

∣

=
∣

∣

∣(1− κ) (µ 〈∇x , ∇ (zᾱ1
− zᾱ2

)〉 − 〈k , ∇ · (zᾱ1
− zᾱ2

)〉+ 〈x , ∇ (rᾱ1
− rᾱ2

)〉)
∣

∣

∣.

We now consider v = x and φ = k in (35) to derive
∣

∣

∣Fᾱ ◦ FE(ᾱ1)− Fᾱ ◦ FE(ᾱ2)
∣

∣

∣

=
∣

∣

∣(1− κ)
ᾱ1 − ᾱ2

βm − βp
(〈−µ△(η2ρud) +∇(η2ρpd) , x〉 − 〈∇ · (η2ρud) , k〉)

∣

∣

∣,

and then we apply Lemma 2.2 again to obtain
∣

∣

∣Fᾱ ◦ FE(ᾱ1)− Fᾱ ◦ FE(ᾱ2)
∣

∣

∣

=
∣

∣

∣
(1− κ)

ᾱ1 − ᾱ2

βm − βp
(〈η2ρud , −µ△x+∇k〉 − 〈η2ρpd , ∇ · x〉)

∣

∣

∣
,
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In light of (17), testing η2ρud and η2ρpd with the first and the second in (36),
respectively, leads

〈−µ△x+∇k , η2ρud〉 = 〈−µ△(ηρus) +∇(ηρps) , η2ρud〉 = βm,

〈∇ · x , η2ρpd〉 = 〈∇ · (ηρus) , η2ρpd〉 = βp.

Finally, we arrive
∣

∣

∣Fᾱ ◦ FE(ᾱ1)− Fᾱ ◦ FE(ᾱ2)
∣

∣

∣ = |1− κ||ᾱ1 − ᾱ2| < |ᾱ1 − ᾱ2|,

provided κ ∈ (0, 1). Therefore, we prove that (30) has a unique solution (zf , rf ) ∈
H1(Ω) × L2

0(Ω) for any f ∈ H−1(Ω). From now, we will derive (32) to finish this
proof. Let F : H−1(Ω) → H1(Ω) × L2

0(Ω) be the operator corresponding to the
solution of (30), for all f ∈ H−1(Ω), namely F (f) = (zf , rf ). According to (30), the
inverse operator F−1 is well-defined and

‖f‖−1 =
∥

∥F−1 (zf , rf )
∥

∥

−1

= sup
v∈H1

0
(Ω)

µ 〈∇zf , ∇v〉+ 〈∇rf , v〉+ (1 − κ) (c(zf )− d(rf )) a(v)

‖v‖1

≤ (1 + C) (‖zf‖1 + ‖rf‖0) ,

where C depends on only given datum of domain Ω, and given smooth func-
tions ‖∇ · (η2ρud)‖0, ‖−µ△(η2ρud) +∇(η2ρpd)‖0, ‖−µ△(ηρus) +∇(ηρps)‖0 and

‖∇ · (ηρus)‖0. So F−1 is bounded bilinear transform. If we choose C1 = 1/
∥

∥F−1
∥

∥,
then we can have

‖zf‖1 + ‖rf‖0 ≤ ‖F‖‖f‖−1 ≤ C1‖f‖0.

If we choose f = E, we arrive at (32) and it is the proof.

Lemma 4.3 (Properties of the solution (z, r) of (30)). Let (z, r) be the solutions of
(30). Then there is a singular function representation

(37) z = wz + αzηρus and r = qz + αzηρps,

where wz ∈ H2(Ω) ∩ H1
0(Ω), qz ∈ H1(Ω) ∩ L2

0(Ω) and αz satisfy the regularity
estimate

(38) ‖wz‖2 + ‖qz‖1 + |αz| ≤ C‖E‖0.

Proof. It is easy to check the solution (31) satisfies

(39)

−µ△z+∇r = E+
ᾱ

βm − βp
(−µ△(η2ρud) +∇(η2ρpd)) ,

∇ · z =
ᾱ

βm − βp
∇ · (η2ρud).

The right hand side terms are in L2(Ω) and H1(Ω) ∩ L2
0(Ω) for the fist and the

second equations, respectively, which come from (11) and (27). So we can directly
get the representation of (37) from Lemma 4.1 and

‖wz‖2 + ‖qz‖1 + |αz| ≤ C‖−µ△z+∇r‖0 + ‖∇ · z‖1.

According to (39), we arrive at

‖wz‖2 + ‖qz‖1 + |αz| ≤ C

∥

∥

∥

∥

E+
ᾱ

βm − βp
(−µ△η2ρud +∇η2ρpd)

∥

∥

∥

∥

0

+ C

∥

∥

∥

∥

ᾱ

βm − βp
∇ · η2ρud

∥

∥

∥

∥

1

≤ C (‖E‖0 + |ᾱ|) .
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Because |ᾱ| = |(1− κ)(c(z)− d(r))| ≤ C (‖z‖0 + ‖r‖0), (32) leads |ᾱ| ≤ C‖E‖0 and
(38). It is the proof.

If we denote
G := z− Ihz and g := r − Ihr,

then thanks to Lemma 30, we have

(40) ‖G‖1 + ‖g‖0 ≤ Chλ‖E‖0,

because of ‖ηρus − Ih (ηρus)‖1 + ‖ηρps − Ih (ηρps)‖0 ≤ Chλ.

Remark 4.4 (The reason of sub-optimality). The inequality (40) is the main restric-
tion to get optimal accuracy in the next lemma and the reason of sub-optimality
|α − αh|+ ‖w −wh‖0 ≤ Ch1+λ in Theorem 1. Also the sub-optimality (3) is due
to (40).

From now, we impose κ = 0 in (30) to simple explanation, because κ is an
arbitrary small positive constant. We start to estimate errors in L2(Ω).

Lemma 4.5 (Estimate ‖E‖0). Let Assumption 1 hold. Then we have

(41) ‖E‖0 ≤ Chλ (‖E‖1 + ‖e‖0) ,

(42) |ε| ≤ C‖E‖0 and ‖e‖0 ≤ C (‖E‖1 + h‖q‖1) .

Proof. We start this proof with constructing error equations by subtracting
(20) from (19) to get

(43)
µ 〈∇E , ∇vh〉+ 〈∇e , vh〉+ (a(E) + b(e)) c(vh) = 0,

〈∇ · E , φh〉+ (a(E) + b(e)) d(φh) = 0.

We first prove (42). From the second equation in (43), we have

|b(e)d(φh)| = | 〈E , ∇φh〉 − a(E)d(φh)|.

We fix φh = C2x with C2 satisfying d(C2x) = 1, then ‖∇φh‖0 = |C2||Ω|
1/2 is a

bounded number, because the space Ph is composed of continuous functions. So we
can readily obtain

(44) |b(e)| ≤ C‖E‖0.

Therefore ε = a(E) + b(e) which comes from subtracting (21) from (18) yields

|ε| ≤ C (‖E‖0 + |b(e)|) ≤ C‖E‖0,

and, in light of (43), Assumption 1 leads

γ‖eh‖0 ≤ sup
vh∈Vh

µ 〈∇E , ∇vh〉+ 〈Ihe , ∇ · vh〉+ (a(E) + b(e)) c(vh)

‖vh‖1
≤ C (‖E‖1 + h‖q‖1 + ‖E‖0 + |b(e)|) .

Thus, in conjunction with (44), we arrive at (42). We now prove (41) with choosing
vh = Ihz = z−G and φ = Ihr = r − g in (43):

(45)
µ 〈∇E , ∇ (z−G)〉+ 〈∇e , z−G〉+ (a(E) + b(e)) c(z−G) = 0,

〈∇ · E , r − g〉+ (a(E) + b(e)) d(r − g) = 0,

And then we choose v = E and φ = e in (30) to get

(46)
µ 〈∇z , ∇E〉+ 〈∇r , E〉+ (c(z) − d(r)) a(E) = 〈E , E〉 ,

〈∇ · z , e〉 − (c(z)− d(r)) b(e) = 0.
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We now replace 〈∇e , z〉 at the first equation in (45) with the second equation in
(46) to obtain
(47)
µ 〈∇E , ∇ (z−G)〉 − 〈∇e , G〉+ (a(E) + b(e)) c(z −G)− (c(z)− d(r)) b(e) = 0.

By the same manner, we replace 〈∇r , E〉 at the first equation in (46) with the
second equation in (45)
(48)
µ 〈∇z , ∇E〉 − 〈∇ ·E , g〉+ (c(z) − d(r)) a(E) + (a(E) + b(e)) d(r − g) = 〈E , E〉 .

In light of (40), subtracting (47) from (48) yields

‖E‖
2
0 = µ 〈∇E , ∇G〉 − 〈∇ ·E , g〉 − 〈e , ∇ ·G〉+ (a(E) + b(e)) (c(G)− d(g))

≤ Chλ (‖∇E‖0 + ‖∇ ·E‖0 + ‖e‖0) ‖E‖0.

Therefore we arrive at (41) and finish the proof of the theorem.

We now estimate error in H1
0(Ω) space.

Lemma 4.6 (Estimate ‖E‖1+ ‖e‖0). Let Assumption 1 hold. If the mesh size h be
small enough, then we have

(49) ‖E‖1 + ‖e‖0 ≤ Ch.

Proof. We choose vh = Eh = Ihw − wh = E − IhE ∈ Vh and φh = eh =
Ihq − qh = e− Ihe ∈ Ph in (43), then we have

(50)
µ 〈∇E , ∇(E− IhE)〉+ 〈∇e , E− IhE〉+ (a(E) + b(e)) c(Eh) = 0,

〈∇ ·E , e − Ihe〉+ (a(E) + b(e)) d(eh) = 0.

And then we replace 〈∇e , E〉 in the first equation with the second equation in (50)
to have

µ 〈∇E , ∇(E− IhE)〉 − 〈∇e , IhE〉 − 〈∇ · E , Ihe〉

+ (a(E) + b(e)) (c(Eh) + d(eh)) = 0.

In conjunction with Lemma 4.5 and |b(e)| ≤ C‖E‖0 in (44), (29) yields

µ‖∇E‖
2
0 ≤ C

(

‖∇E‖0‖∇IhE‖0 + ‖e‖0‖∇ · IhE‖0

+ ‖Ihe‖0‖∇ · E‖0 + ‖E‖0 (‖Eh‖0 + ‖eh‖0)
)

≤ Ch
(

(‖∇E‖0 + ‖e‖0) ‖w‖2 + ‖∇ · E‖0‖q‖1

)

+ Chλ (‖E‖1 + ‖e‖0) (‖Eh‖0 + ‖eh‖0)

≤ Ch
(

(‖∇E‖0 + h‖q‖0) ‖w‖2 + ‖∇ · E‖0‖q‖1

)

+ Chλ (‖E‖1 + h‖q‖1)
2
.

Assumption of a small enough h yields

‖E‖1 ≤ Ch (‖w‖2 + ‖q‖1) .

Finally, we arrive at (49) by combining with (42) and complete this proof.
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5. Numerical test

In this section, we document the computational performance of the FE-DSFM
within a polygonal Γ shape domain ([−1, 1]× [−1, 1])r ([0, 1]× [−1, 0]). So, in this
test, ω = 1.5π and the solution λ of (4) becomes λ = 0.544483736782463925. Let
the solution be given by

u = − sin2(πx) sin(2πy) + us,

v = sin(2πx) sin2(πy) + vs,

p = (2 + cos(πx))(2 + cos(πy))− 4.0 + ps.

We note that the solution for velocity has not vanished on Γout. The forcing term
f is determined accordingly for any µ; here µ = 1. In order to impose FE-DSFM,
we choose the cut-off function ηρ ∈ H3(Ω) as

ηρ =







1, in B(12ρR),
1
32

(

16− 35ψ + 35ψ3 − 21ψ5 + 5ψ7
)

, in B(12ρR; ρR),
0, in Ωr B̄(ρR),

with ψ = 4r
ρR − 3 with R = 1. Then the solution (u, p) can be rewritten by

u = w + ηρus,

p = q + ηρps,

where (w, q) is the regular part of the solution. We note that the regularities of
w = u−ηρus and q = p−ηρps are equal to that of ηρ, and so (w, q) ∈ H3(Ω)×H3(Ω)
in this example. Computations are carried out with the Taylor-Hood (P2,P1) finite
element pair on the union jack shape uniform meshes of size h.

Table 1. Error table for the standard mixed method.

h 1/8 1/16 1/32 1/64 1/128

‖E‖0
0.00525989 0.00203043 0.000863199 0.000381872 0.000173168

Order 1.373247 1.234020 1.176604 1.140917

‖E‖L∞

0.027998 0.0195703 0.0135074 0.00928508 0.00637329

Order 0.516658 0.534916 0.540764 0.542876

‖E‖H1
0.217839 0.121565 0.0805253 0.0549791 0.0376842

Order 0.841534 0.594214 0.550559 0.544924

‖e‖L2
0.209838 0.142047 0.0968696 0.0662486 0.0453665

Order 0.562908 0.552252 0.548154 0.546263

‖e‖L∞

0.713876 0.956344 1.31637 1.81283 2.49197

Order -0.421856 -0.460963 -0.461679 -0.459043

Table 1 is the error decay for the standard mixed method. We can check that
the errors consist with (3) and we see that the error ‖e‖L∞ does not converge to
0. It is natural behavior, because s in (3) is less than 1. More precisely, s = λ =
0.544483736782463925 in this test.

Tables 2, 3 and 4 are the results of mesh analysis of FE-DSFM with ρ = 0.125,
ρ = 0.3 and ρ = 0453, respectively. The convergence orders in these experiments
are the same as the optimal accuracy in (2) with s = 2, because of (w, q) ∈
H3(Ω) × H3(Ω). So we can conclude that FE-DSFM has optimal accuracy in
numerical tests, even though we get only suboptimal accuracy ‖E‖0 ≤ Ch1+λ
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Table 2. Error decay for the FE-DSFM with ρ = 0.125.

.

h 1/8 1/16 1/32 1/64 1/128

‖E‖0
0.654576 0.00606273 0.00103749 4.86052e-05 5.53585e-06

Order 6.754449 2.546870 4.415843 3.134234

‖E‖L∞

4.86035 0.0539083 0.00987302 0.000588627 7.25307e-05

Order 6.494409 2.448944 4.068066 3.020690

‖E‖H1
18.6427 0.32717 0.0799223 0.0249258 0.00637899

Order 5.832426 2.033370 1.680958 1.966240

‖e‖L2
4.70916 0.0830669 0.0193997 0.00418722 0.00119974

Order 5.825052 2.098239 2.211970 1.803271

‖e‖L∞

55.3433 1.55404 0.254753 0.1594 0.0539996

Order 5.154313 2.608853 0.676447 1.561631

|ε| 0.0385324 0.224605 0.0435706 0.00112617 7.46192e-05

Order 2.543246 2.365963 5.273858 3.915734

Table 3. Error decay for the FE-DSFM with ρ = 0.3.

.

h 1/8 1/16 1/32 1/64 1/128

‖E‖0
0.00930983 0.000962465 0.000102994 -05 1.63735e-06

Order 3.273949 3.224174 2.941771 3.033283

‖E‖L∞

0.0477212 0.00387738 0.000521333 7.35078e-05 8.82426e-06

Order 3.621476 2.894805 2.826236 3.058350

‖E‖H1
0.383561 0.116552 0.0285883 0.00747874 0.00188788

Order 1.718482 2.027477 1.934558 1.986028

‖e‖L2
0.0615555 0.016293 0.00492944 0.00139146 0.000361693

Order 1.917635 1.724757 1.824824 1.943762

‖e‖L∞

0.422723 0.184322 0.0851973 0.0267362 0.00702548

Order 1.197484 1.113349 1.672013 1.928126

|ε| 0.091617 0.00650135 0.000434171 3.40152e-05 2.34765e-06

Order 3.816804 3.904404 3.674012 3.856890

Table 4. Error decay for the FE-DSFM with ρ = 0453.

.

h 1/8 1/16 1/32 1/64 1/128

‖E‖0
0.0111371 0.000491094 7.48313e-05 8.11691e-06 9.89508e-07

Order 4.503231 2.714285 3.204639 3.036147

‖E‖L∞

0.0351972 0.00146173 0.000238326 2.64804e-05 3.11194e-06

Order 4.589712 2.616669 3.169940 3.089039

‖E‖H1
0.273671 0.0690917 0.0179002 0.0045319 0.00113814

Order 1.985858 1.948537 1.981788 1.993438

‖e‖L2
0.051732 0.0107246 0.00309985 0.000820025 0.000208841

Order 2.270133 1.790654 1.918459 1.973263

‖e‖L∞

0.262159 0.0874078 0.0365356 0.0103794 0.00267379

Order 1.584608 1.258459 1.815580 1.956765

|ε| 0.0697584 0.00162356 0.000205428 1.66353e-05 2.40529e-06

Order 5.425134 2.982456 3.626313 2.789965
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theoretically in Theorem 1. In addition, we can check that the errors are smaller
for the bigger ρ, so the errors are reduced in Tables 2, 3 and 4 successively. In
Table 2, we can see also that the errors of the case h = 1/8 are relatively bigger
than others casees and it is due to h = ρ = 0.125.

6. Singular functions and dual Singular functions

In this section, we derive corner singular functions and dual Singular functions
for Stoke equations (1). To do this, we use notations Ur and Uθ as polar components
of the vector function u = (u, v)T which means

(51) u =

(

u
v

)

=

(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)(

Ur

Uθ

)

.

If we define er = (cos(θ), sin(θ))T and eθ = (− sin(θ), cos(θ))T , then (51) becomes

u = Urer + Uθeθ,

and (1) can be written as the polar coordinate Stokes system

(52)

−

(

∂rrUr +
1

r
∂rUr +

1

r2
(−Ur + ∂θθUr − 2∂θUθ)

)

+ ∂rP = 0,

−

(

∂rrUθ +
1

r
∂rUθ +

1

r2
(−Uθ + ∂θθUθ + 2∂θUr)

)

+
1

r
∂θP = 0,

∂rUr +
1

r
(Ur + ∂θUθ) = 0.

We will find the singular solutions in §6.1 and the dual singular solutions §6.2 via
solving (52).

6.1. Singular functions. In this section, we will find solutions of (52) by using
the separation of variables. We first assume that the solution (Ur, Uθ, P ) of (52)
has the singular form, with λ > 0,

(

Ur(r, θ)

Uθ(r, θ)

)

= rλ

(

ur(θ)

uθ(θ)

)

and P (r, θ) = rλ−1p(θ).

Then, as computed in [10], we obtain 4 solutions of (52)





u1r
u1θ
p1



 =

















1− λ

µ
cos((1− λ)θ)

−
1 + λ

µ
sin((1 − λ)θ)

−4λ cos((1 − λ)θ)

















,





u3r
u3θ
p3



 =









cos((1 + λ)θ)

− sin((1 + λ)θ)

0









,





u2r
u2θ
p2



 =

















1− λ

µ
sin((1− λ)θ)

1 + λ

µ
cos((1 − λ)θ)

−4λ sin((1 − λ)θ)

















,





u4r
u4θ
p4



 =









sin((1 + λ)θ)

cos((1 + λ)θ)

0









,
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and so the general solution becomes

(53)







Ur(r, θ)

Uθ(r, θ)

P (r, θ)






= C1





rλu1r
rλu1θ
rλ−1p1



+ C2





rλu2r
rλu2θ
rλ−1p2





+ C3





rλu3r
rλu3θ
rλ−1p3



 + C4





rλu4r
rλu4θ
rλ−1p4



 .

To make a homogeneous condition at Γin, we impose

(54) Ur(r, 0) = Uθ(r, 0) = 0 and Ur(r, ω) = Uθ(r, ω) = 0.

Then the first equations in (54) lead to

C1
1− λ

µ
+ C3 = 0 and C2

1 + λ

µ
+ C4 = 0

and so, in conjunction with (51), (53) becomes
(

u

v

)

= 2C1
rλ

µ

(

λ sin(θ) sin((1 − λ)θ)
sin(λθ) − λ sin(θ) cos((1− λ)θ)

)

− 2C2
rλ

µ

(

sin(λθ) + λ sin(θ) cos((1− λ)θ)
λ sin(θ) sin((1 − λ)θ)

)

.

From Ur(r, ω) = 0 in (54), C1 and C2 have to be

(55) C1 = sin(λω) + λ sin(ω) cos((1 − λ)ω) and C2 = λ sin(ω) sin((1− λ)ω),

And the last equation in (54), Uθ(r, ω) = 0, yields

(56) λ2 sin2(ω) = sin2(λω).

Finally, we arrive at the singular function







u

v

p






= C1

















rλ

µ
λ sin(θ) sin((1 − λ)θ)

rλ

µ
(sin(λθ)− λ sin(θ) cos((1 − λ)θ))

−2rλ−1λ cos((1 − λ)θ)

















− C2

















rλ

µ
(sin(λθ) + λ sin(θ) cos((1 − λ)θ))

rλ

µ
λ sin(θ) sin((1− λ)θ)

2rλ−1λ sin((1 − λ)θ)

















,

where λ is the solution of (56), and C1 and C2 are the same as in (55).
In conjunction with Figure 1, we can readily get the following properties for (56):

Lemma 6.1 (Variability of λ on ω). If we denote β :≈ 1.430296653124203, then we
have that

(1) λ = 0 and λ = 1 are solutions for all ω and we call these trivial solutions,
(2) there are only trivial solutions for 0 ≤ ω ≤ π,
(3) there is a unique solution for π ≤ ω ≤ βπ except trivial solutions,
(4) there are 2 solutions for βπ ≤ ω < 2π except trivial solutions,
(5) λ = 0.5 is the unique solution except trivial solutions, if ω = 2π.
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Figure 1. Graphs of sin2(λω) (dashed line) and λ2 sin2(ω) (solid
line) with variable λ and fixed ω’s as (a) ω = 0.8π, (b) ω = π,
(c) ω = 1.2π, (d) ω = 1.430296653124203π, (e) ω = 1.6π, and (f)
ω = 2π.

6.2. dual Singular functions. By the same manner within §6.1, we assume the
solution (Ur, Uθ, P ) of (52) has the form, for λ > 0,

(

Ur(r, θ)

Uθ(r, θ)

)

= r−λ

(

ur(θ)

uθ(θ)

)

and P (r, θ) = r−λ−1p(θ).

Then we can readily get 4 solutions of (52)





u1r
u1θ
p1



 =

















λ+ 1

µ
cos((λ + 1)θ)

λ− 1

µ
sin((λ+ 1)θ)

4λ cos((λ + 1)θ)

















,





u3r
u3θ
p3



 =









cos((λ− 1)θ)

sin((λ− 1)θ)

0









,





u2r
u2θ
p2



 =

















λ+ 1

µ
sin((λ + 1)θ)

−
λ− 1

µ
cos((λ + 1)θ)

4λ sin((λ+ 1)θ)

















,





u4r
u4θ
p4



 =









sin((λ − 1)θ)

− cos((λ− 1)θ)

0









,

and so the general solution becomes

(57)







Ur(r, θ)

Uθ(r, θ)

P (r, θ)






= D1





r−λu1r
r−λu1θ
r−λ−1p1



+D2





r−λu2r
r−λu2θ
r−λ−1p2





+D3





r−λu3r
r−λu3θ
r−λ−1p3



+D4





r−λu4r
r−λu4θ
r−λ−1p4



 .
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To make a homogeneous condition on Γin, we impose

(58) Ur(r, 0) = Uθ(r, 0) = Ur(r, ω) = Uθ(r, ω) = 0.

Then the first 2 conditions in (58), Ur(r, 0) = Uθ(r, 0) = 0, leads us

D1
λ+ 1

µ
+D3 = 0 and D2

λ− 1

µ
+D4 = 0

and so, in conjunction with (51), (57) becomes
(

u

v

)

=− 2D1
r−λ

µ

(

λ sin(θ) sin((λ+ 1)θ)
sin(λθ) − λ sin(θ) cos((λ+ 1)θ)

)

+ 2D2
r−λ

µ

(

sin(λθ) + λ sin(θ) cos((λ+ 1)θ)
λ sin(θ) sin((λ+ 1)θ)

)

.

In order to make hold the third equation in (58), Ur(r, ω) = 0, D1 and D2 have to
be

(59) D1 = sin(λω) + λ sin(ω) cos((λ + 1)ω) and D2 = λ sin(ω) sin((λ + 1)ω).

Then the last equation in (58), Uθ(r, ω) = 0, yields the same equation as (56)

(60) λ2 sin2(ω) = sin2(λω).

Finally, we arrive at the dual singular function







u

v

p






= D1

















−
r−λ

µ
λ sin(θ) sin((λ + 1)θ)

−
r−λ

µ
(sin(λθ) − λ sin(θ) cos((λ+ 1)θ))

2r−λ−1λ cos((λ + 1)θ)

















+D2

















r−λ

µ
(sin(λθ) + λ sin(θ) cos((λ+ 1)θ))

r−λ

µ
λ sin(θ) sin((λ+ 1)θ)

2r−λ−1λ sin((λ+ 1)θ)

















,

where λ is the solution of (60) and D1 and D2 are the same as in (59).
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