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FAST SOLVERS FOR THE SYMMETRIC IPDG

DISCRETIZATION OF SECOND ORDER ELLIPTIC PROBLEMS

LIUQIANG ZHONG, ERIC T. CHUNG, AND CHUNMEI LIU

Abstract. In this paper, we develop and analyze a preconditioning technique and an iterative
solver for the linear systems resulting from the discretization of second order elliptic problems by

the symmetric interior penalty discontinuous Galerkin methods. The main ingredient of our ap-
proach is a stable decomposition of the piecewise polynomial discontinuous finite element space of

arbitrary order into a linear conforming space and a space containing high frequency components.

To derive such decomposition, we introduce a novel interpolation operator which projects piece-
wise polynomials of arbitrary order to continuous piecewise linear functions. We prove that this

operator is stable which allows us to derive the required space decomposition easily. Moreover,

we prove that both the condition number of the preconditioned system and the convergent rate
of the iterative method are independent of the mesh size. Numerical experiments are also shown

to confirm these theoretical results.
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1. Introduction

Discontinuous Galerkin (DG) methods are widely used numerical methodologies
for the numerical solutions of partial differential equations. They have traditionally
been used for the numerical solutions of hyperbolic equations [36, 29, 23, 24, 19].
There are many advantages in using DG methods compared with other types of fi-
nite element methods. For example, DG methods allow more flexibility in handling
equations whose types change within the computational domain and in designing
hp-refinement strategies. Besides, they have the ability to provide important con-
servation properties as well as give block diagonal mass matrices for time-dependent
problems [23, 24, 19]. Owing to these unique advantages, DG methods have also
been developed for second order elliptic problems [14, 18, 25] and many other prob-
lems. In addition, DG methods based on staggered grids are recently developed
and analyzed for a large class of problems [21, 22, 26, 27, 28]. On the other hand,
one main obstacle in the efficient implementation of DG methods is that the result-
ing linear systems contain a larger number of unknowns compared with conforming
methods. Thus, the construction of fast algorithms is crucial for the efficient im-
plementations of DG methods. In this paper, we will pay our attention to the
symmetric interior penalty discontinuous Galerkin (IPDG) for second order elliptic
equations.
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Fast solvers for DG methods have been widely studied in the literature. For ex-
ample, additive Schwarz methods [31, 1, 2, 6], multigrid methods [13, 11, 10, 5, 9, 4]
and preconditioning techniques [32, 30, 15, 16, 5, 4] are developed for the efficient
solution strategies for DG methods. The first work on preconditioning technique,
to the best of our knowledge, is given by Gopalakrishnan and Kanschat [32], in
which they studied the variable V-cycle multigrid operator as a preconditioner, but
assumed that the underlying hierarchy of meshes is quasi-uniform and the solution
exhibits a certain (weak) extra regularity. Dobrev et. al. presented a two-level
scheme in the framework of the auxiliary space method in [30]. However, they only
analyzed the case with discontinuous piecewise linear finite elements and their tech-
nique requires the exact solution of a coarse-grid problem. Brix et. al. constructed
a multilevel preconditioner and obtained uniformly bounded condition numbers
for the preconditioned linear system without the use of the weaker assumptions
presented in [15, 16]. Their scheme allows the use of triangulations with hanging
nodes or graded meshes. Recently, some iterative and preconditioning techniques
are presented and analyzed in [5]. The key idea is a splitting of the discontinuous
finite element space into the standard Crouziex-Raviart space and its complemen-
tary space with respect to the energy inner product induced by IPDG-0 methods.
Such decomposition has also been proposed and used in [17] for obtaining a pri-
ori error bounds for some DG methods. Moreover, the results in [5] are extended
in [4] to the design of multilevel preconditioners for linear systems resulting from
the DG discretization of elliptic problems with discontinuous coefficients. However,
the mathematical analysis of these methods is based on the discretization by using
discontinuous piecewise linear finite element spaces.

In this paper, we will develop and analyze a preconditioning technique and an
iterative method for solving the linear systems resulting from the discretization of
elliptic boundary value problems by symmetric IPDG methods. The key to the
constructions of these is a stable space decomposition of the discontinuous finite
element space Vh containing piecewise polynomials. More precisely, we will prove
the following stable splitting

Vh =

N∑
i=1

Vi + VConf
h ,

where Vi = span{ϕi}, {ϕi}Ni=1 is the set of all nodal basis functions in Vh having

dimension N and VConf
h denotes the conforming finite element space with homo-

geneous Dirichlet boundary conditions. The above decomposition can be seen as
decomposing the finite element space Vh as the sum of conforming space, whose fast

solution techniques are well-known, and the space
∑N

i=1 Vi, which can be regarded
as a space containing high frequency components. We will prove that these high
frequency components can be handled by using Jacobi or Gauss-Seidel smoothers.
The use of this type of space decomposition can also be found in [30, 15, 16, 4]. In
this paper, we will introduce a new interpolation operator, which gives a simpler
approach for establishing the aforementioned stable space decomposition. We will
show that the condition number of the preconditioned linear system is uniformly
bounded and the iterative method is uniformly convergent with respect to the mesh
size. Compared with most of the existing works, our main contributions in this pa-
per are threefold. First, we give a construction of an interpolation operator of

Scott-Zhang type, which from Vh into VConf
h . Secondly, our ideas can be applied

directly to the original discrete variational problems without the need of another
equivalent bilinear form. Last and more importantly, our preconditioning technique
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and iterative method can be applied to DG methods discretized by higher order
discontinuous finite element functions.

In order to avoid repeated use of generic but unspecified constants, we use the
notation α . β to mean that the constant α is bounded above by a constant
multiple of β uniformly with respect to any parameters on which α and β may
depend. Moreover, α ≈ β means that α . β and β . α.

The rest of the paper is organized as follows. In Section 2, we will present a brief
review on the symmetric IPDG methods. Then in Section 3, we will construct the
required stable space decomposition and the corresponding interpolation operator.
Stability bounds for the space decomposition and the interpolation operator are
also proved. The design and the analysis of the preconditioner and the iterative
method are presented in Section 4 and Section 5 respectively. Finally, in Section 6,
we report some numerical results to confirm our theoretical estimates.

2. Discontinuous Galerkin Methods

In this section, we present an overview of the symmetric IPDG methods for
which preconditioners and fast iterative solvers are developed. For an extensive
review, see [37, 33]. To start, we consider the following model problem of finding
u ∈ H1

0 (Ω) such that

(1)

∫
Ω

∇u · ∇vdx =

∫
Ω

fvdx, ∀v ∈ H1(Ω),

where Ω ∈ Rd is a bounded polygonal (for d = 2) or polyhedral (for d = 3) domains
with Lipschitz boundary ∂Ω.

Let Th be a shape-regular family of partitions of Ω into d−dimensional simplices
T (triangles if d = 2 and tetrahedra if d = 3). We assume that Th is conforming in
the sense that it does not contain hanging nodes. A face e in the triangulation Th
is a (d − 1)-dimensional simplex which belongs to the boundary of some T ∈ Th.
We denote by Eoh and E∂h the collection of all interior faces and boundary faces. The
set of all faces (the skeleton of the triangualation) is denoted by Eh. We remark
that our methods do not require that the mesh is quasi-uniform. Our numerical
experiments, presented in Section 6, show that the proposed schemes still work
for graded meshes. Nevertheless, we will prove our results under the assumption of
quasi-uniform meshes. The corresponding mathematical analysis for graded meshes
can be performed by following the method in [15, 16].

Let Vh be the space of discontinuous finite element functions defined by

Vh = {v ∈ L2(Ω) : vT = v|T ∈ Pl(T ), ∀ T ∈ Th},

where Pl(T ) is the set of polynomials of degree at most l on T and l ≥ 1 is a fixed
integer. In addition, we let Hs(Ω; Th), s ≥ 1, be the space of piecewise Sobolev
functions defined by

Hs(Ω; Th) =
{
v ∈ L2(T ) : vT = v|T ∈ Hs(T ), ∀ T ∈ Th

}
,

and L2(Eh) be the set of L2 functions defined on Eh. Moreover, we define the
following inner products

(v, w)Th =
∑
T∈Th

∫
T

vw dx ∀ v, w ∈ L2(Ω),

< v,w >Eh =
∑
e∈Eh

∫
e

vw ds ∀ v, w ∈ L2(Eh).
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Let e ∈ Eoh be an interior face shared by two elements T± ∈ Th, and n± be the
unit normals of e pointing towards the outside of T±. Then, on e, we define

[[v]] = v+n+ + v−n−, {{∇v}} =
∇v+ +∇v−

2
, ∀v ∈ H1(Ω; Th),

{{w}} =
w+ + w−

2
, ∀w ∈ H1(Ω; Th)×H1(Ω; Th)

with v± = v|T± and w± = w|T± . For a boundary face e ∈ E∂h , we define

[[v]] = vTn, ∀v ∈ H1(Ω; Th),

{{w}} = wT , ∀w ∈ H1(Ω; Th)×H1(Ω; Th),

where n is the unit normal of e pointing towards the outside of Ω.
For any face e, we define a lifting operator re : L2(e)× L2(e) 7→ Vh × Vh by∫

Ω

re(v) ·w dx = −
∫
e

v · {{w}} ds, w ∈ Vh × Vh.

Then the global lifting rh : L2(Eh)× L2(Eh) 7→ Vh × Vh is defined by

rh(v) =
∑
e∈Eh

re(v).

For any given f ∈ L2(Ω), the symmetric IPDG method [3] for (1) is: find uh ∈ Vh

such that

(2) ah(uh, v) = (f, v)Th , ∀ v ∈ Vh,

where

ah(w, v) = (∇w,∇v)Th− < {{∇w}} , [[v]] >Eh − < {{∇v}} , [[w]] >Eh
+δ (rh ([[w]]) · rh ([[v]]))Th + Jh(w, v),(3)

δ = 1 or 0, and Jh = Jj or Jr. The jump terms Jj and Jr are defined by

Jj(w, v) = η < he
−1 [[v]] , [[w]] >Eh ∀v, w ∈ Vh,

Jr(w, v) = η (re ([[w]]) , re ([[v]]))Th ∀v, w ∈ Vh,

where he denotes the length of e for d = 2 and the diameter of e for d = 3, and
η > 0 is a penalty parameter.

Four different IPDG methods can be obtained by using different choices of δ and
Jh, and they are all symmetric, consistent and stable under suitable conditions
on the penalty parameter η, which can be found in [3, 37] and also Table 1 in [9].
In this paper, we always assume that these conditions on η are satisfied. In the
following, we only list some properties of symmetric IPDG methods without proofs.
We refer the reader to [3, 9, 37] for the proofs of these relations.

For symmetric IPDG methods, the bilinear form ah(·, ·) is continuous and coer-
cive, namely

Continuity : ah(w, v) . ‖w‖h‖v‖h, w, v ∈ Vh,(4)

Coercivity : ah(v, v) & ‖v‖h, v ∈ Vh,(5)

where the mesh-dependent energy norm ‖ · ‖h is defined by

(6) ‖v‖2h =
∑
T∈Th

‖∇v‖2L2(T ) + η−1
∑
e∈Eh

he ‖ {{∇v}} ‖2L2(e) + η
∑
e∈Eh

h−1
e ‖ [[v]] ‖2L2(e).

Then by (4) and (5), we have

(7) ‖v‖2h ≈ ah(v, v), v ∈ Vh
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and ah(·, ·) is an inner product on Vh.
Furthermore, we introduce another mesh-dependent energy norm |‖ · |‖h defined

by

|‖v|‖2h =
∑
T∈Th

‖∇v‖2L2(T ) + η
∑
e∈Eh

h−1
e ‖ [[v]] ‖2L2(e).(8)

It’s easy to prove that the two norms ‖ · ‖h and |‖ · |‖h are equivalent on Vh, that
is,

(9) ‖v‖h ≈ |‖v|‖h v ∈ Vh.

Indeed, in view of (6) and (8), |‖ · |‖h ≤ ‖ · ‖h holds. On the other hand, by using
the trace theorem for the average term in ‖ · ‖h, we obtain ‖ · ‖h ≤ C|‖ · |‖h (which
is (10.5.16) of [12]).

3. A stable space decomposition

Our preconditioner and fast iterative solver are based on a stable space decom-
position of the DG space Vh. In this section, we will prove the following overlapping
space decomposition of Vh:

(10) Vh = Vh + VConf
h ,

where VConf
h denotes the conforming linear finite element space with homogeneous

Dirichlet boundary condition on Th. To do so, we need to construct a new inter-

polation operator Πh : Vh 7→ ṼConf
h , where ṼConf

h denotes the conforming linear
finite element space, without zero boundary condition, defined on Th.

Let Nh be the collection of all nodes in the triangulation, and {φp : p ∈ Nh} be

the set of nodal basis functions of ṼConf
h . We denote by N o

h and N ∂
h the collection

of all interior nodes and boundary nodes. For a node p ∈ N o
h , let ep ∈ Eoh be an

interior face with p ∈ ep. The choice of ep is not unique. For a boundary node
p ∈ N ∂

h , we take ep ∈ E∂h . Let ψp ∈ P1(ep) be the unique function satisfying∫
ep

ψpλlds = δl1, l = 1, · · · , d,

where λl is the barycentric coordinates of ep. It’s easy to see that

(11)

∣∣∣∣∣
∫
ep

ψp w ds

∣∣∣∣∣ . h1−d
∫
ep

|w| ds,

and

(12)

∫
ep

ψp w ds = w(p) if w ∈ P1(ep).

The new interpolation operator Πh : Vh 7→ ṼConf
h is then defined by

(13) Πhv =
∑

q∈N∂
h

(Πqv)φq +
∑
p∈No

h

(Πpv)φp, v ∈ Vh,

where

(14) Πqv =

∫
eq

vψq ds and Πpv =

∫
ep

v+ + v−

2
ψp ds,

v± = v|T± with T± ∈ Th and T+ ∩ T− = ep.
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Remark 3.1. If v is continuous on the interelement face ep, then Πh is the same
as Scott-Zhang quasi-interpolation [38]. In this sense, we can view Πh as a gen-
eralization of the Scott-Zhang interpolation to discontinuous piecewise polynomial
spaces. On the other hand, Brix et. al. [15] constructed a similar interpolation
by prescribing its nodal values at every interior regular vertex. The proof for the
approximation properties (Lemma 3.1) of the operator Πh considered in this pa-
per is relatively easier than the proof presented in [15]. In this paper, we present
an analysis of a preconditioning technique and a fast iterative solver by using the
Scott-Zhang interpolation.

Remark 3.2. The operator Πh may also be constructed through the use of the
composition of a special interpolation Ih : Vh 7→ Vh ∩ H1

0 (Ω) (see [7, 16] and the

Scott-Zhang quasi-interpolation ISZ : Vh ∩H1
0 7→ VConf

h (see [38, 15]).

Remark 3.3. For linear discontinuous Galerkin finite element space

V1
h := {v ∈ L2(Ω) : vT = v|T ∈ P1(T ), ∀ T ∈ Th},

Houston et. al. [35] (Section 5.2) introduces an operator Ã : V1
h 7→ V1

h ∩ H1
0 (Ω),

which is defined by prescribing its nodal values.

In the following lemma, we will prove some approximation properties for the
operator Πh defined in (13).

Lemma 3.1. For the interpolation operator defined in (13), we have

‖(I −Πh)v‖L2(T ) .h

 ∑
T ′∈ΩT

‖∇v‖2L2(T ′) + h−1
∑

e∈E(ΩT )

‖ [[v]] ‖2L2(e)

1/2

,(15)

‖∇(Πhv)‖L2(T ) .

 ∑
T ′∈ΩT

‖∇v‖2L2(T ′) + h−1
∑

e∈E(ΩT )

‖ [[v]] ‖2L2(e)

1/2

.(16)

for all v ∈ Vh and T ∈ Th, where ΩT = ∪p∈T Ωp and Ωp is the union of all cells
T ′ ∈ Th with p ∈ T ′.

Proof. The proof of this lemma consists of four steps.

Step 1:: We will prove that, for any v ∈ Vh and p ∈ Nh,

(17) ‖Πpv‖L2(T ) .
∑

T ′∈Ωp

(
‖v‖L2(T ′) + hT ′‖∇v‖L2(T ′)

)
, T ∈ Ωp.

To do so, we let p ∈ N o
h be an arbitrary interior node. By the definition of

Πpv in (14) and the triangle inequality, we have

|Πpv| =

∣∣∣∣∣
∫
ep

v+ + v−

2
ψp ds

∣∣∣∣∣ ≤ 1

2

(∣∣∣∣∣
∫
ep

v+ψp ds

∣∣∣∣∣+

∣∣∣∣∣
∫
ep

v−ψp ds

∣∣∣∣∣
)
.

Using the estimate (11),

|Πpv| . h1−d

(∣∣∣∣∣
∫
ep

v+ ds

∣∣∣∣∣+

∣∣∣∣∣
∫
ep

v− ds

∣∣∣∣∣
)
.

Then by using Cauchy-Schwarz inequality, the trace inequality together
with the scaling argument, we have

|Πpv| . h1−d
∑

ep⊂T ′

(
h−1
T ′ |T

′|1/2‖v‖L2(T ′) + |T ′|1/2‖∇v‖L2(T ′)

)
.
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Since |T ′| ≈ hd, we obtain

|Πpv| .
∑

ep⊂T ′

(
h−d/2‖v‖L2(T ′) + h1−d/2‖∇v‖L2(T ′)

)
.

The desired estimate (17) is then obtained by combining the above inequal-
ity and the following result

‖Πpv‖L2(T ) ≤ |Πpv| · |T |1/2 . hd/2
T |Πpv|.

The proof of (17) for a boundary node p ∈ N ∂
h is similar, and hence omitted.

Step 2:: We will prove that, for any v ∈ Vh,

(18) ‖(I −Πp)v‖L2(Ωp) . h

∑
T∈Ω̃p

‖∇v‖2L2(T ) + h−1
∑

e∈E(Ω̃p)

‖ [[v]] ‖2L2(e)

1/2

.

where Ω̃p = ∪T ′∈ΩpΩT ′ and E(Ω̃p) is the union of all faces in Ω̃p.

To do so, for any node p, we let vp = |Ωp|−1
∫

Ωp
vdx be the mean value

of v over Ωp. Then by using the triangle inequality, we have

(19) ‖(I −Πp)v‖L2(Ωp) ≤ ‖v − vp‖L2(Ωp) + ‖vp −Πpv‖L2(Ωp).

We can estimate the first term on the right hand side of (19) by using the
Friedrichs-Poincare inequality (see Lemma 3.1 of [2]), namely,

‖v − vp‖2L2(Ωp) . h
2

∑
T∈Ωp

‖∇v‖2L2(T ) + h−1
∑

e∈E(Ωp)

‖ [[v]] ‖2L2(e)

 .

For the second term on the right hand side of (19), we use the fact that
Πpvp = vp, the above inequality and (17) to obtain

‖vp −Πpv‖2L2(T ) = ‖Πp (vp − v) ‖2L2(T )

.
∑

T ′∈Ωp

(
‖vp − v‖2L2(T ′) + h2

T ′‖∇ (vp − v) ‖2L2(T ′)

)

. h2

∑
T∈Ωp

‖∇v‖2L2(T ) + h−1
∑

e∈E(Ωp)

‖ [[v]] ‖2L2(e)

 .

Step 3:: We will prove (15).
By the definition of Πp in (13) and the property that

∑
p∈T φp(x) = 1

for x ∈ T , we have

‖(I −Πh)v‖L2(T ) = ‖v −
∑
p∈Nh

(Πpv)φp‖L2(T ) = ‖
∑
p∈T

(v −Πpv)φp‖L2(T ).

Then, using the fact that |φp| ≤ 1 and the inequality (18), we get

‖(I −Πh)v‖L2(T ) ≤
∑
p∈T
‖v −Πpv‖L2(Ωp)

. h

 ∑
T ′∈ΩT

‖∇v‖2L2(T ′) + h−1
∑

e∈E(ΩT )

‖ [[v]] ‖2L2(e)

1/2

.
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Step 4:: We will prove (16).
To do so, we let v̄T = |T |−1

∫
T
vdx be the average of v on T . Then by

the inverse estimate, we have

|Πhv|H1(T ) = ‖∇(Πhv)‖L2(T ) = ‖∇(Πhv − v̄T )‖L2(T ) . h
−1‖Πhv − v̄T ‖L2(T ).

Using (15) and the Poincare inequality, we obtain

|Πhv|H1(T ) . h
−1
(
‖Πhv − v‖L2(T ) + ‖v − v̄T ‖L2(T )

)
.

 ∑
T ′∈ΩT

‖∇v‖2L2(T ′) + h−1
∑

e∈E(ΩT )

‖ [[v]] ‖2L2(e)

1/2

.

�

By using the above estimates for the interpolation operator Πh, we will prove
that the space Vh can be decomposed in the way described in (10) and that it is
stable.

Lemma 3.2. For any vh ∈ Vh, there exist ṽh ∈ Vh and ph ∈ VConf
h such that

(20) vh = ṽh + ph

and

(21)
∑
T∈Th

‖h−1ṽh‖2L2(T ) +
∑
T∈Th

‖∇ph‖2L2(T ) . ah(vh, vh),

which implies that the decomposition (20) is stable.

Proof. For any vh ∈ Vh, by using (13), we have

vh = (I −Πh)vh + Πhvh

= (I −Πh)vh +
∑

q∈N∂
h

(Πqvh)φq +
∑
p∈No

h

(Πpvh)φp.

Then the decomposition (20) is obtained by defining

ph =
∑
p∈No

h

(Πpvh)φp and ṽh = (I −Πh)vh +
∑

q∈N∂
h

(Πqvh)φq.

Next we will prove the stability bound (21). First, by the definitions of ph, ṽh and
the triangle inequality, we have∑

T∈Th

(
‖h−1ṽh‖2L2(T ) + ‖∇ph‖2L2(T )

)
≤2

∑
T∈Th

(
‖h−1(I −Πh)vh‖2L2(T )

+ ‖h−1
∑

q∈∂T∩N∂
h

(Πqvh)φq‖2L2(T ) + |
∑
p∈No

h

(Πpvh)φp|2H1(T )

)
.

Next, we notice that∑
p∈No

h

(Πpvh)φp

∣∣∣∣∣∣
T

=
∑
p∈∂T

(Πpvh)φp = Πhvh|T if ∂T ∩ ∂Ω = ∅,

∑
p∈No

h

(Πpvh)φp

∣∣∣∣∣∣
T

=

Πhvh −
∑

p∈∂T∩∂Ω

(Πpvh)φp

∣∣∣∣∣∣
T

if ∂T ∩ ∂Ω 6= ∅.
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Thus, we have∑
T∈Th

(
‖h−1ṽh‖2L2(T ) + ‖∇ph‖2L2(T )

)
≤

∑
T∈Th

(
‖h−1(I −Πh)vh‖2L2(T ) + ‖h−1

∑
q∈∂T∩N∂

h

(Πqvh)φq‖2L2(T ) + |(Πhvh)|2H1(T )

+|
∑

q∈∂T∩N∂
h

(Πqvh)φq|2H1(T )

)
.

Using the inverse inequality, we get

∑
T∈Th

(
‖h−1ṽh‖2L2(T ) + ‖∇ph‖2L2(T )

)
.
∑
T∈Th

(
‖h−1(I −Πh)vh‖2L2(T ) + ‖h−1

∑
q∈∂T∩N∂

h

(Πqvh)φq‖2L2(T ) + |(Πhvh)|2H1(T )

)
.

(22)

For the first and the third terms on the right-hand side of (22), we use Lemma
3.1 to obtain ∑

T∈Th

(
‖h−1(I −Πh)vh‖2L2(T ) + |(Πhvh)|2H1(T )

)

.
∑
T∈Th

 ∑
T ′∈ΩT

‖∇v‖2L2(T ′) + h−1
∑

e∈E(ΩT )

‖ [[v]] ‖2L2(e)

 .

Using (6) and (5), we have∑
T∈Th

(
‖h−1(I −Πh)vh‖2L2(T ) + |(Πhvh)|2H1(T )

)
≤ ‖vh‖2h . ah(vh, vh).

For the second term in the right-hand side of (22), since |φq| ≤ 1, we have

‖h−1
∑

q∈∂T∩N∂
h

(Πqvh)φq‖2L2(T ) ≤
∑

q∈∂T∩N∂
h

‖h−1 (Πqvh)φq‖2L2(T )

≤
∑

q∈∂T∩N∂
h

h−2‖Πqvh‖2L2(T )

≤
∑

q∈∂T∩N∂
h

h−2|T | ·

∣∣∣∣∣
∫
eq

vhψq ds

∣∣∣∣∣
2

.

Then, applying the results in (14) and (11), we have

‖h−1
∑

q∈∂T∩N∂
h

(Πqvh)φq‖2L2(T ) ≤
∑

q∈∂T∩N∂
h

h−2|T | ·

∣∣∣∣∣
∫
eq

vhψq ds

∣∣∣∣∣
2

.
∑

q∈∂T∩N∂
h

h−2|T | · h2−2d

∣∣∣∣∣
∫
eq

vh ds

∣∣∣∣∣
2

.
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Using the fact that |T | . hd and the Cauchy-Schwarz inequality,

‖h−1
∑

q∈∂T∩N∂
h

(Πqvh)φq‖2L2(T ) .
∑

q∈∂T∩N∂
h

h−d

∣∣∣∣∣
∫
eq

vh ds

∣∣∣∣∣
2

≤
∑

q∈∂T∩N∂
h

h−d|eq| · ‖vh‖2L2(eq).

Since the face eq lies on the domain boundary, we obtain

‖h−1
∑

q∈∂T∩N∂
h

(Πqvh)φq‖2L2(T ) .
∑

q∈∂T∩N∂
h

h−d|eq|heq · h−1
eq ‖ [[vh]] ‖2L2(eq)

. ‖vh‖2h ≤ ah(vh, vh)

where we have used the fact that h−d|ep|hep . 1. Combining the above results, we
complete the proof. �

Let N be the dimension of Vh, {ϕi}Ni=1 be the set of all nodal basis functions
spanning Vh and Vi = span{ϕi}. Then Lemma 3.2 implies that the space decom-
position (10) can be rewritten as follows:

(23) Vh =

N∑
i=1

Vi + VConf
h .

Next lemma shows that the decomposition (23) is also stable.

Theorem 3.1. For any vh ∈ Vh, there exist vi ∈ Vi and ph ∈ VConf
h such that

(24) vh =

N∑
i=1

vi + ph

and

(25)

N∑
i=1

ah(vi, vi) +
∑
T∈Th

‖∇ph‖2L2(T ) . ah(vh, vh),

which implies that the decomposition (24) is stable.

Proof. For any vh ∈ Vh, in view of Lemma 3.2, there exist ṽh ∈ Vh and ph ∈ VConf
h

such that vh = ṽh + ph and∑
T∈Th

‖h−1ṽh‖2L2(T ) +
∑
T∈Th

‖∇ph‖2L2(T ) . ah(vh, vh).

Recall that {ϕi}Ni=1 are the nodal basis functions spanning Vh and Vi = span{ϕi},
thus there are vi = αiϕi ∈ Vi such that ṽh =

∑N
i=1 vi. Therefore, it remains only

to verify that

(26)

N∑
i=1

ah(vi, vi) .
∑
T∈Th

‖h−1ṽh‖2L2(T ).
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Using the definition of vi and the inverse inequality, we have

N∑
i=1

∑
T∈Th

‖∇vi‖2L2(T ) =

N∑
i=1

∑
T∈Th

α2
i ‖∇ϕi‖2L2(T ) =

N∑
i=1

∑
T∩suppϕi 6=∅

α2
i ‖∇ϕi‖2L2(T )

=
∑
T∈Th

∑
suppϕi∩T 6=∅

α2
i ‖∇ϕi‖2L2(T )

.
∑
T∈Th

∑
suppϕi∩T 6=∅

α2
ih
−2
T ‖ϕi‖2L2(T ).(27)

For any v ∈ Vh and any interior face e ∈ E0
h shared by two triangles T± ∈ Th,

combining the triangle inequality, the trace inequality and the inverse inequality,
we have

h−1
e ‖ [[v]] ‖2L2(e) ≤ h−1

e

(
‖v+‖2L2(e) + ‖v−‖2L2(e)

)
.

∑
T=T±

(
h−2
T ‖v‖

2
L2(T ) + ‖∇v‖2L2(T )

)
.

∑
T=T±

h−2
T ‖v‖

2
L2(T ).

Then using the above inequality, we have

N∑
i=1

∑
e∈Eh

h−1
e ‖ [[vi]] ‖2L2(e) .

N∑
i=1

∑
T∈Th

h−2
T ‖vi‖

2
L2(T ) =

N∑
i=1

∑
T∈Th

h−2
T α2

i ‖ϕi‖2L2(T )

=

N∑
i=1

∑
T∩suppϕi 6=∅

h−2
T α2

i ‖ϕi‖2L2(T )

=
∑
T∈Th

∑
suppϕi∩T 6=∅

h−2
T α2

i ‖ϕi‖2L2(T ).(28)

We remark that a similar result holds if e is a boundary face.
Next, by the assumption that the mesh is quasi-uniform, for any T ∈ Th, we

have ∑
suppϕi∩T 6=∅

α2
i ‖ϕi‖2L2(T ) . ‖ṽh‖

2
L2(T ).(29)

Then from (7), (9) and (8), we have

N∑
i=1

ah(vi, vi) .
N∑
i=1

(∑
T∈Th

‖∇vi‖2L2(T ) + η
∑
e∈Eh

h−1
e ‖ [[vi]] ‖2L2(e)

)
.

Consequently, by the conditions (27), (28) and (29), we get

N∑
i=1

ah(vi, vi) .
∑
T∈Th

∑
suppϕi∩T 6=∅

h−2
T α2

i ‖ϕi‖2L2(T ) .
∑
T∈Th

‖h−1
T ṽh‖2L2(T )

which proves (26).
To complete the proof of the theorem, it remains to show (29). For a given ele-

ment T , we let T̂ be a reference element. We note that ṽh|T =
∑

suppϕi∩T 6=∅ α
2
iϕi.

Then, by standard scaling arguments, we have∑
suppϕi∩T 6=∅

α2
i ‖ϕi‖2L2(T ) .

∑
suppϕi∩T 6=∅

α2
ih

d/2‖ϕ̂i‖2L2(T̂ )
.



466 L. Q. ZHONG, E. T. CHUNG, AND C. M. LIU

Since norms in finite dimensional spaces are equivalent, we have∑
suppϕi∩T 6=∅

α2
ih

d/2‖ϕ̂i‖2L2(T̂ )
. hd/2‖

∑
suppϕi∩T 6=∅

α2
i ϕ̂i‖2L2(T̂ )

.

Finally, using the above inequality and standard scaling argument again, we obtain∑
suppϕi∩T 6=∅

α2
i ‖ϕi‖2L2(T ) . h

d/2‖̂̃vh‖2L2(T̂ )
. hd/2h−d/2‖ṽh‖2L2(T ) . ‖ṽh‖

2
L2(T )

which gives (29). �

4. An additive two-level preconditioner

In this section, we will develop an additive two-level preconditioner for the alge-
braic system resulting from (2). For this purpose, we first summarize the abstract
theoretical framework in Hiptmair and Xu [34]. Let V be a real Hilbert space with
inner product a(·, ·) and (energy) norm ‖ · ‖A. Consider the following variational
problem: for any given f ∈ V′, find u ∈ V such that

a(u, v) = f(v), v ∈ V.
Let the operator A : V 7→ V′ be the isomorphism associated with a(·, ·), namely
< Av, w >= a(v, w), ∀ v, w ∈ V, where we denote dual spaces by ′ and use angle
brackets for duality pairings.

Let V̄1, · · · , V̄J , J ∈ N, be Hilbert spaces endowed with inner products āj(·, ·) and
(energy) norms ‖·‖Āj

, j = 1, · · · , J . The operators Āj : V̄j 7→ V̄j are isomorphisms

induced by āj(·, ·), namely < Āj ūj , v̄j >= āj(ūj , v̄j), ∀ūj , v̄j ∈ V̄j . We assume
that, for each V̄j , there exist a continuous transfer operator Πj : V̄j 7→ V. Then we
can construct a preconditioner for the operator A as follows:

B =

J∑
j=1

ΠjB̄jΠ∗j ,(30)

where B̄j : V̄′j 7→ V̄j are given preconditioners for Āj , and Π∗j are adjoint operators
of Πj .

The following theorem gives an estimate of the spectral condition number of the
preconditioner given by (30). This result is proved in Hiptmair and Xu [34].

Theorem 4.1. Assume that there exist constants cj such that

‖Πj ūj‖A ≤ cj‖ūj‖Āj
∀ ūj ∈ V̄j , 1 ≤ j ≤ J,(31)

and for all u ∈ V, there exist ūj ∈ V̄j such that u =
∑J

j=1 Πj ūj and J∑
j=1

‖ūj‖2Āj

1/2

≤ c0‖u‖A.(32)

Then for the preconditioner B defined in (30) , we have the following estimate for
the spectral condition number

κ(BA) ≤ max
1≤j≤J

κ(B̄jĀj)c
2
0

J∑
j=1

c2j .

We are now in a position to design a preconditioner for the discrete variational
problem (2). We will apply the above theory by letting V = Vh and a(·, ·) = ah(·, ·)
given by (3). The auxiliary spaces and the corresponding transfer operators are
defined as follows:
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(1): V̄1 = Vh with inner product ā1(·, ·) defined by

ā1(v, v) =

N∑
i=1

ah(vi, vi), ∀ v =

N∑
i=1

vi, vi ∈ Vi.

The corresponding transfer operator is Π1 = Id.

(2): V̄2 = VConf
h with inner product ā2(·, ·) defined by

ā2(w,w) = (∇w,∇w)Th , ∀w ∈ V̄2.

The transfer operator is Π2 = Id.

Let

A = D− L− Lt

be the stiffness matrix whose (i, j)-th entry is ah(ϕj , ϕi), where D and L are the
diagonal and the strict lower triangular part of A. Let ∆ be the discrete Laplacian

matrix for the linear Lagrangian finite element space VConf
h . Then the operator of

the resulting auxiliary space preconditioner for the discrete variational problem (2)
reads

(33) B = B̄1 + B̄2,

where B̄j(j = 1, 2) denote the preconditioners for the diagonal matrix D and the
discrete Laplacian matrix ∆.

In terms of implementations, we will take B̄1 as the Jacobi (or Gauss-Seidel)
smoothing operator for A, For the discrete Laplacian matrix ∆, we will take the
preconditioner B̄2 as the BPX preconditioner for structured grid and algebraic
multigrid method for unstructured grid.

In the following, we will give an estimate for the condition number of the pre-
coditioner B given by (33). First, we prove that the above transfer operators satisfy
the condition (31) of Theorem 4.1. Using the definitions of the inner product and

the transfer operator in space V̄1, for any given v =
∑N

i=1 αiϕi with αi ∈ R, we
have

‖Π1v‖2A = ‖v‖2A =

∥∥∥∥∥
N∑
i=1

αiϕi

∥∥∥∥∥
2

A

=
∑
T∈Th

∥∥∥∥∥∥
∑

suppϕi∩T 6=∅

αiϕi

∥∥∥∥∥∥
2

A,T

≤ M
∑
T∈Th

N∑
i=1

α2
i ‖ϕi‖2A,T = M‖v‖2Ā1

,(34)

where the constant M bounds the number of basis functions whose support overlaps
with a single element T .

For any given w ∈ V̄2, it’s easy to obain

‖Π2w‖A = ‖w‖A = ‖w‖Ā2
.(35)

Combining (34) and (35), we conclude that (31) holds with the constants c1 = M
and c2 = 1.

Secondly, we prove that the above transfer operators satisfy the condition (32)
in Theorem 4.1. Indeed, this is true since Theorem 3.1 implies that: for any v ∈ V,

there exist ṽ =
∑N

i=1 vi ∈ V̄1, vi ∈ Vi and p ∈ V̄2 such that v = ṽ + p and

‖ṽ‖2Ā1
+ ‖p‖2Ā2

. ‖v‖2A.(36)

Finally, as a direct consequence of (34), (35) and (36), we have
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Theorem 4.2. For the preconditioner B given by (33), we have

κ(BA) . 1.

5. A fast iterative method

In this section, we propose a two-level iterative method for solving (2). We will
then analyze the rate of convergence of this method. In the following, we first give
a detail description of the method.

Algorithm 5.1 (A two-level algorithm). Let u0
h = 0 be an initial guess. Assume

that the l-th iterate ulh ∈ Vh, l ≥ 0, has been obtained. Then the next iterate

ul+1
h ∈ Vh is obtained as follows:

Step 1: Let sl0 = ulh. Then for each j = 1, · · · , N , we find slj ∈ Vj such that

ah(slj , vj) = (f, vj)− ah(slj−1, vj), ∀vj ∈ Vj .

Step 2: Find el ∈ VConf
h such that

ah(el, vConf
h ) = (f, vConf

h )− ah(ukh + slN , v
Conf
h ), ∀vConf

h ∈ VConf
h .

Step 3: Let

(37) ul+1
h = ulh + el.

Remark 5.1. Step 1 in Algorithm 5.1 corresponds to applying the Gauss-Seidel
smoother once for the discrete variational problem (2). It can also be replaced by
the Jacobi method and related results can be found in Proposition 6.12 of [39] or
Lemma 3.3 of [41]. One can also apply this smoother a few times before doing the
next step. Step 2 in Algorithm 5.1 corresponds to solving the Laplacian problem by
the piecewise linear conforming finite element method. In practice, we use the CG
method.

We are now in a position to analyze the above algorithm. Let VN+1 = VConf
h .

We then define the energy projections Pj : Vh 7→ Vj(j = 1, · · · , N + 1) by

(38) ah(Pjv, wj) = ah(v, wj) for all v ∈ Vh, wj ∈ Vj .

Let E be the error propagation operator for each iteration in Algorithm 5.1. We
have the following well-known identity [40, 20]

u− uk+1
h = E

(
u− ukh

)
where u is the solution of (1) and

E = (I − PN+1)(I − PN ) · · · (I − P1).

Furthermore, by using the Xu-Zikatanov identity (see Corollary 4.3 in [40] or Corol-
lary 2.1 in [20]), we get

‖E‖2A = 1− 1

1 + c̃0
,

where

c̃0 = sup
‖v‖A=1

inf∑N+1
k=1 vk=v

N+1∑
k=1

‖Pk

N+1∑
j=k+1

vj‖2A.(39)

The rest of the section is devoted to the proof for the result that the constant c̃0 is
independent of mesh size.
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First Theorem 3.1 implies that: for any v ∈ Vh, there exist vk ∈ Vk, k =

1, · · · , N + 1 such that v =
∑N+1

k=0 vk and

N+1∑
k=0

ah(vk, vk) ≤ K0‖v‖2A.(40)

Let uk = Pk

(∑N+1
j=k+1 vj

)
∈ Vk. We then apply (38) to obtain

N+1∑
k=1

‖uk‖2A =

N+1∑
k=1

ah(uk, Pk

N+1∑
j=k+1

vj) =

N+1∑
k=1

ah(uk,

N+1∑
j=k+1

vj)

=

N+1∑
k=1

∑
suppvj∩suppuk 6=∅

ah(uk, vj).

Using the Cauchy-Schwarz inequality, we have

N+1∑
k=1

‖uk‖2A ≤
N+1∑
k=1

∑
suppvj∩suppuk 6=∅

ah(uk, uk)1/2ah(vj , vj)
1/2

≤
N+1∑
k=1

ah(uk, uk)1/2
∑

suppvj∩suppuk 6=∅

ah(vj , vj)
1/2

≤

(
N+1∑
k=1

ah(uk, uk)

)1/2
N+1∑

k=1

∑
suppvj∩suppuk 6=∅

ah(vj , vj)

1/2

≤

(
N+1∑
k=1

ah(uk, uk)

)1/2(
M̄

N+1∑
k=1

ah(vk, vk)

)1/2

which implies that

N+1∑
k=1

‖Pk

N+1∑
j=k+1

vj‖2A =

N+1∑
k=1

‖uk‖A ≤ M̄
N+1∑
k=1

ah(vk, vk).(41)

Here, M̄ bounds the number of basis functions whose support overlaps with the
support of the functions uk ∈ Vk for all k = 1, 2, · · · , N + 1.

As a direct consequence of (39), (40) and (41), we have

Theorem 5.1. Let u be the solution of (1),and let ulh and ul+1
h be two consecutive

iterates obtained by Algorithm 5.1. Then exists a positive number ρ < 1, which is
independent of l and h, such that

‖u− ul+1
h ‖A ≤ ρ‖u− u

l
h‖A.

Thus, given a tolerance level, the algorithm 5.1 will terminate in finite steps.

6. Numerical Results

In this section, we will present numerical experiments showing the performance
of the proposed preconditioner and the convergence of our iterative method for
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solving the problem (1). We will use the symmetric IPDG method defined by

ah(w, v) =
∑
T∈Th

∫
T

∇w · ∇vdx−
∑
e∈Eh

∫
e

({{∇w}} [[v]] + {{∇v}} [[w]]) ds

+η
∑
e∈Eh

h−1
e

∫
e

[[w]] · [[v]] ds.

The space Vh is taken as the space of discontinuous piecewise linear functions.
In our first example, we choose domain Ω = (−1, 1)2, and test the performance

of our methods with the use of a structured grid as well as an unstructured grid.
For the convenience of computing errors, we solve a problem whose exact solution
is defined by

u = sin(πx) sin(πy).

To test convergence, we use a sequence of structured grids and unstructured grids.
For the structured grids, Figure 1 shows an initial triangulation Th with h = 1/4.
We can then obtain the refined meshes by dividing each element uniformly into 4
sub-elements by connecting the midpoints of the edges of the triangles. For the
unstructured grids, a mesh generator is employed to get a sequence of increasingly
finer meshes, whose triangles all have about the same size with little distortion,
for example, Figure 2 shows a triangulation Tl with level l = 2, which is a mesh
obtained by refining an initial mesh once.

Figure 1. A struc-
tured grid.

Figure 2. An un-
structured grid.

Figure 3. T0: The
initial mesh.

Figure 4. T2:
Graded mesh af-
ter 2 refinement.

In our second example, we consider a L-shaped domain Ω = (−1, 1)2 \ [0, 1] ×
[−1, 0] with the use of graded meshes. We take the exact solution to be

u = r
2
3 sin(

2

3
θ).
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Table 1. Number of PCG iterations with preconditioner (33) for
structured grids, where tol = 1.0e− 8.

h 1/4 1/8 1/16 1/32 1/64 1/128

η = 10 35 43 46 49 49 51
η = 20 35 43 46 48 49 50
η = 50 34 42 46 48 49 49
η = 100 33 42 46 47 49 48

Table 2. Number of PCG iterations with preconditioner (33) for
unstructured grids, where tol = 1.0e− 8.

Level # Cells η = 10 η = 20 η = 50 η = 100

1 116 14 13 12 11
2 528 15 14 12 12
3 2118 15 14 13 12
4 8142 15 14 13 12
5 32670 15 14 13 12

In this case, we will use the graded refinement procedure. The construction of such
graded meshes can be found in Section 4 of [9]. Figure 3 shows the initial mesh T0

and Figure 4 shows the graded mesh T2 after 2 refinements.

6.1. Results on using the preconditioner. In this subsection, we will consider
the solution of the discrete variational problem (2) by the Preconditioned Conjugate
Gradient (PCG) method. We will illustrate the effect on using our preconditioner
B given by (33), where for B̄1, we use the Jacobi smoothing, while for B̄2, we choose
the BPX preconditioner for Laplacian problems. We stop the iteration when the
relative residual is less than 10−8.

Table 3. Number of PCG iterations with standard BPX precon-
ditioner (33) for graded meshes, where tol = 1.0e− 8.

Mesh η = 10 η = 20 η = 50 η = 100

T1 33 28 20 21
T2 33 35 39 40
T3 53 57 60 64
T4 79 87 94 96
T5 120 130 141 143
T6 180 196 212 216

For the first example with a rectangular domain, the iteration counts required
for the method with various penalty parameters η and mesh sizes h are reported in
Tables 1 and 2, for the use of structured and unstructured grids respectively. From
these results, we see that, when the penalty parameter η is fixed, the number of
iterations required is essentially independent of the mesh sizes, even though we see
a very mild increase in the number of iterations. Furthermore, for fixed mesh sizes,
we see that the number of iterations is independent of the penalty parameter η.
We also observe that there is actually a small reduction in the number of iterations
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when the penalty parameter is increased. Hence, we see that B given by (33)
provides a very effective precondioner for the discrete variational problem (2).

Table 4. Number of PCG iterations with modified BPX precon-
ditioner (33) for graded meshes, where tol = 1.0e− 8.

Mesh η = 10 η = 20 η = 50 η = 100

T1 25 28 24 24
T2 40 37 36 36
T3 46 44 43 43
T4 52 51 50 50
T5 55 55 54 54
T6 60 59 58 58

For the second example with L-shaped domain, we remark that the largest edge
may be much longer than the shortest edge in the same graded mesh. Therefore,
the standard BPX preconditioner with the same mesh size given by the largest edge
will not work, as we can see in the results reported in Tables 3.

To improve the iteration counts, we construct a modified BPX preconditioner
for graded mesh as follows:

B̄2 :=

NC∑
k=0

Nk∑
l=1

h2
k(pl)Q

l
k,

where NC is the dimension of VConf
h , hk(pl) is the length of the shortest interior

edge in Ωpl
, Ql

k denotes the L2 projection from VConf
h to VC

i = span{ϕC
i }(i =

1, · · · , NC), {ϕC
i }N

C

i=1 is the set of all nodal basis functions spanning VConf
h . The

corresponding results with the use of this new preconditioner B̄2 are reported in
Table 4. We observe improved results and the behavior is similar to that of the
first example.

6.2. Results on using Algorithm 5.1. In this section, we will present some
results on using Algorithm 5.1 for solving the discrete variational problem (2). We
will show the number of iterations required for various mesh sizes h and penalty
parameters η. Moreover, we will test the behavior of our Algorithm 5.1 by using
the smoothing step (i.e. Step 1 of Algorithm 5.1) more than once before doing Step
2. In the following, we use m, (m ≥ 1), to denote the number of smoothing steps
done before doing Step 2.

For the first example, we present the number of iterations required with fixed
penalty parameter η = 10 for various h and m in Table 5 and Table 6 respectively.

Table 5. Number of iteration for Algorithm 5.1 for structured
grids, where η = 10.

h 1/4 1/8 1/16 1/32 1/64 1/128

m = 1 20 19 19 19 20 23
m = 2 12 11 11 12 12 12
m = 3 10 10 10 10 10 10
m = 4 9 9 9 9 9 9
m = 5 9 9 8 8 8 9



FAST SOLVERS FOR THE SIPDG DISCRETIZATION 473

Table 6. Number of iteration for Algorithm 5.1 for unstructured
grids, where η = 10.

Level # Cells m = 1 m = 2 m = 3 m = 4 m = 5

1 116 22 13 10 9 8
2 528 23 13 10 9 8
3 2118 25 14 10 9 8
4 8142 26 14 11 10 8
5 32670 27 15 11 10 8

Table 7. Number of iteration for Algorithm 5.1 for structured
grids, where η = 20.

h 1/4 1/8 1/16 1/32 1/64 1/128

m = 1 20 20 21 23 27 27
m = 2 12 11 12 12 12 15
m = 3 9 9 10 10 10 13
m = 4 9 9 9 10 10 10
m = 5 9 8 8 8 8 8

Table 8. Number of iteration for Algorithm 5.1 for unstructured
grids, where η = 20.

Level # Cells m = 1 m = 2 m = 3 m = 4 m = 5

1 116 23 13 10 9 8
2 528 25 14 10 9 8
3 2118 26 14 11 9 8
4 8142 28 15 11 10 8
5 32670 31 15 12 10 8

Table 9. Number of iteration for Algorithm 5.1 for graded grids
with η = 10 (left) and η = 20 (right).

Mesh T1 T2 T3 T4 T5 T6

m = 1 18 20 20 20 20 20
m = 2 13 12 12 12 11 11
m = 3 11 11 10 10 10 10
m = 4 10 10 9 9 9 9
m = 5 10 9 9 8 8 8

Mesh T1 T2 T3 T4 T5 T6

m = 1 17 20 20 20 20 20
m = 2 12 11 11 11 11 11
m = 3 10 10 9 9 9 9
m = 4 10 9 9 9 8 8
m = 5 9 9 8 8 8 8

Numerical results with penalty parameters η = 20 are reported in Table 7 and Table
8. From these results, we see that the number of iterations required is essentially
independent of the mesh size h. Furthermore, we see that the number of iterations
can be reduced by increasing the number of smoothing steps used in Step 1 of
Algorithm 5.1. We also observe that the number of smoothing steps can be taken
as m = 4 as this is the smallest m giving iteration counts that are rather stable
with respect to mesh sizes.
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For the second example, the corresponding results are shown in Table 9. We see
that similar conclusions hold in this case.
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