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A PRIORI ERROR ESTIMATES FOR FINITE VOLUME
ELEMENT APPROXIMATIONS TO SECOND ORDER LINEAR
HYPERBOLIC INTEGRO-DIFFERENTIAL EQUATIONS

SAMIR KARAA AND AMIYA K. PANI

Abstract. In this paper, both semidiscrete and completely discrete finite volume element meth-
ods (FVEMs) are analyzed for approximating solutions of a class of linear hyperbolic integro-
differential equations in a two-dimensional convex polygonal domain. The effect of numerical
quadrature is also examined. In the semidiscrete case, optimal error estimates in L>(L?) and
L*°(H') norms are shown to hold with minimal regularity assumptions on the initial data, whereas
quasi-optimal estimate is derived in L°°(L°°) norm under higher regularity on the data. Based
on a second order explicit method in time, a completely discrete scheme is examined and optimal
error estimates are established with a mild condition on the space and time discretizing param-
eters. Finally, some numerical experiments are conducted which confirm the theoretical order of
convergence.
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1. Introduction

In this paper, we discuss and analyze a finite volume element method for approx-
imating solutions to the following class of second order linear hyperbolic integro-
differential equations:

U — V - (A(m)Vu + /OtB(x,t, s)Vu(s) ds) = f(z,t) inQxJ,

(1) u(z,t) = 0 on 00 x J,
u(z,0) = wo(x) in Q,
w(e0) = w) o

with given functions ug and u;, where Q C R? is a bounded convex polygonal
domain, J = (0,T], T < oo, ug = 0*u/0t? and f is a given function defined on the
space-time domain Q x J. Here, A = [a;;(x)] and B = [b;;(z,t, s)] are 2 x 2 matrices
with smooth coefficients. Further, assume that 4 is symmetric and uniformly
positive definite in Q. Problems of this kind arise in linear viscoelastic models,
specially in the modelling of viscoelastic materials with memory (cf. Renardy et al.
23)).

Earlier, the finite volume difference methods which are based on cell centered
grids and approximating the derivatives by difference quotients have been proposed
and analyzed, see [15] for a survey. Another approach, which we shall follow in this
article was formulated in the framework of Petrov-Galerkin finite element method
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using two different grids to define the trial space and test space. This is popularly
known finite volume element methods (FVEMSs). Here and also in literatures, the
trial space consists of C°-piecewise linear polynomials on the finite element partition
Tr, of Q and the test space is piecewise constants over the control volume T,k to be
defined in Section 2. Earlier, the FVEM has been examined by Bank and Rose [3],
Cai [4], Chatzipantelidis [8], Li et al. [17], Ewing et al. [12], etc. for elliptic problems,
for parabolic and parabolic type problems by Chou et al. [7], Chatzipantelidis et
al. [9], Ewing et al. [13], Sinha et al. [25] and for second order wave equations by
Kumar et al. [16]. For a recent survey on FVEM, see, a review article by Lin et
al. [19].

For linear elliptic problems, Li et al. [17] have established optimal error estimates
in H' and L? norms. More precisely, for L? norm the following estimate is derived:

lu—unllo < CA?||ullwso(e), p>1,

where u is the exact solution and uy, is the finite volume element approximation of
u. Compared to the error analysis of finite element methods, it is observed that
this method is optimal in approximation property, but is not optimal with respect
to the regularity of the exact solution as for O(h?) order convergence, the exact
solution uw € H3. For convex polygonal domain €2, it may be difficult to prove
H? regularity for the solution u. Therefore, an attempt has been made in [12] to
establish optimal L? error estimate under the assumption that the exact solution
uw € H? and the source term f € H'. A counter example has also been provided
in [12] to show that if f € L2, then FVE solution may not have optimal error
estimates in L2 norm. The analysis has been extended to parabolic problems in
convex polygonal domain in [9] and optimal error estimates have been derived under
some compatibility conditions on the initial data. Further, the effect of quadrature,
that is, when the L? inner product is replaced by numerical quadrature has been
analyzed. Subsequently, Ewing et al. [13] have employed FVEM for approximat-
ing solutions of parabolic integro-differential equations and derived optimal error
estimates under L>°(H?3) regularity for the exact solution and L?(H?) regularity
for its time derivative. Then on convex polygonal domain, Sinha et al. [25] have
examined semidiscrete FVEM and proved optimal error estimates for smooth and
non smooth data. The analysis is further generalized to a second order linear wave
equation defined on a convex polygonal domain and a priori error estimates have
been established only for semidiscrete case, see, Kumar et al. [16]. Further, the
effect of quadrature and maximum norm estimates are proved under some addi-
tional conditions on the initial data and the forcing function. In the present article,
an attempt has been made to extend the analysis of FVEM to a class of second
order linear hyperbolic integro-differential equations in convex polygonal domains
with minimal regularity assumptions on the initial data. Moreover, a completely
discrete scheme based on a second order explicit method has been analyzed.

In order to put the present investigation into a proper perspective visa-vis earlier
results, we discuss, below, the literature for the second order hyperbolic equations.
Li et al. [17] have proved an optimal order of convergence in H! norm without
quadrature using elliptic projection, but the regularity of the exact solution assumed
to be higher than the regularity assumed in our results even when B = 0 for the
problem (1). On a related finite element analysis for the second order hyperbolic
equations without quadrature, we refer to Baker [1] and with quadrature, see,
Baker and Dougalis [2] and Dupont [11]. Baker and Dougalis [2] have proved
optimal order of convergence in L°>°(L?) for the semidiscrete finite element scheme,
provided the initial displacement ug € HNH{} and the initial velocity u; € H*NH}.
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Subsequently, Rauch [22] has derived the convergence analysis for the Galerkin finite
element methods when applied to a second order wave equation by using piecewise
linear polynomials and established optimal L°°(L?) estimate with ug € H3 N H}
and u; = 0 which are turned out to be the minimal regularity conditions for the
second order wave equation. Subsequently, Pani et al. [26] have examined the
effect of numerical quadrature on finite element method for hyperbolic integro-
differential equations with minimal regularity assumptions on the initial data, that
is, up € H3N H§ and u; € H>N H}. On a related article on a linear second order
wave equation, we refer to Sinha [24] and on hyperbolic PIDE, see, [6]. When
FVEM is combined with quadrature for approximating solution of (1), we have, in
this article, proved optimal L>(L?) estimate with minimal regularity assumptions
on the initial data.

The organization of the present paper is as follows: Section 2 deals with some no-
tations, weak formulation and the regularity results for the exact solution. Section
3 is devoted to the primary and dual meshes for finite volume element method and
semidiscrete FVE approximation to the problem (1). Section 4 focuses on a priori
error estimates for the semidiscrete FVE approximations and optimal order of con-
vergence in L2 and H' norms are established under minimal regularity assumptions
on the initial data. Further, quasi-optimal order of convergence in maximum norm
has also been derived. Section 5 is on completely discrete scheme which is based on
a second order explicit scheme in time and a priori error estimates are established.
Section 6 deals with the effect of numerical quadrature and the related error es-
timates are derived again with minimal regularity assumption on the initial data.
Finally in Section 7, some numerical experiments are conducted which confirm our
theoretical order of convergence.

Through out this paper, C is a generic positive constant independent of dis-
cretising parameters h and k.

2. Notation and Preliminaries.

This section is devoted to some notations and preliminary results related to the
weak solution of (1).
Let W™P(Q) denote the standard Sobolev space with the norm

1/p
lullmpe= | 3 1Dl | for1<p<oo,
loe|<m.
and for p = oo,

[tllm.co.0 = sup [[D%ul[L(0)-
lal<m

When there is no confusion, we denote ||t||m. p,0 by ||t|lm,p- For p = 2, we simply
write W™2(Q) as H™(Q2) and denote its norm by || - ||;». For a Banach space X
with norm || - ||x and 1 < p < oo, let W™P(0,T; X) be defined by

W™ (0,T: X) = {v: (0,T) — X|| Divlx € L(0,T), 0<j <m}.

with its norm

1/p

m T
[0l wm,po.r:x) = llullwmecx)y = </0 | Dl dt) ;
7=0
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with the standard modification for p = oo, see [14]. For m = 0, W™P(0,T; X) is
simply the space LP(X). Finally, let (-,-) and || - ||o denote, respectively, the L?
inner product and its induced norm on L?(12).

With H}(Q) = {v € HY(Q) : v = 0 on 9N}, define the bilinear forms A(-,-) and
B('a ) = B(ta S5 ) on Hol(Q) X Hol(Q) by

Alu,v) = /QA(I)Vu - Vo dz,

and

B(t, s;u(s),v) = /QB(:c,t, s)Vu(s) - Vv dz.

Then, the weak formulation for (1) is to seek w : (0,7] — HJ(2) such that
¢
@ )+ Awo)+ [ Blsuls)0ds = (f0) We H(©)
0

with «(0) = up and ut(0) = uy.

Since A is symmetric and uniformly positive definite in ), the bilinear form
A(-,-) satisfies the following condition: there exist positive constants a and A with
A > « such that

3) Alll} = A(v,v) > afvll} Vv € Hy(Q).

For our subsequent use, we state without proof a priori estimates of the solution
u of the problem (1) under appropriate regularity conditions and compatibility
conditions on ug, u; and f. Its proof can be easily obtained by appropriately
modified arguments in the proof of Theorem 3.1 of [26]. For similar estimates for
second order linear hyperbolic equations, see Lemma 2.1 of [16].

Lemma 2.1. Let u be a weak solution of (1). Then, there is a positive constant
C = C(T) such that the following estimates

. - ,
1D u@®llo + 1D u(®)l1 + [ Diu(®) 2 SC(HUollm +luallj

J
+ D IDE fllgsarroy + IDF Flas ).
k=0

hold for j = 0,1,2, where D} = (99 /0t7).

We shall have occasion to use the following identity for ¢ € C1(]0, T]; X), where
X is a Banach space

t

(4) o(t) = (0) + / ous) ds.
0

3. Finite Volume Element Method

This section deals with primary and dual meshes on the domain €2, construction
of finite dimensional spaces, finite volume element formulation and some prelimi-
nary results.

Let T, be a family of regular triangulations of the closed, convex polygonal
domain Q into closed triangles K, and let h = maxger, (diamK), where hg
denotes the diameter of K. Let Nj be set of nodes or vertices, that is, N, :=
{Pi : P; is a vertex of the element K € 7, and P; € ﬁ} and let N,? be the set of
interior nodes in 7, with cardinality N. Further, let 7, be the dual mesh as-
sociated with the primary mesh 7j, which is defined as follows. With Py as an
interior node of the triangulation T, let P; (i = 1,2---m) be its adjacent nodes
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FIGURE 1

(see, FIGURE 1 with m = 6 ). Let M;, ¢ = 1,2---m denote the midpoints of

PyP; and let Q;, ¢ = 1,2---m, be the barycenters of the triangle APyP;P;;1

with P11 = Pi. The control volume K, is constructed by joining succes-
sively My, Q1,-++, Mpm, Qm, M. With Q; (i = 1,2---m) as the nodes of

control volume Kj , let N be the set of all dual nodes @);. For a boundary
node Py, the control volume K7, is shown in the FIGURE 1. Note that the union
of the control volumes forms a partition 7," of Q.

Assume that the partitions 75, and 7;" are quasi-uniform in the sense that there
exist positive constants C'; and Cs independent of A such that

(5) 1 h2S|KQl|SCQ h2 VQZ‘GN;;,
(6) C h2 < |K1*31| < Oy h2 VP, € Nh,

where |K| = meas (K).

We consider a finite volume element discretization of (1) in the standard C°-
conforming piecewise linear finite element space U, on the primary mesh 7j, which
is defined by

Up = {v, € C°(Q) : vy is linear for all K € T;, and vp,|oq = 0},
and the dual volume element space U} on the dual mesh 7, given by
Ui = {vn € L*(Q) : vh|K;0 is constant for all K, € 7, and vp|aq = 0}.
Now, U, = span{¢; : P; € N,?} and Uy = span{yx; : P; € N,?}7 where ¢;’s

are the standard nodal basis functions associated with nodes P; and x;’s are the
characteristic basis functions corresponding to the control volume K}, given by

[ 1, ifzekp
Xi(w) = { 0, elsewhere.

The semidiscrete finite volume element formulation for (1) is to seek up, : (0,7] —
Uy, such that

t
(1) (un,ee,vn) + An(un, vn) +/ By(t, s;un(s),vn) ds = (f,vn) Yo, € Uy,
0

with given initial data u,(0) and wp,¢(0) in Uy, to be defined later. Here, the bilinear
forms Ap(-,-) and By(t,s;-, ) are defined, respectively, by

Ap(up,vp) = — Z vp(P;) A(z)Vup, -nds,

P; GN,(Z 8K;’i
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and
By (t, s;up,vp) = — Z vh(Pi)/ B(z,t,s)Vuy -nds
PiEN? OKp,
for all (un,vp) € Up x Uy, with n denoting the outward unit normal to the boundary
of the control volume K7, . Notice that by taking the L? inner product of (1) with
vy, € Uy and then integrating, we obtain a similar equation for u as

t
(8) (uee, vp) + Ap(u, vp) +/ Bp(t, s;u(s),vn)ds = (f,vn) Vo, € Uj.
0

For the error analysis, we first introduce two interpolation operators. Let IIj :
C(Q) — Up, be the piecewise linear interpolation operator and II} : C(Q) — U}
be the piecewise constant interpolation operator. These interpolation operators are
defined, respectively, by

(9) Myu= Y u(P)éi(x) and Mju= > u(P)xi(x).

P,;GN}(Z P,;GN}(Z
Now for ¢ € H?, TI;, has the following approximation property, (see, Ciarlet [10]):
(10) [ = hgllo < CR2[|¢]|2.

Further, we introduce the following discrete norms

1/2
vnllon = <Z |Uh|<2),h,K> and [|vp|

KeTy

)1/2

1h = (lloallg s + lvnl?

1/2
where the seminorm |vy |15 = (ZKeTh |’Uh|ih,K) ,and for K = Kg = AP, P, Ps,

1/2
fonlon i = {1 (3(P) +3(Py) + () |K] }

3
9 1/2
a’l)h a’uh ) |K| } .

|Uh|1,h,K = {( % ay

In the following Lemma, a relation between discrete norms and standard Sobolev
norms is stated without proof. For a proof, see, [17, pp. 124] and [4].

2

Lemma 3.1. For v, € Uy, |- |1,n and |- |1 are identical; || - |lo,n and || - ||1,n are
equivalent to || - ||o and || - |1, respectively, that is, there exist positive constants Cs
and Cy > 0, independent of h, such that
(11) Csllvnllo,n < llvrllo < Callvnllo, Yon € Uy,
and
(12) Csllvnlli,n < llvnllt < Callvnlli,n - Yon € Up.

Note that ||vnllo,n = ||II};vn|lo. Below, we state without proof the properties of

the interpolation operator II;. For a proof, we refer to [17, pp. 192].

Lemma 3.2. The following statements hold true.
(i) For I} : Uy, — Ujt defined in (9),

(13) (¢h7H;§,'Uh) = (’Uh,H;;(f)h) V(f)h, vp, € Up,.

(ii) With |||nll| == (¢n, 115 én)2, the norms ||| - ||| and || - ||o are equivalent on Uy,
that is, there exist positive constants ccq and Ceq, independent of h, such that

(14) CeqllPnllo < [ll@nlll < Ceqlldnllo  Vén € Un.
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4. A Priori Error Estimates

This section is devoted to a priori error estimates of the approximation uy to
the spatial semidiscrete scheme (7).
For the derivation of optimal error estimates, we split e := u — uy, as
e=(u—Vyu)+ (Vau —up) =:p+90,
where Vj, : L®(H} N H?) — L>(Up,) is the Ritz-Volterra projection defined by

¢
(15) A(u — Viu, xp) + / B(t,s;u—Vhu,xn)ds =0 Vxp € Up.
0

With some abuse of notations, we will denote by Vjug the Ritz projection of wug
onto Uy, defined by

A(uo — Vhuo, xn) =0 Vxp € Up.
For our subsequent analysis, we state without proof following error estimates for
the Ritz-Volterra projection. For a proof, see, [26], [5], [18], [20] and [21].

Lemma 4.1. There exist positive constants C, independent of h, such that for
7=0,1,2, and r = 1,2 the following estimates hold:

S 1Dt + [ (sl ds] |
> |

(16)  1D{p(t)lo + BIIDIp(t)ll1 < Ch”

and

01 o0l < 02 (1o p) (Jutllaoe + [ o)lamds ).

Now, define
en(fix) = (f,) = (f,lyx) VX € Un,
ea(¥,x) = AW, x) — Ap(¥, Iz x) VY, x € Uy,
and
ep(t,s;0,x) = B(t,s;0,X) — Bu(t, 54,15 x) Vb, X € Un.
Then, the following lemma will be of frequent use in our analysis and the proof of

which can be found in [8].

Lemma 4.2. Assume that the coefficient matrices A, B(t,s) € Witioo(Q:R2*2)
for i =0,1. Then, there exist positive constant C, independent of h, such that the
following estimates hold for x € Uy, and fori, j =10, 1

(18) len (£ < CR | fll e Iz VS € HY,
and for w € H™' N H}

t

(19 Jea(Vhu 0] £ OW (Jul s+ [ o)l ds) I
0

Moreover,

(20) lea(wn, x)| < Ch|lwnl| g |Ix|| ez Ywn € Up.

The estimates (19) and (20) are also valid if €4 is replaced by €ep.
Now, for ¢ € Hi and for each t € (0,T], introduce a linear functional G(v)) =
G(t,) defined on Uy, by

GW)(x) = ealth, ) + / en(t, 5:(s), x) ds, X € Un.
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Notice that, by using the definition of G, (2) and (8), there follows that

G)) = Alux)+ / B(t, s;u(s), x) ds

Ay (u, Thy) — / Bt s:u(s), Th) ds — G(Viu) (x)

= (f —wt, x) = (f —ue, I x) — G(Viu)(x)
(21) = en(f —uu,x) — G(Vau)(x).-

From (7) and (8), we obtain the equation in 8 for v, € U} as

t
(Gtt,vh)—l—Ah(H,vh)—i—/ By (t, s;0(s),vn)ds
0

t
=~ Ap(poon) - / B(t, 5:p,x) ds — (pee, vn).
0

Choosing v;, = II} x and using the definition of G and (15), we find that

(B TIX) + A8 ) ds + / B(t, 5:6(s),x) ds = G(p)(x)
(22) + GO0 — (s ITx) Yx € Un.

For any continuous function ¢ in [0, t], define d) by

/¢

Notice that ¢(0) = 0 and (d¢/dt)(t) = ¢(t). Then, integrate (22) from 0 to ¢ to
obtain

(00,1050 + A0, %) = G(p)() + GO () + (—pe, %) + (e:(0), T x)
(23) 7/0 B(s,s;0(s ds+/ / (s,7;0(7), x)drds,
where

t

G(9)(x) = €a(é, x) +/ en(s, s 0(s dS—/ / en. (s,7;0(7), x)drds.
0

For a linear functional F' defined on Uy, set

F
Il 1n= sup [EOIL
0#XxEU |X||1

We shall need the following lemmas in our subsequent analysis.

Lemma 4.3. With G and G as above, there ezists a positive constant C = c(T)
such that the following estimates

(24) ID}G(Vaw) |10 < OB (Z IDyu(t)]l2 + / [[u(s |2d8>,

£=0
and
' J
(25) ID{G(Vau)|| 1,1 < Ch® <Z|Dg )l +/ l[a(s)ll2 d5> :
£=0

hold for j =0, 1.
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Proof. Using (19) and the estimates in Lemma 2.1, we obtain

GO0 < fealViw )|+ [ lenttsssViuls) 0 ds
< ol + [ Tuto)ads ) Il
and
G000l < O (Il Jall+ [ Tuts)leds) Il
<

t
on? (|ut|2 +lul+ | |u<s>||2ds) ™

In a similar manner, we derive the second estimate (25) and this completes the rest

of the proof. |
In the error analysis, we shall frequently use the following inverse assumption:
(26) Ixlli < Cinoh™ ixllo, X € Un.

4.1. H! error estimate.

Theorem 4.1. Let u and uyp, be the solutions of (1) and (7), respectively, and as-
sume that f € LY(HY), fi, fu € L*(L?), up € H*NH and uy € H>NHZ. Further,
assume that up(0) = IMpug and up¢(0) = ypuq, where Iy, is the interpolation oper-
ator defined in (9). Then, there exists a positive constant C = C(T), independent
of h, such that for t € (0,T] the following estimate

t
Jut) — wn(®)ls < Ch (||uO||3+ fuske+ [ (161l + el + 1 fullo) ds)
0
holds.

Proof. Since u — up = p + 6 and estimates of p are known from the Lemma 4.1, it
is sufficient to estimate #. Choose x = 6; in (22) and use (21) to obtain

(04, 115.0;) + A(6,0:) + /0 B(t,s;0(s),0;)ds = en(f — u,0:) — G(Vau)(6y)
+G(0)(0:) — (pae, 115,04).

Now use (13) and the symmetry of the bilinear form A(-,-) to arrive at

1d

5 O T80 + A0.0)] = ([ — e, 00) = GVau)(O:) + G(O)(0:) — (pur-TT;01)

— /Ot B(t, s;0(s),0:(t)) ds.

Integration from 0 to ¢ yields
1 2 1 2 ¢
3 (1BF +40.0) = 5 (1RO +A©0).00) + [ en(r = . 0)ds
t t t
- [ GWaenas+ [ 6@)0ds+ [ (-pumio0ds
0 0 0

t s
f/ / B(s,7;0(7),0:(s)) drds
0 0
(27) = S+ S+ I3+ Ji+ Js + Js.
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For the first term on the right hand side of (27), a use of the boundedness of A(-,-)
with (10) and (14) shows

(28) [T < C (100013 + 100)]1) < Ch?([lua ]| + lluoll3)
For estimating Ja, an application of (18) with j = 0 implies

t
(20) 2| < Ch / (F 1+ leell) 192lo ds.
0

To estimate J3, a use of the inverse inequality (26) shows that

t t
(30)  |hl<C / |G(Viw)]| -1l 6ells ds < R / 1G(Viw)| 1]l ds.

Using the definition of G, (20) and the inverse inequality, it follows that

EARES /|G (6,)| ds

on | / ol odaas + | t [ 1o e
c [/ 1615 164llods + (/ [0l (/ Ioelods) |

For J5, apply the Cauchy-Schwarz inequality, L? stability of IT} and (16) with 7 = 1
to obtain

t t
62 1l < [ o oo ds < )b [ (Ll + sl -+l ) 64 s
0 0

For the term Jg, we note that an integration by parts yields

// (5,7:0(),0,(s)) dr ds /Bts@ ())ds—/OtB(s,s;H(s),G(s))

/ / (s,7;0(7),0(s)) dr ds,
and hence, deduce that

(33) |Js|sc(||e<t>>|1 [ o as+ [ |e<s>|%ds)-

Now, set £2(t) = ||6¢]|3 + ||0]|7 and
) = g )

IN

(31)

IN

for some t* € [0,t]. Then, substituting the estimates (28)-(33) in (27), using the
coercivity of A(+,-), equivalence of norms ||| - ||| and || - ||o, apply standard kick back
arguments to find that

&) < Ch (IIUOHz + [Jullx +/O (st (s)llx + Nz ()1 + [luls)ll1) d5>

T o
+ Ch/o (If &)l +h 2 G(Viu) ()] -1,1) d8+/0 &1 (s) ds.

Now replace t* by ¢t and apply Gronwall’s lemma with the estimate (24) to conclude
that

T
1(t) < Ch(luoll+ luaks + [ (hell o+ el + el + 1711 ).
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A use of triangle inequality with (16) and the estimates from Lemma 2.1 completes
the rest of the proof. |

4.2. Optimal L? error estimates. In this subsection, we shall discuss optimal
L>°(L?) estimates

Theorem 4.2. Under the assumptions of Theorem 4.1, there exists a positive con-
stant C' = C(T), independent of h, such that

Jutt) = un®)lo < €82 (aoll-+ aall + [ (15134 1o + 1l s ).
0

Proof. By setting x = 6 in (23), and the using (13) with symmetry of the bilinear
form A(-,-), we find that

di [(9 I1:6) + A(é,é)}
(p)(0) + G(6)(6) + (—pr, IT;,6) — Hpuy, I1;0)

/OtB(Sso ) ds + // (5,73 0(7),0(1)) dr ds.

Integrate from 0 to t to obtain

S [[E)

1 t
= o+ [ e s [ G ds+/< . T130) ds

+(uy — Mpuy, 156) / / (7,7;0(7),0(s)) dr ds

t s pr’
+/ / / B.(7,7;0(1"),0(s)) dr’ dr ds
0o Jo Jo

1
34) = SNOON+ L+ b+ Is + Lo+ Is + L.
To estimate I, we note from (21) that

Gp)O) = en(f — i, 0) — G(Vau)(6)

(35) - % (eh( F— i, 6) — G(th)(é)) - (eh( F— g, 0) — Gt(th)(é)),

and hence,

I = (Gh(f — e, 0) — é(VhU)(é)) —/O (€h(f — uy,0) — és(Vh“)(é)> ds.
A use of (18) for j = 1 shows
L] < fen(f = (u —w),0) + [G(Vau)(0)]

+/0 (|€h(f — ug, 0)| + |G3(th)(é)|> ds
[

t
C |02 (I fll + el + 1) + I GOVaw)l-1,0] 1911

IN

t A A~
(36) +C / (P21 + Nuaell) + G (Va0 ) 1611 ds.
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Notice that Is can be written as

(37) I, = /o eA(9,9)d5+/0 /o ep(r,7;0(7),0(s)) dr ds
(38) _/0 /0 /0 e, (1,750(1"),0(s)) dr’ dr ds
(39) = Io1 + Do + Ios.

For I, we apply (20) and the inverse inequality (26) to find that

t t t
(40)  |In| = / lea(8,0)|ds < Ch / 161111011 < CCiny / 16110 1611
0 0 0

In order to estimate Is2, we integrate by parts in time so that

/ ep(s,5:0(s), 0(t)) ds — / ep(s,5:0(5),0(s)) ds
0 0

en {10l [ 1061 a5+ [ 10617 a5}

Similarly for I>3, we note that
t s t S
//GBT(S,T;é(T),é(t)) des—/ / EBT(S,T;é(T),é(S)) dr ds
o Jo o Jo
t t
cam {1 [ 1ol as+ [ 10IR a5}

Using the stability of IT} (i.e., ||IL}0]|o < C||0]|o) and the Cauchy-Schwarz inequality,
it follows that

(41) I| < / (e, T 0)]ds < C / lo6(8)l1o16(5) ods.

For I, we apply (10) and HH;‘Léﬂo < C||0||; to obtain
(42) |14 < flur = Wyualo (15000 < CH2[fur]l2 [19]]1.

[la2| =

IN

[l2s] =

IN

Finally, similarly for Is2 and Is3, an integration by parts leads to
¢ ¢
@) il <@ {100 [ 106 s+ [ 1R ).
Now, define E2(t) = [|0(¢)]]3 + ||é(t)|\% and let t* € [0,t] be such that
Eo(th) = max, Eo(t).

At t = t*, substitute the estimates (35)-(43) in (34) and use the equivalence of the
norms ||| - ||| and || - |0 from (14) along with the coercivity property (3) of A(:,-).
Then a standard use of kick back arguments yields

y
Eo(t*) <C116(0)llo + Ch? | [luoll2 + lluall2 +/ (£l + lJweelln) ds
0

+C

t* t*
GO -1t [l + GV -) ds| +C [ (o) ds.
0 0

Note that with the choice of up(0) = Hpuog,
160)[lo < 12(0)[o + l[o = Tauollo < Ch?|lug]la-
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Now apply Lemmas 4.3, 4.1 along with the estimates in Lemma 2.1 to obtain

&) < Cn? <|u0|3+ [l +/O (Sl =+ 1 fello + [ feello) d5>

o
+C/ Eo(s) ds.
0

Then replace t* by ¢ and use Gronwall’s lemma for ¢ < T to conclude that

T
160 < C(T)n? (IUOIS + [Juallz + +/O A1+ 11 fello + Ifttlo)d5> :

Finally, a use of the triangle inequality completes the proof. |

Remark 4.1. Note that it is possible to choose up,(0) as the L* projection of u;
onto Uy and in that case, the term (us(0) — up (0), 11} 0;) becomes zero.

4.3. Maximum norm estimates. In this subsection, a superconvergent result
for ||0]]1 is first derived and it is then used to analyze quasi-optimal maximum error
estimates.

Lemma 4.4. Assume that f € L'(H?), f; € L*\(HY), fu, fur € L*(L?), uo €
H*N H} and uy € H>N HE. With up(0) = Viyug and up+(0) = Tyu, there exists
a positive constant C = C(T'), independent of h, such that the following holds for
te (0,7

2
16:()llo + 10) ] < C h2(HUo||4 + llualls + 1D fllr ez + I\DifIILqu—a'))-
§=0

Proof. We now modify the estimates of Ji, Jo, Js and J5 in (27) of Theorem 4.1
to obtain a superconvergence result for ||0(t)||1 norm. As up(0) = Vyuy, it follows
that A(6(0),60(0)) = 0. Now with up +(0) = IIpu1, we obtain

(44) [ Ji] < R uf3.
To estimate Jo, observe that
€h(f — ugt, ) =

and thus, rewrite Jy as

d
Eeh(f — Utt, 9) - Gh(ft — Uttt 9)7
t
Jo = en(f —uw, 0) — / en(fe — upee, 0)ds.
0
Then, a use of (18) yields

t
(45) || < ChQ[(IIfIIl + [Jusell0) 1012 +/O (I felln =+ llweeell) [[6]1ds |-

For Js, rewrite G term as
GViu)(0) = 5 (GVu)(6)) — Gu(Vi)0),

and hence, a use of (19) shows that

sl < GAu)®)] + / G (Vi) (0)] dis

—
N
(@]

=

IN

t
2 (1601t [ 1GVh)l -1 ds] 161
0
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For Js, apply (16) to obtain

t t
(47)  |Js] < 2/ llpeellollBellods < C(T)hQ/ (lwtell2 + lutlle + [lell2) (160 ds.
0 0

Substituting the estimates (44)-(47) in (27), and apply standard kick back argu-
ments to arrive at

&(t) < Ch? [IIUle A1+ el + fuell2 + llull2

t
+/ (Felle + lullz + llullz + lluell2 + HutttHl)d5:|
0

t
+C/ &1(s) ds.
0
An application of the integral identity (4) shows
t
11 < 1A+ [ Il

Then using the estimates in Lemma 2.1 we arrive at

&i(t) < Ch2(|\ul|\3+|\U0||4+||f(0)||1
T
+/ (Hf”2+||ft||1+||fttH0+Hfttt||0)dS)
0

¢
+C’/ &1(s) ds.
0

Since W11([0, T]; H') is continuously imbedded in CY([0, T]; H), that is || £(0)||1 <
C|l fllwr1 a1y, a use of Gronwall’s lemma completes the rest of the proof. |

Remark 4.2. As a result of Lemma 4.4, we obtain a super-convergence estimate
for 0 in H' norm.

For [|0]|, a use of Sobolev inequality

1\ /2
(48) Il =€ (tog ) I¥xlo Wy € Uy

with Lemma 4.4 yields

1\ 1/2
0 < C? (1osg ) [luol +

T
(49) + [ U+ 1A+ il + o) ds]-

Below, we discuss the maximum norm estimate in form of a theorem.

Theorem 4.3. Let u and up, be the solutions of (1) and (7) respectively. Further,
let the assumptions of Lemma 4.4 hold. Then,

1 .
Jutt) = un@l < €02 (tog ) (Huola + sl + 1D s

2
+ 3 ID sy ),
j=0

where C = C(T) is a positive constant independent of h.
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Proof. By the triangle inequality

[u(t) = un(t)lloo < [1Bllcc + ll£]loe-

Now, combine the estimates obtained in (49) and in (17) with Lemma 2.1 to obtain
the required result. |

5. Error Estimates for a Completely Discrete Scheme

In this section, we introduce further notations and formulate a completely dis-
crete scheme by applying an explicit finite difference method to discretize the time
variable of the semidiscrete system (7). Then, we discuss optimal error estimates.

Let £ (0 < k < 1) be the time step, k¥ = T/N for some positive integer N,
and t, = nk. For any function ¢ of time, let ¢ denote ¢(t,). We shall use this
notation for functions defined for continuous in time as well as those defined for
discrete in time. Set ¢"t1/2 = (¢"t! + ¢™)/2, and define the following notations
for the difference quotients:

¢n+1 _ ¢n—1 at¢n+1/2 _ ¢n+1 _ q/)n

¢n+1 _ 2¢n + q/)n—l
2k ’ k ’ '

oo = 2

5t¢n =

Note that

8, "1/ - 9, n—1/2 Dy t1/2 — 9,112

2 ’ k '
Then, the discrete-in-time scheme of (7) is to seek U™ € Uy, such that for x € Uy,
2
k

5" = R =

2
(50) 2 (@02, + An(U° TGx) = (1 + Zun,TGx), - V€ U,

n—1

(51) (8152Un7 H;;,X) + A}L(Un) HZX) +k Z Bh(tna tj+1/2; Uj+1/2a HZX) = (fn) HZX)7

Jj=0

n > 1, with a given initial data U® in Uj. This choice of time discretization leads
to a second order accuracy in k. The integral term in (7) is computed by using the
second order quadrature formula

n—1 tn
o"(9) =k gltiz1/2) %/ g(s)ds, with t; 10 =(j+1/2)k.
=0 0

We shall use a shorthand notation ¢” (B} (U, I} x)) for kZ;:Ol By (tn,tj11/2;
U+1/2 1% x). The quadrature error ¢"(g) is defined by

"(9) = ™(g) - / Co(s)ds =" (WH/Z - / " () ds> |

=0 tj

Similarly, for ¢ € Uy, we define a linear functional ¢} () representing the error in
the quadrature formula by

GB)(X) = 0™ (B"(6.x)) - / " Blta, 5 0(s),x) ds.

Notice that ¢%(¢) = 0.
For our future use, we state without proof the following lemma. For a proof, see,
[21].
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Lemma 5.1. There exists a positive constant C, independent of k and h, such that
the following estimate holds:

m tm1
b3 105 2@l < O [ (ol + ol + llow ) ds.
n=0 0

Now, define e” := u™ — U™. We split e = p" 4+ " with p"” = u™ — Vau™ and
&" = Vyu™ — U™ From (50)-(51) and (7), we derive equations in e” as follows

2 * * *
(52) E((?tel”, I, x) + An(e”, T x) = (2r°, 1T, x),
(53) (97", I x) + Ap(e™, T x) + o™ (Bj (e, I x) = (™, 1T, x) + ¢, (w) (1T}, X),
1 1 1 [k 3
n > 1, forall x € Uy, wherer® = Z <8tu1/2 - ul)*gu?t = 2—k2/0 (tfk)Q%(t) dt,
and
1 k ot
n 2, n 0 3 n
_ 0 AL A > 1.
64 =G = gz [ (RS 0 0z

Since estimates for p are known from Lemma 4.1, it is sufficient to estimate £. From
(52)-(53), we obtain the following equations in £":

%(atgl/Qa HZX) + A(€O7X) = _%(atp1/2a HZX) + (2TO7HZX)
(55) + €h (fO - U’gta X) - GA(VhU’(O)a X)7
(07" 1) + A" x) = (r", Iix) — (02p™ 15 x) + H™(€)(x)
(56) — 0" (B"(& X)) — H"(Vhu)(x) + en(f" — uiy, x) + a5 (Vaw) (X)),
where
n—1
H"(&)(x) =eal&™,x)+k Z €B(tnatj+1/2;€j+1/27X)'
=0

Below, we shall obtain [°°(H"') estimate for £"+1/2,

Lemma 5.2. Assume that f € L'(H?), f, € L*\(HY), fu, fur € L*(L?), uo €
H*N H} and uwy € H3N H}. Further, assume that the CFL condition

k2 4eeq

— <

h? = ACpn,

(57)

is satisfied, where A > 0 is the constant given in (3), Cin, appears in the inverse
inequality (26) and cqq is stated in the equivalence of norms as in (14). Then,
with up(0) = Viuo and up,¢(0) = Ilpus, there exists a positive constant C' = C(T),
independent of h and k, such that the following estimate

102l + €2 < )2 +12) (luolla + uall

2

(58) HIDF fllza ey + 301D f sy
j=0

holds for m =0,1,--- N — 1.
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Proof. Choose x = ;™ in (56) and obtain

La(llag PR+ AT E) = (7 — R, ) + HMEO(E)
—o" (B"(§,6:€™)) — H" (Vau)(0:£™)
(59) (S — ™) + g (Viu) (3,67)
= '+ +13+1+10+ 1,

where 0; denotes backward differencing. Next multiply (59) by 2k and sum the
resulting one from n = 2 to m to arrive at

s(Magm 2P+ agmsem) < 5 (1o + A )

m

(60) R\ AT+ I+ I I+ I+ 1Y)
n=2

Now define

2N = o™ 2115 + 11213,
and let for some m* with 0 < m* < m,

m*+1/2 _ n+1/2
Il 20 = [l

To estimate the sum in I, an application of the Cauchy-Schwarz inequality yields

RIS I < kY (1920" o + I lo) (1920 + 06" /210
n=2 n=2
< 20k (120" o+ o) [iE™ /21l
n=2
For the second sum on the right hand side of (60), we use the fact that
(61) wnatgn _ 5t(wn§n+1/2) _ atwn+1/2£n71/2
and conclude
B eal" 6i8™) = ea(€™ &™) —ea(€h €)= kD ea(@g 2 1),
n=2 n=2

Using (20) and the inverse inequality (26), we obtain

< cr{IIEm g™ 2 + e I+ 20 )

kY eal€", 6i€")
n=2

+ChE S 0|1 lem 2

n=2
= ¢ {Hémllo 1€ o+ kY ||3t€”+1/2||0} E™ 2|1
n=2

Since €0 =0, £™ = kY™ 9:" /2, and it follows that

m—1
< Ck (Z ||atg"+1/2||o> llem #1721

n=0

kY ea(€”, 0"

n=2
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Similarly, we obtain

m n—1 m n—1
KDY enltntipnpzi €2,6€7) <k | O NE 2 | Hlle™ 2l
n=2j5-0 n=2 7=0
m—1 ]
<CTk &2y ) 11E™ 2,
=0
and hence,

Zfz

<o (ZIII&"“/QHI )III&’”*“/QIIIL

To estimate the sum in I}, we again use (61) and rewrite the sum as:

b5 = o (Breemt) — o (B )
n=2
m n—1

714}2 Z Z(gt,lB)(tn,tj+1/2;§j+1/27£n71/2)

n=2 j=0

+k Z B(tnfla tn—1/2; gn—1/27 gn—1/2)7

n=2

where 531B denotes the difference quotient of B with respect to its first argument.
Since, |0¢1B] < C||Bt||oo < 00, it follows that

m—1

SOk Y IE 20| e 1211

7=0

ng

For the sum involving I}, we note that

Z th NP3 )|

_ GA(thm,€m+1/2) (V u §1+1/2 Z atv un+1/2 gn 1/2)
=2
< {||um||2 + [l fl2 + kz ||3chU"+1/2||2} 1™+l
n=0
< O {Jluolla + lurllzaqarny } IE™ H17211 .

Similarly, we have

m n—1

K20 enltostyyes Vw72, 66™)| < OTH? {fuoll + [[uel [ sy } IIE™ 2.
n=2 j=0
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In order to estimate the sum in IZ, we repeat the previous arguments and use (18)
to arrive at

Y enlf" = uihdi€™)| = [en(r™ = wit €72) — en(f iy, €41/2)
n=2

%2}4 (72— a2 g1 2)

< OR2{|If° — udylls + || fe — weeell prcany } I1E™ T2

For the last sum, we rewrite it as

m

kY I = ag (Vi) (€™?) = qp(Viw) (€1/?) Z apt P (Vi) (€ 172).

n=2 n=2

Since ¢% (Vhu) =0, g5 (Vau) = kX", 8tq"+1/2(th), we obtain

Zfs < Ck {Z 19w ( Vw)ll—m} €™ 21

Combining all the previous estimates, we conclude that

1[0 F2]| |2 + A(g™ T, em)

IN

118:6%21||* + A(€%, ") + Ck {Z (182" llo + 17 [lo)

m—1
+ Z||aq"“/2 Vhll—vn + 3 EFV2 | g 1l1€™ +Y2)]),

=0
(62) + BEC(T, fu)|[|€™ 2|,
where

C(T, f,u) = ||uoll2 + luell Lt m2) + uee ()1 + [lweeel |22y + 1011 + [ fellpr -

In order to estimate the first two terms on the right hand side of (62), we choose
X = 9:€3/2 in (56) for n = 1 and obtain

102112 + A€, €Y < 119N+ b2 (Ilu 2 + lluolla + Ko /2]l2)
+ RS0 = ulyllo + 1 = el o) ) + 10eays %l -
Next, we choose y = 9;£/2 in (55) to find that
10211l < € {1902l + Bllr®lo + B21F° = w2 + B2 ol }

A use of these estimates in (62) results in

11812112 + A(Sm“,ém)SC{Ilatpl/QlloJrkZ||3fp”||o+kzIIT"Ilo

n=1 n=0
m—1

+kz 10y 2 (Vi) | —un + kD NIEHY2 Ly g [l1€™ 12
7=0

(63) +hPC(T, fou)llle™ 121
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Note that

k2
A(gm-l—l,gm) _ A(€m+1/2,€m+1/2) _ ZA(8t§m+1/2aat§m+l/2)-

Hence,
™22 + A(g™H, &™)
k2
eeq 0™ 12 + a2 T — - ADE™ Y2, 0,62,

Since the CFL condition (57) holds, choose k so that C, = (ceq — ACZ-M%> > 0,
where the constants A, c.q and Cyy,, appear in (3), (14) and (26), respectively. Then

[118:6™ /2|2 + A€, €™) = min{Cy, a}|||€™ /2|1

Altogether, it now results in

™21 < NllE™ +2 1 SC{Ilatp1/2||o+kZ 1070" o + & D 17" lo

n=1 n=0
m m—1 .
kY 10y P Vi)l |- + B > IEHY |
n=0 j=0

(64) + B2C(T, f,u).

To estimate the first two terms on the right hand side of (64), it is observed that
1 r*

(65) 10010 < [ lln(s)lods.

and a use of Taylor series expansion yields

m 1 m tnt1 tn
kY1100 <3 > {/ (s = Mlpellads + [ (5= tas)llpuls)lods
n=1 n=1 tn

tn—1

——

tm41
(66) < / 19 (5)llo ds.
0

Further, from (54) it follows that

tn+1
||r”||o§0k/ IDRu(s)ods, n> 1,

tn—1

and
0 bt g
1770 < Cklluete|| Lo (0,5/2;12(02)) < Ck/ [ D7u(s)llods.
0
Thus, we arrive at

m tm+1
(67) B3 o < CR? / (ID%u(s)]o + | DFu(s)]o) ds.

n=0

Finally, a use of Lemma 5.1 and the triangle inequality yields

m 2 tmt1 ] ]
By oy A (Vw1 < OR2 Y / (IDFu(s)ls + 1Dip(s)l1r) ds.
n=1 7=0

Substitute now (65)-(67) in (64) and use the estimates in Lemmas 4.1 and 2.1.
Then, an application of the discrete Gronwall’s lemma completes the rest of the
proof. |
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By Sobolev inequality, it follows that

1\ 12
(68) 2 < € (1o ) 1€

Using Lemma 5.2, the triangle inequality and the estimates (68) and (17), we obtain
the result of the following theorem.

Theorem 5.1. Let the assumptions of Lemma 5.2 hold. Then,

1
futtssy2) = U™ < O (log ) (2 482 (Jaolla -+l

2
(69) HIDF fllpszzy + D 1D s
j=0

form=0,1,--- N —1.
6. FVEM with Quadrature

In this section, we discuss the effect of numerical quadrature on FVEM, when
the L? inner product (-, -) and the bilinear forms Ay (-,-) and By (t, s; -, -) appearing
in (7) are approximated by simple quadrature formulae.

For a continuous function ¢ on a triangle K, consider the quadrature formula

3
(70) Qucn(d) = gIKI o) = [ olarie K €T

where P;, 1 <1 < 3 denote the vertices of the triangle K and |K| denotes the
area of the triangle K. Now the quadrature formula given by (70) is exact for
¢ € P(K) VK € Tp,. Using (70), we replace the L? inner product by the following
discrete L? inner product:

CoIG)n = > Qualxdv)

KeTh
(71) = Y X(P)(R)ISk,, | VX, ¥ € Up.
P;eN}

This is known as lumping of mass in the literature. Observe that ||x||7 = (x, x)s is
a norm on Uy, which is equivalent to the L? norm, i.e., there exist positive constants
C5 and Cg, independent of h, such that

(72) Cslixllo < lIixlln < Csllxllo-
Define the quadrature error by
Eh(Xaw) = (X7H2¢) - (X7H2¢)h

Since the quadrature formula involves only the values of the functions at the interior
nodes and I59(P;) = ¢(P;) VP € N? and ¢ € Uy, it follows that

(73) (Xa l/})h = (Xa sz)h VX7 l/f € Uh-

Below, we state the estimates related to quadrature error, whose proof can be found
in [16].

Lemma 6.1. For x, ¥ € Uy, there is a positive constant C', independent of h, such
that the following estimate holds:

(74) [ (x, )] < CR2[Ixlall]]1-
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P3

FIGURE 2

Further, for x € H? and ¢ € Uy, there holds:

(75) len (O 9)| < CR2(Ixll2l| -
Now define the following quadrature approximation over each element K by
§Vi .
(76) [ ) dsm B o)+ 0(Q) = Qo).
M,QNK

where M; is the midpoint of P,P4; and @ is the barycenter of the triangle
AP Py1P 42, (see FIGURE 2 for [ = 1). Associated with (76), we now intro-
duce the quadrature error as

Erarn0) = [ v(s)ds = Oi(w).
M,QNK

Then, we have the following estimate related to the above quadrature error. For a

proof, see, Cai [4, pp 732].

Lemma 6.2. Let v € W3 (M;Q N K). Then, there is a positive constant C, in-
dependent of hx, such that

(77) &tk )| < Chicllvlly o 3m0nK
where hg is the diam(K ).
Now to replace the integral in the definition of Ay(+,-), we observe that

Ah(uh,szh) = — Z ’Ui/

AVuy -n ds (vi = vh(R-))
PeNy, 6K;’L

> Ik (un, Thon),
K

where
IK(Uh, szh) = - Z Ul/ AVuh . nlds
p(i<i<s) IKRNK
= Z (vi41 — vl)/ AVuyp - mds,
P(1<I<3) MiQNK

v4 = v1 and ny is the outward unit normal vector to M;Q). Since Vuy, -ny is constant
on each element K, we define the quadrature rule as

(78) fK(Uh, szh) = Z 5mnK(A)V“h . nl(’l)lJrQ - Ul+1).
P (1<1<3)
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and set

An06T) = Y Ie(x ).

KeTy

Note that the bilinear form Ay(-, -) in (7) is approximated by Ay, (-, -). Define By(-,-)
as an approximation of Bp(-, ).

With the definitions as above, define quadrature error functional for the bilinear
form Ap(-,-) as

(79) gA(Xa l/f) = Ah(X7H;§,w) - Ah()ﬁnzw) VX7 T/) € Uh~

Below, we state without proof the estimate of (79) whose proof can be found in
[16].

Lemma 6.3. Assume that A € W2>°(Q;R2*2). Then, there exists a positive con-
stant C, independent of h, such that

ealx, ) < CR?|IxIhllvll VX, ¥ € Un.

Similar results hold for €g(t, s;-,-) which is defined as in (79). For the rest of
our analysis, we introduce the functionals S(¢) = S and S(t) = S defined on U}, for
a given ¢ and ¢ € (0,7 as

ﬂWWF£M%M+AQNJW@wW&

and

S@W)(x) = eal®, x) +/O (s, s:1(s), x) ds _/0 /05 ép. (s, 7;(7), x) drds.

Then using Lemma 6.3, we derive the following estimate for S in a similar manner
to those obtained in Lemma 4.3

IS |-1,n < CR? (IIw(t)lz +/0 [¥(s)ll2 ds) :

Similar result can be obtain for the estimate of S again following proof of Lemma 4.3.
Now the semidiscrete finite volume element method combined with quadrature
is to seek up, : (0,7] — U}, such that

¢
(80)  (un,tt;vn)n + An(un,vn) +/ By (t, s;un(s),vn) ds = (f,vn)n Yon € Uy,
0
with appropriate initial data uy(0) and up ((0) in Up,.

6.1. Optimal error estimates. In this subsection, we discuss optimal estimates
in L°(L?) as well as in L>(H?!) norms and quasi-optimal estimates in L°° (L)
norm.

Now replace vp, by II} x in (80) and subtract the resulting equation from (8) to
obtain

(et T X) = (e, G000+ An(u, IX) — Ap(un, I x)

t t
+f/3m@mmmw—/ém@wﬂmm5

0 0

(81) = (f7 H:LX) - (fa ZX)h VX € Uy.
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Using the definitions of Ritz-Volterra projection V;u and S, we arrive at an equation
in 0 as

(O, TG0 + A0, x) = —(p, T x) + G(p)(x) + G(0)(x)
+5(0)(x) = S(Vau)(x) + €n(f, x) — én((Var)et, x)
(82) 7/0 B(t,s; 0, x)ds.

Below, we establish L°°(H!) estimate.

Theorem 6.1. Let u and uy, be the solutions of (1) and (80), respectively, and
assume that f € L*(HY), fi, fu € LY(L?), uwo € H3N HE and vy € H?> N H}.
With up(0) = Hpug and up,(0) = Mpu, there exists a positive constant C = C(T),
independent of h, such that

j=1

2
[u(t) = un(®)[ly < Ch (IIU0||3 +ulle + 1l + ) IIDif||L1<L2)>

holds for t € (0,T].
Proof. Choose x = 6; in (82) so that

(00, IT,00)n + A(0,0:) = G(p)(0r) + G(0)(0:) — (pur, 1T1,01) + S (0)(0:)
—S(Vau)(0:) + €n(f,0) — en((Vau), 0r)
(83) / B(t,s;6,0:)d
Then, use (73) and the symmetric property of A(,-) to obtain
L0000+ AG.0) =GB+ OB — (o T0) + SO)(6.)

—S(Viu)(0:) + en(f,0:) — en((Viu)u, 61)

/Bts@@t

Integrate from 0 to ¢ and use the equivalence of the norms in (72) to find that
1 t
3 10+ 40.0)] ={F100)1} + 540000 + [ [Go)0) +G(O)0)
s t
~ (pee. IT36,) —/ B(s,730(r), 0,) dr | ds} +/ S(0)(0) ds
0 0

t t t
— [ su)6,)ds +/ e (f, 00)ds —/ en((Viw)u, 00) ds
0 0 0
(84) =I+J1+Jo+ Js+ Js.

Estimates for the first term I have already been derived in Theorem 4.1. In order
to estimate Jy, use Lemma 6.3 and the inverse inequality (26) to obtain

| < / 15(0)(6,)] ds < / 1S@)]|—v 11611 ds

on [ [1onstodsas + [ [ 1010061 dr ]
| [ tstedtods + ([ 1ot as) ([ o as)]

IN

(85)

IN
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For Js, we find that
t t
(86)  |hl< / 1S(Viu) (64)] ds < Ch~! / ISViw)] -1 460 ds.
0 0

In view of Lemma 6.1, the terms J3 and .J; are bounded as

t t
/ en(f.00)|ds + 2 / en((Vaw)ar, 6,)]ds
0 0

IN

|.J5] + | J4]

IN

t
Chz/o (fll2 + lloeelln + lluell)l16e] 1 ds

(87)

IN

t
Ch/ (I fll2 + lpeelly + luweel[) 110 ]lods-
0

Now, substitute (85)-(87) in (84). Use the coercivity property of the bilinear form

A(-,-) and equivalence of norms (72). Then, proceed as in Theorem 4.1 to complete

the rest of the proof. |
In the following theorem, we prove optimal L°°(L?) estimate.

Theorem 6.2. Under the assumptions of Theorem 6.1, there exists a positive con-
stant C = C(T), independent of h, such that

Jj=1

2
lu(t) = un(t)llo < C? (|u0|3 +llulle + 1l + |Dif||L1<L2>>

holds for all t € (0,T].

Proof. Integrate (82) from 0 to ¢ to arrive at

O I + A0, x) = —(pe, i x) + Glp)(x )+G‘(9)( )
+ S0)(x) - S(Vau)(x) + &(f, x) — e (Vauw)e, X)

(88) +  (u(0), 115 x) — (un,(0), IT5 x)n, f/ / (s,7:0(7), x) dr ds.

Choose x = 6 in (88) and use (73) with the symmetry of the bilinear form A(-,-)
to obtain

S (0.0 46.0)] = 16)+50)(0) ~ STw)(®) +anlf.6)
(

2dt
(89) —en((Vau)t, ) + (ut(0),11,6) — (un,:(0), I1},0)n,

where

I(t) = —(ps, 11;0) + G(p)(0) + / / (s,7;0(7),0) drds.

Integrate (89) from 0 to ¢ to find that
3 (10O +46.0) = F1001E+ [ 165+ [ S0)0) as
- / S(Viu)(8) ds — / en((Vau)e, 0) ds
0 0
b [ enF0) ds + [(un(0). 16 ~ (w,0), T30}
0

1 t
(90) = §||9(0)H%+/ I(s)ds+ J1+ Jo+ J3+ Jy+ Js5.
0
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Note that estimates for the first two terms on the right hand sides of (90) have
already been derived in Theorem 4.2. For Jj, use the definition of S and integrate
by parts to arrive at

t t s
(91) J = / ea(0,0) ds+/ / ép(r,7;0(7),0(s)) dr ds
0 0 JO
t s T
(92) */ / / és, (7, 7,0(7'),0) dr' dr ds
0 JO 0
(93) = Ju+Ji2+ Jiz.

For Ji1, a use of Lemma 6.3 with the inverse inequality (26) yields

t t t
(04) || < / €a(8,6)|ds < Ch / 10113 116]1ds < Ch / 1611014111 ds.
0 0 0

For Ji2, an integration by parts shows

/ ep (s, 5:6(s), B(t))ds — / ep (s, 5:6(s), 6(s))ds
0 0

o {1l [ 1oeds + [ 1oigas}

Similarly for Ji3, we have

/Ot /OseBT(S,T;é(T),é(t))des—/Ot /O en. (s, 7 0(r), 6(s))drds

|J12| =

IN

| 13| =

IN

ey {1o: [ 106 )ds+ [ 10)Rds}

For J5, we obtain

t
(95) | Jo| < [[S(Vaw)ll 1,010 +/ 1S5 (V)| -1,nll0]]1 ds.
0

To bound Js and Jy, we integrate by parts and apply Lemma 6.1 to arrive at

|5 < |€h((th)t,é)|+/O Jen((Viu)ee, 0)ds

t
(96) < o (<||pt|1 T luell 6]+ / (Upeell -+ et )11 ds)
and

A A t A
PR |eh<f,e>|+/0 e (£, 0)]ds

t
97 Ch2(||fll-]10 0l/1ds).
(97) < o (Il |\1+/0 /11l lads)

Finally, since u ¢ (0) = I, (0), we have Js = (u;(0)—TT,us (0), 1T ) +-€p, (T (0), 6).
Hence,

Ch? ([|ue(0)2 + [Tnue (0)l11) 1911
(98) Ch?ug(0)]|2 1611 < Ch?[|us(0) 21011

Substitute (94)-(98) in (90). We use the coercivity property of the bilinear form
A(+,-) and the equivalence of the norms, and proceed as in Theorem 4.2 to complete
the rest of the proof. |

|J5] <
<
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Finally, we prove quasi-optimal maximum norm estimate.

Theorem 6.3. Let u and uy, be the solutions of (1) and (7), respectively. Further,
let the assumptions of Lemma 4.4 hold. Then,

2
1 .
Jutt)-un @l < 82 (1087 ) (Iuollatlaall 12 a3 104 s )
=0

where C(T) is a positive constant, independent of h.
Proof: Since up(0) = Viuo, it follows that 6(0) = 0. Then, we modify our estimates
for Jy to Jy in (84) to arrive at a superconvergence result for 6 in H! norm

[6:ll0 + 101l < C(T)hQ(HuOIM +lualls + 1DF fll a2

2
(99) + 1D Al sy ).
=0
Now, a use of (48) and (99) completes the rest of the proof. |

7. Numerical Experiment

In this section, we present numerical results to illustrate the performance of the
finite volume element method applied to (1). Assume that 75 is an admissible
regular, uniform triangulation of € into closed triangles and 0 =ty < t; < -- -ty =
T is a given partition of the time interval (0,7] with step length k = % for some
positive integer M. With U™ denoting the approximation of uy at t = t,,, consider
the discrete-in-time scheme derived in Section 5, with discrete L? inner product
(-,-)n and the bilinear forms Ap(-,-) and By(t,s;-, ) evaluated using numerical
quadrature formulae.

Thus, the time discretization scheme is to seek U™ € Uy, for given UY, such that

2

2 ~
(100) E(atU1/27HZX)h + AU TGy = (f° + L UL I X)hs
n—1
(8152Un7H2X)h +Ah(UnaH;:X) + kzBh(tmthrl/Q;UjJrlﬂaHZX)
7=0

n > 1, for all x € Up,. The method is explicit in time in the sense that the calculation
of U™ involves only the inversion of a mass-type matrix associated with the space
Uy, and the corresponding dual volume element space U} .

Let {¢;}j=1,2,..,~ be the standard nodal basis functions for the trial space Uy,
and {x;}=1,2.....n be the characteristic basis functions corresponding to the control
volumes for the test space U;. Then, express U™ as

N
U" = Z aj¢i(x), wherea] =U"(x;).
j=1

Define now the following matrices

M = [(¢i, Xj)nInxn, A =[An(di x5)Inxn,  B(t,s) = [Bi(t, s; ¢i x5) N,
and the vector F(t) = [(f(£), x;j)n]ixn. Then, for instance, (101) can be written as
the following system of linear equations which can be solved for am*!:

n—1
Ma™! = (2M — k*A)a" " = Ma" " = k* > Bltn, te1j0)a 2 + KFT,
1=0
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slope=1.98 P

Fi1GURE 3. Convergence order estimate in L°°-norm.

where a” = (af, af,--- ,o/](,)T. Since we have used mass lumping for (-,-)s, the
mass matrix M is a diagonal matrix.

In order to illustrate the performance of the finite volume element method for
solving (1), we consider the following test problems where the computational do-
main Q = (0,1) x (0,1) and the final time T = 1.

Example 1: We choose ug(x,y) = sin(mz) sin(ry), u1(z,y) = sin(rz) sin(ry), A =
I and B(t,s) = e*=*)I. The function f is chosen so that the exact solution is

u = e’ sin(7x) sin(7y).
Example 2: Set ug(z,y) = ay(z — 1)(y — 1), wa(z,y) = ay(x - 1)(y — 1), A =
2
(1 T 0 ) and B(t,s) = e(=*) A. The function f is chosen in such a way

0 14 2
that the exact solution is

u=czy(x—1)(y—1).

The order of convergence is computed in L* norm. In both examples, Fig 3
shows that the computed order of convergence for ||u — up||~ in the log-log scale
matches with the theoretical order of convergence that we have derived.
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