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IMPROVED ERROR ESTIMATES OF A FINITE

DIFFERENCE/SPECTRAL METHOD FOR TIME-FRACTIONAL

DIFFUSION EQUATIONS

CHUNWAN LV AND CHUANJU XU∗

Abstract. In this paper, we first consider the numerical method that Lin and Xu proposed and
analyzed in [Finite difference/spectral approximations for the time-fractional diffusion equation,
JCP 2007] for the time-fractional diffusion equation. It is a method basing on the combination
of a finite different scheme in time and spectral method in space. The numerical analysis carried
out in that paper showed that the scheme is of (2 − α)-order convergence in time and spectral
accuracy in space for smooth solutions, where α is the time-fractional derivative order. The main
purpose of this paper consists in refining the analysis and providing a sharper estimate for both
time and space errors. More precisely, we improve the error estimates by giving a more accurate
coefficient in the time error term and removing the factor in the space error term, which grows
with decreasing time step. Then the theoretical results are validated by a number of numerical
tests.

Key words. Error estimates, finite difference methods, spectral methods, time fractional diffusion
equation.

1. Introduction

As a powerful tool in modelling the phenomenon related to nonlocality and
spatial heterogeneity, the fractional partial differential equations (FPDE for short
hereafter) has been attracting increasing attention in recent years. They are now
finding its many applications in a broad range of fields such as control theory,
biology, electrochemical processes, viscoelastic materials, polymer, finance, and etc;
see, e.g.,[1, 2, 4, 5, 6, 8, 9, 12, 13, 19, 23, 25] and the references therein.

Similar to the role of the heat equation in traditional modelling, the time-
fractional diffusion equation considered in this paper is of importance not only in
its own right, but also it constitutes the kernel of many other more general FPDE.
This model equation governs the evolution for the probability density function that
describes anomalously diffusing particles. For some fractional models, we mention,
e.g., the chaotic dynamics charge transport problem in amorphous semiconductors
[26, 27], the NMR diffusometry in disordered materials [20], the dynamics of a
bead in polymer network [3], and the propagation of mechanical diffusive waves in
viscoelastic media [18]. For more applications where the time-fractional diffusion
appears, we refer to a generalized diffusion equation which describes transport pro-
cesses with long memory [10]; the physical model of water transport in soil, which is
a generalized Richards’ equation with time-fractional derivative [21]; the similarity
problem of nonlinear integro-differential type [22], etc.

There have been a number of numerical methods constructed for the time-
fractional diffusion equations. We mention, among others, the work [17] by Liu
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et al. on the finite difference method in both space and time, a finite difference
scheme for the fractional diffusion-wave equation by Sun and Wu [29], a L1 scheme
used to approximate the fractional order time derivative by Langlands and Henry
[14], a particle tracking approach by Zhang et al. [30], an alternating direction im-
plicit scheme by Zhang and Sun [31], finite difference schemes for a variable-order
equation by Sun et al. [28], and convergence analysis of the finite element method
in Jin et al. [11].

On one side, fractional derivatives are non-local operators, which explains one of
their most significant uses in applications: they possess a memory effect which is
present in several materials such as viscoelastic materials or polymers. On the other
side, the nonlocality of the fractional derivatives makes the design of accurate and
fast methods difficult. In particular, the fact that all previous solutions have to be
saved to compute the solution at the current time point would make the storage very
expensive if a low-order method is employed. This consideration has inspired some
recent work [15, 16] on developing spectral methods for time-fractional differential
equations. Particularly, Lin and Xu [16] proposed a finite difference scheme in time
and Legendre spectral method in space for the time-fractional diffusion equation.
A convergence rate of (2 − α)-order in time and spectral accuracy in space of the
method was proved, where α is the time derivative order.

In this paper, we follow the work in [16] with an attempt to improve the er-
ror estimates obtained therein. The main contribution of the paper is as follows:
Firstly, a sharper estimate for both time and space errors is derived by using differ-
ent analysis techniques. Specifically, we obtain a more accurate coefficient in front
of the time error term and remove the undesirable factor in the space error term,
which grows with decreasing time step. Secondly, this new estimate is confirmed
by a number of numerical tests carefully designed for the verification.

The outline of this paper is as follows. In the next section we first describe
the time discretization for the time-fractional diffusion equation, then derive the
truncation error. In Section 3 we describe two spectral methods for the space
discretization, and derive the full discrete error estimates. Some numerical examples
are given in Section 4. Finally we give some concluding remarks in Section 5.

2. A 2− α order finite difference scheme in time

We first describe the problem of fractional differential equations that is studied
in this paper. Let T > 0, Λ = (−1, 1), I = (0, T ], consider the time-fractional
diffusion equation of the form

(1) ∂αt u(x, t)− ∂2xu(x, t) = 0, x ∈ Λ, t ∈ I,

subject to the following initial and boundary conditions:

(2) u(x, 0) = g(x), x ∈ Λ,

(3) u(−1, t) = u(1, t) = 0, 0 ≤ t ≤ T,

where α is the order of the time-fractional derivative. Here, we consider the case
0 < α < 1 and fractional derivative in the Caputo sense [23], defined by

∂αt u(x, t) =
1

Γ(1− α)

∫ t

0

∂su(x, s)
ds

(t− s)α
, 0 < α < 1.
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Let tk =: k∆t, k = 0, 1 . . . ,K, where ∆t =: T
K is the time step. We consider the

following finite difference operator

Lα
t u(x, tk+1) :=

1

Γ(2− α)

k
∑

j=0

bj
u(x, tk+1−j)− u(x, tk−j)

∆tα
,(4)

where bj = (j + 1)1−α − j1−α, j = 0, 1, . . . k. The time scheme we are going to
investigate reads

(5) Lα
t u

k+1(x) = ∂2xu
k+1(x), k = 0, 1, . . . ,K − 1,

where uk+1(x) is an approximation to u(x, tk+1). The truncation error of this

scheme, denoted by rk+1
∆t (x), is given by

(6) rk+1
∆t (x) = ∂αt u(x, tk+1)− Lα

t u(x, tk+1), 0 ≤ k ≤ K − 1,

Then obviously we have

−∂2xu(x, tk+1) +
1

∆tαΓ(2− α)

k
∑

j=0

bj
(

u(x, tk+1−j)− u(x, tk−j)
)

= −rk+1
∆t (x),

or equivalently

(7) u(tk+1)− α0∂
2
xu(tk+1) =

k−1
∑

j=0

(bj − bj+1)u(tk−j) + bku(t0)− α0r
k+1
∆t ,

where α0 = Γ(2−α)∆tα, and the dependence on x has been omitted for notational
convenience.

The scheme (5) was first proposed and analyzed in [16], where the unconditional
stability and 2 − α order convergence were proved. The first goal of the current
paper is to provide a more accurate error estimate for this scheme by using a new
technique, as stated in the following lemma.

Lemma 2.1. For any α ∈ (0, 1), it holds

|rk+1
∆t (x)| ≤ cM(u)∆t2−α, ∀k = 0, 1, . . . ,K − 1, ∀x ∈ Λ(8)

where c is independent of u and ∆t, M(u) = max
t∈I

|∂2t u(x, t)|.

Proof. First a direct calculation shows

Lα
t u(x, tk+1) =

1

Γ(2− α)

k
∑

j=0

u(x, tk+1−j)− u(x, tk−j)

∆tα
[(j + 1)1−α − j1−α].

=
1

Γ(1− α)

k
∑

j=0

u(x, tk+1−j)− u(x, tk−j)

∆t

∫ tj+1

tj

t−αdt

=
1

Γ(1− α)

k
∑

j=0

u(x, tj+1)− u(x, tj)

∆t

∫ tk+1−j

tk−j

t−αdt

=
1

Γ(1− α)

k
∑

j=0

u(x, tj+1)− u(x, tj)

∆t

∫ tj+1

tj

ds

(tk+1 − s)α
.
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Then from definition (6) we have

rk+1
∆t (x)(9)

=
1

Γ(1− α)

k
∑

j=0

∫ tj+1

tj

∂su(x, s)
ds

(tk+1 − s)α
− Lα

t u(x, tk+1)

=
1

Γ(1− α)

k
∑

j=0

∫ tj+1

tj

[

∂su(x, s)−
u(x, tj+1)− u(x, tj)

∆t

]

ds

(tk+1 − s)α
.

By applying the following Taylor formula with the integral remainder

f(t) = f(s) + ∂tf(s)(t− s) +

∫ t

s

∂2τf(τ)(t− τ)dτ, ∀t, s ∈ I

to the function u(·, t) at t = tj and t = tj+1 respectively, we obtain, for all s ∈
(tj , tj+1),

∂su(x, s)−
u(x, tj+1)− u(x, tj)

∆t

= − 1

∆t

∫ tj+1

s

∂2τu(x, τ)(tj+1 − τ)dτ +
1

∆t

∫ tj

s

∂2τu(x, τ)(tj − τ)dτ.

Inserting the above equality into (9) yields

rk+1
∆t (x) =

1

Γ(1− α)∆t

k
∑

j=0

[

−
∫ tj+1

tj

∫ tj+1

s

∂2τu(x, τ)
tj+1 − s

(tk+1 − s)α
dτds

+

∫ tj+1

tj

∫ tj

s

∂2τu(x, τ)
tj − τ

(tk+1 − s)α
dτds

]

=
1

Γ(1− α)∆t

k
∑

j=0

[

−
∫ tj+1

tj

∂2τu(x, τ)(tj+1 − τ)

∫ τ

tj

ds

(tk+1 − s)α
dτ

−
∫ tj+1

tj

∂2τu(x, τ)(tj − τ)

∫ tj+1

τ

ds

(tk+1 − s)α
dτ

]

=
1

Γ(2− α)∆t

k
∑

j=0

∫ tj+1

tj

∂2τu(x, τ)
[

(tk+1 − τ)1−α∆t(10)

−(tj+1 − τ)(tk+1 − tj)
1−α + (tj − τ)(tk+1 − tj+1)

1−α
]

dτ.

We denote

Rk+1
j (τ)(11)

= (tk+1 − τ)1−α∆t− (tj+1 − τ)(tk+1 − tj)
1−α + (tj − τ)(tk+1 − tj+1)

1−α.

It can be directly checked that Rk+1
j (τ) ≥ 0 for all τ ∈ [tj , tj+1] (also see [15]).

Thus the Mean Value Theorem for Integrals can be applied to (10) to yield

|rk+1
∆t (x)| ≤ M(u)

Γ(2− α)∆t

k
∑

j=0

∫ tj+1

tj

Rk+1
j (τ)dτ,(12)
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whereM(u) = max
τ∈I

|∂2τu(x, τ)|. Now we turn to estimate the sum in the right-hand

side of (12). Integrating Rk+1
j (τ) in the interval [tj , tj+1] gives

k
∑

j=0

∫ tj+1

tj

Rk+1
j (τ)dτ

=
∆t3−α

2(2− α)

k
∑

j=0

[

2(k + 1− j)2−α

−2(k − j)2−α − (2− α)
(

(k + 1− j)1−α + (k − j)1−α
)

]

=
∆t3−α

2(2− α)

k
∑

l=0

[

2(l + 1)2−α − 2l2−α − (2− α)
(

(l + 1)1−α + l1−α
)

]

=
∆t3−α

2

k
∑

l=0

[

2

2− α

(

(l + 1)2−α − l2−α
)

−
(

(l + 1)1−α + l1−α
)

]

.

Let sl :=
2

2− α

(

(l + 1)2−α − l2−α
)

−
(

(l + 1)1−α + l1−α
)

, then s0 = α
2−α , and it

follows from the positivity of Rk+1
l that sl is also positive for all l varying from 1

to k, and

sl = l1−α
[ 2l

2− α

(

(

1 +
1

l

)2−α − 1
)

−
(

1 +
1

l

)1−α − 1
]

= l1−α
[ 2l

2− α

(

− 1 + 1 + (2 − α)
1

l
+

(2− α)(1 − α)

2!

1

l2

+
(2− α)(1 − α)(−α)

3!

1

l3
+

(2− α)(1 − α)(−α)(−α − 1)

4!

1

l4
+ . . .

)

−1− 1− (1− α)
1

l
− (1 − α)(−α)

2!

1

l2
− (1− α)(−α)(−α − 1)

3!

1

l3
− . . .

]

= l1−α
[

( 1

2!
− 2

3!

)

(1− α)α
1

l2
+
( 1

3!
− 2

4!

)

(1− α)α(−α − 1)
1

l3
+ . . .

]

≤ l1−α 1

3!
(1− α)α

1

l2

[

1 +
2(α+ 1)

4

1

l
+

3(α+ 1)(α+ 2)

20

1

l2
+ . . .

]

≤ 1

3!
(1 − α)α

1

l1+α

[

1 +
1

l
+

1

l2
+ . . .

]

≤ 2

3!
(1 − α)α

1

l1+α

≤ 1

l1+α
.

Therefore, the series
∑k

l=0 sl converges as k → ∞ for all α > 0. This means there
exists a positive constant c, independent of k, such that

k
∑

j=0

∫ tj+1

tj

Rk+1
j (τ)dτ ≤ c∆t3−α.(13)
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Finally, combining (12) and (13) gives (8). 2

It is more convenient to rewrite the scheme (5) into the following equivalent
form:

b0u
k+1 − α0∂

2
xu

k+1(14)

= b0u
k −

k−1
∑

j=0

bj+1u
k−j +

k
∑

j=1

bju
k−j , k = 0, 1, . . . ,K − 1,

where the coefficients bj, j = 0, 1, . . . , k, satisfy

1 = b0 > b1 > · · · > bk > 0, bk → 0 as k → ∞;
k

∑

j=0

(bj − bj+1) + bk+1 = 1.
(15)

The equation (14), subject to the boundary conditions

uk+1(−1) = uk+1(1) = 0(16)

forms the problem to be solved at each time step.
Let L2(Λ), H1(Λ), and H1

0 (Λ) be usual Sobolev spaces, endowed with standard
inner products and norms. The weak formulation of the equation (14) with the
boundary conditions (16) reads: find uk+1 ∈ H1

0 (Λ), k ≥ 0, such that

(uk+1, v) + α0

(

∂xu
k+1, ∂xv

)

(17)

=

k−1
∑

j=0

(bj − bj+1)(u
k−j , v) + bk(u

0, v), ∀v ∈ H1
0 (Λ),

where (·, ·) is the usual L2-inner product. For the sake of simplification, we define
the H1-inner product (·, ·)1 by:

(u, v)1 := (u, v) + α0(∂xu, ∂xv),

and H1-norm by

‖v‖1 := (v, v)
1/2
1 .

For the semi-discrete solution {uk}Kk=0, by following exactly the same lines as in
[16] and using the lemma 2.1, we can derive the following error estimate.

Theorem 2.1. Let u be the exact solution of (1)-(3), {uk}Kk=0 be the semi-discrete
solution of (17) with the initial condition u0(x) = u(x, 0). Then the following error
estimate holds:

‖u(·, tk)− uk‖1 ≤ cmax
t∈I

‖∂2t u(·, t)‖0Tα∆t2−α, k = 1, 2, · · · ,K,

where c is independent of u, T , and ∆t.

3. Spectral discretizations in space and error estimates

3.1. A Galerkin spectral method in space. Let PN (Λ) be the space of all
polynomials of degree less than or equal to N , and P

0
N(Λ) = H1

0 (Λ) ∩ PN (Λ). We
consider the Galerkin spectral discretization to the weak problem (17) as follows.

For k ≥ 0 find uk+1
N ∈ P

0
N (Λ), such that for all vN ∈ P

0
N (Λ)

(uk+1
N , vN ) + α0

(

∂xu
k+1
N , ∂xvN

)

=

k−1
∑

j=0

(bj − bj+1)(u
k−j
N , vN ) + bk(u

0
N , vN ).(18)
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For {ujN}kj=0 given, the existence and uniqueness of the solution uk+1
N of (18) is

guaranteed by the Lax-Milgram Lemma. The main purpose of this section is to
derive an improvement estimate for the full discrete solution {ukN}Kk=0 as compared
to the one obtained in [16]. To this end, we define the H1

0 -orthogonal projection

operator π1,0
N as follows. For all ψ ∈ H1

0 (Λ), let π
1,0
N ψ be in P 0

N (Λ) such that

(19) (∂xπ
1,0
N ψ, ∂xvN ) = (∂xψ, ∂xvN ), ∀vN ∈ P 0

N (Λ).

It is known that the following estimate holds [7]:

(20) ‖ψ − π
1,0
N ψ‖l ≤ cN l−m‖ψ‖m, ∀ψ ∈ Hm(Λ) ∩H1

0 (Λ), m ≥ 1, l = 0, 1.

Theorem 3.1. Let u be the exact solution of (1)-(3), {ukN}Kk=0 be the solution of
problem (18) with the initial condition u0N = π1

Nu
0. Suppose ∂2t u ∈ L∞((0, T ];Hm(Λ)),

m ≥ 1. Then for 0 ≤ α < 1, k = 0, 1, . . . ,K, we have
(21)

‖u(tk)− ukN‖1 ≤ cTα

1− α

(

N−m‖∂αt u‖L∞(Hm) +∆t2−αN−m‖∂2t u‖L∞(Hm)

+∆t2−α‖∂2t u‖L∞(L2)

)

+ cN1−m‖u‖L∞(Hm),

where ‖v‖L∞(Hm) := sup
t∈(0,T )

‖v(·, t)‖m, and c is a constant independent of α, T , ∆t

and N . Furthermore, the estimate for the case α close to 1 can be improved by

(22)
‖u(tk)− ukN‖1 ≤ cT

(

N−m‖∂αt u‖L∞(Hm) +∆tN−m‖∂2t u‖L∞(Hm)

+∆t‖∂2t u‖L∞(L2)

)

+ cN1−m‖u‖L∞(Hm).

Proof. First we obtain from (7)

(u(tk+1), vN ) + α0(∂xu(tk+1), ∂xvN )−
k−1
∑

j=0

(bj − bj+1)(u(tk−j), vN )− bk(u(t0), vN )

= −α0(r
k+1
∆t , vN ), ∀vN ∈ P

0
N(Λ).

This can be reformulated as follows by using the definition of π1,0
N :

(23)

(π1,0
N u(tk+1), vN ) + α0(∂xπ

1,0
N u(tk+1), ∂xvN )

−
k−1
∑

j=0

(bj − bj+1)(π
1,0
N u(tk−j), vN )− bk(π

1,0
N u(t0), vN )

= −
(

(

Id − π
1,0
N

)(

u(tk+1)

−
k−1
∑

j=0

(bj − bj+1)u(tk−j)− bku(t0)
)

, vN

)

− α0(r
k+1
∆t , vN )

= −α0

(

(Id − π
1,0
N )Lα

t u(tk+1), vN
)

− α0(r
k+1
∆t , vN ),

where Id is the identity operator. Let ekN := ukN − π
1,0
N u(tk). Subtracting (23) from

(18) gives

(ek+1
N , vN ) + α0(∂xe

k+1
N , ∂xvN )(24)

=

k−1
∑

j=0

(bj − bj+1)(e
k−j
N , vN ) + bk(e

0
N , vN ) + α0(δ

k+1
N , vN ),

where

δk+1
N = (Id − π

1,0
N )Lα

t u(tk+1) + rk+1
∆t .
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From (6), we have

δk+1
N = (Id − π

1,0
N )(∂αt u(tk+1)− rk+1

∆t ) + rk+1
∆t .

Using triangle inequality, we obtain

‖δk+1
N ‖0 ≤ ‖(Id − π

1,0
N )∂αt u(tk+1)‖0 + ‖(Id − π

1,0
N )rk+1

∆t ‖0 + ‖rk+1
∆t ‖0.

According to (10), we have

rk+1
∆t (x) =

1

Γ(2− α)∆t

k
∑

j=0

∫ tj+1

tj

∂2τu(x, τ)R
k+1
j (τ)dτ,

where Rk+1
j is defined in (11). We know from the proof of Lemma 2.1 that

Rk+1
j (τ) ≥ 0 for all τ ∈ [tj , tj+1], and

1

Γ(2− α)∆t

k
∑

j=0

∫ tj+1

tj

Rk+1
j (τ)dτ ≤ c∆t2−α.

Consequently, we get
∥

∥rk+1
∆t

∥

∥

0
≤ c∆t2−α max

τ∈I

∥

∥∂2τu(·, τ)
∥

∥

0
.

Furthermore, it is an easy task to verify that

∥

∥(Id − π
1,0
N )rk+1

∆t

∥

∥

0
=

∥

∥

∥

1

Γ(2− α)∆t

k
∑

j=0

∫ tj+1

tj

(Id − π
1,0
N )∂2τu(·, τ)Rk+1

j (τ)dτ
∥

∥

∥

0
,

from which we get
∥

∥(Id − π
1,0
N )rk+1

∆t

∥

∥

0
≤ c∆t2−α max

τ∈I

∥

∥(Id − π
1,0
N )∂2τu(·, τ)

∥

∥

0
.

Then by using (20), we deduce from the above estimates:
(25)

‖δk+1
N ‖0 ≤

∥

∥(Id − π
1,0
N )∂αt u(·, tk+1)

∥

∥

0
+ c∆t2−α max

τ∈I

∥

∥(Id − π
1,0
N )∂2τu(·, τ)

∥

∥

0

+c∆t2−α max
τ∈I

∥

∥∂2τu(·, τ)
∥

∥

0

≤ cN−m‖∂αt u(·, tk+1)‖m + c∆t2−αN−mmax
τ∈I

∥

∥∂2τu(·, τ)
∥

∥

m

+c∆t2−α max
τ∈I

∥

∥∂2τu(·, τ)
∥

∥

0

≤ cN−m‖∂αt u‖L∞(Hm) + c∆t2−αN−m‖∂2t u‖L∞(Hm)

+c∆t2−α‖∂2t u‖L∞(L2).

Taking vN = ek+1
N in (24), we obtain

‖ek+1
N ‖1 ≤

k−1
∑

j=0

(bj − bj+1)‖ek−j
N ‖0 + bk‖e0N‖0 + α0‖δk+1

N ‖0.(26)

In the following we are going to prove

‖ekN‖1 ≤ b−1
k−1α0 max

0≤j≤k
‖δjN‖0, k = 1, 2, . . . ,K.(27)

by using mathematical induction. When k = 1, we deduce from (26)

‖e1N‖1 ≤ b0‖e0N‖0 + α0‖δ1N‖0 = α0‖δ1N‖0 ≤ b−1
0 α0 max

0≤j≤1
‖δjN‖0.
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Assuming the estimate

‖eiN‖1 ≤ b−1
i−1α0 max

0≤j≤i
‖δjN‖0, i = 0, 1 . . . , k(28)

is true, we want to prove that it also holds for i = k+1. It can be done by combining
(26), (28), and (15)

‖ek+1
N ‖1 ≤

[

(1− b1) +

k−1
∑

j=1

(bj − bj+1) + bk

]

b−1
k α0 max

0≤j≤k+1
‖δjN‖0

= b−1
k α0 max

0≤j≤k+1
‖δjN‖0.

This completes the proof of (27). Then inserting (25) into (26), and noticing

b−1
k−1 ≤ kα

1− α
, we obtain

‖ekN‖1 ≤ b−1
k−1α0 max

0≤j≤k
‖δjN‖0

≤ b−1
k−1k

−αkα∆tα∆t−αΓ(2− α)∆tα max
0≤j≤k

‖δkN‖0

≤ cTα

1− α
Γ(2− α)

(

N−m‖∂αt u‖L∞(Hm) +∆t2−αN−m‖∂2t u‖L∞(Hm)

+∆t2−α‖∂2t u‖L∞(L2)

)

.

Finally, we use the following triangle inequality

‖u(k)− ukN‖1 ≤ ‖ekN‖1 + ‖u(tk)− π1
Nu(tk)‖1

and the estimate (20) to conclude

‖u(k)− ukN‖1 ≤ cTα

1− α

(

N−m‖∂αt u‖L∞(Hm) +∆t2−αN−m‖∂2t u‖L∞(Hm)

+∆t2−α‖∂2t u‖L∞(L2)

)

+ cN1−m‖u‖L∞(Hm).

Thus (21) is proved.

Now we consider the case α → 1. Note that in this case, the coefficient Tα

1−α in

the estimate (21) blows up as α → 1. Therefore, we seek an improved estimate for
α close to 1. First we can prove by induction the following estimate:

(29) ‖ekN‖1 ≤ α0

k
∑

j=0

‖δjN‖0, k = 1, 2, . . . ,K.

This statement is trivially true when k = 1. Now we want to prove if the estimate
(29) is true for i = 0, 1, . . . , k, then it is also true for i = k + 1. In fact, we have

‖ek+1
N ‖1 ≤

[

k−1
∑

j=0

(bj − bj+1) + bk

]

k
∑

j=0

α0‖δjN‖0 + α0‖δk+1
N ‖0 ≤

k+1
∑

j=0

α0‖δjN‖0.

This proves (29). Then we obtain from (29):

‖ekN‖1 ≤ c∆t

k
∑

j=0

‖δjN‖0 ≤ cT
(

N−m‖∂αt u‖L∞(Hm)

+∆tN−m‖∂2t u‖L∞(Hm) +∆t‖∂2t u‖L∞(L2)

)

.

Finally we get (22) by using the triangle inequality. The proof of the theorem is
complete. 2
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3.2. A Legendre collocation method in space. Let LN(x) denotes the Le-
gendre polynomial of degree N . {ξj , j = 0, 1, . . . , N} are the Legendre-Gauss-
Lobatto (GLL) points, i.e., zeros of (1 − x2)L′

N (x); {ωj, j = 0, 1, . . . , N} are the
weights such that the following quadrature holds

∫ 1

−1

ϕ(x)dx =

N
∑

j=0

ϕ(ξj)ωj , ∀ϕ ∈ P2N−1(Λ).

We define the discrete inner product:

(φ, ψ)N :=

N
∑

i=0

φ(ξi)ψ(ξi)ωi,

and let ‖φ‖N := (φ, φ)
1/2
N . Then the following inequality is well known:

‖φ‖0 ≤ ‖φ‖N ≤
√
3‖φ‖0, ∀ϕ ∈ PN (Λ).(30)

Now we consider the Legendre collocation approximation as follows: find uk+1
N ∈

P 0
N (Λ), such that

(31) AN (uk+1
N , vN ) = FN (vN ), ∀vN ∈ P 0

N (Λ),

where the bilinear form AN (·, ·) is defined by

AN (uk+1
N , vN ) := (uk+1

N , vN )N + α0(∂xu
k+1
N , ∂xvN )N ,

and the functional FN (·) is given by

FN (vN ) :=

k−1
∑

j=0

(bj − bj+1)(u
k−j
N , vN )N + bk(u

0
N , vN )N .

We denote by ‖ · ‖1,N the norm associated to the bilinear form AN (·, ·):

‖ψN‖1,N := A
1/2
N (ψN , ψN ), ∀ψN ∈ PN (Λ).

According to (30), the norm ‖ · ‖1,N is equivalent to the usual ‖ · ‖1 norm.

Theorem 3.2. Let u be the exact solution of (1)-(3), {ukN}Kk=0 be the solution of

problem (31) with the initial condition u0N = π
1,0
N u0. Suppose ∂2t u ∈ L∞((0, T ];Hm(Λ)),

m ≥ 1. Then for 0 ≤ α < 1, k = 1, 2, . . . ,K, we have

(32)
‖u(tk)− ukN‖1,N ≤ cN1−m‖u‖L∞(Hm) +

cTα

1− α

(

N−m‖∂αt u‖L∞(Hm)

+∆t2−α‖∂2t u‖L∞(L2) +∆t2−αN−m‖∂2t u‖L∞(Hm)

)

,

where c is a constant independent of α, T , ∆t, and N . Furthermore, a better
estimate holds for the case α → 1 as follows:

(33)
‖u(tk)− ukN‖1,N ≤ cN1−m‖u‖L∞(Hm) + cT

(

N−m‖∂αt u‖L∞(Hm)

+∆t‖∂2t u‖L∞(L2) +∆tN−m‖∂2t u‖L∞(Hm)

)

.

Proof. Let ek+1
N = uk+1

N − π
1,0
N u(tk+1), then a straightforward calculation shows

AN (ek+1
N , vN ) = (ek+1

N , vN )N + α0(∂xe
k+1
N , ∂xvN )N

= (uk+1
N , vN )N + α0(∂xu

k+1
N , ∂xvN )N − (π1,0

N u(tk+1), vN )N

−α0(∂xπ
1,0
N u(tk+1), ∂xvN )N .
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Using (31), we obtain
(34)

(ek+1
N , vN )N + α0(∂xe

k+1
N , ∂xvN )N

=

k−1
∑

j=0

(bj − bj+1)(e
k−j
N , vN )N + bk(e

0
N , vN )N + (εk+1

1 , vN )N + (εk+1
2 , vN )N ,

where

(εk+1
1 , vN )N

= (u(tk+1)− π
1,0
N u(tk+1), vN )N −

k−1
∑

j=0

(bj − bj+1)
(

u(tk−j)− π
1,0
N u(tk−j), vN

)

N

−bk
(

u(t0)− π
1,0
N u(t0), vN

)

N
,

and

(εk+1
2 , vN )N

= −(u(tk+1)− π
1,0
N u(tk+1), vN )N +

k−1
∑

j=0

(bj − bj+1)(u(tk−j), vN )N

+bk(u(t0), vN )N − (π1,0
N u(tk+1), vN )N − α0(∂xπ

1,0
N u(tk+1), ∂xvN )N .

Next we estimate (εk+1
1 , vN )N and (εk+1

2 , vN )N . Firstly, it is observed that

(εk+1
1 , vN )N =

(

(Id − π
1,0
N )(u(tk+1

)

−
k−1
∑

j=0

(bj − bj+1)u(tk−j)− bku(t0)), vN

)

N

= α0

(

(Id − π
1,0
N )

1

Γ(2 − α)

k
∑

j=0

bj
u(tk+1−j)− u(tk−j)

∆tα
, vN

)

N

= α0

(

(Id − π
1,0
N )

(

∂αt u(tk+1) + rk+1
∆t

)

, vN

)

N
.

By using the following inequality [7, 24]: ∀ϕ ∈ Hm(Λ), m ≥ 1,

(35) (ϕ, vN )− (ϕ, vN )N ≤ cN−m‖ϕ‖m‖vN‖0,

we obtain

|(εk+1
1 , vN )N | ≤ α0

[

(

(Id − π
1,0
N )(∂αt u(tk+1) + rk+1

∆t ), vN
)

0

+cN−1
∥

∥(Id − π
1,0
N )(∂αt u(tk+1) + rk+1

∆t )
∥

∥

1
‖vN‖0

]

≤ α0

[

∥

∥(Id − π
1,0
N )(∂αt u(tk+1) + rk+1

∆t )
∥

∥

0
‖vN‖0

+cN−1
∥

∥(Id − π
1,0
N )(∂αt u(tk+1) + rk+1

∆t )
∥

∥

1
‖vN‖0

]

.

Using the estimate (20) once again and following a similar procedure as in Theorem
3.1, we get

|(εk+1
1 , vN )N | ≤ cα0(N

−m‖∂αt u‖L∞(Hm) +∆t2−αN−m‖∂2t u‖L∞(Hm))‖vN‖0,N .
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On the other hand, we have

(εk+1
2 , vN )N

= −
(

u(tk+1) +
k−1
∑

j=0

(bj − bj+1)u(tk−j) + bku(t0), vN

)

N
− α0(∂xπ

1,0
N u(tk+1), ∂xvN )N

= −α0

( 1

Γ(2− α)

k
∑

j=0

bj
u(tk+1−j)− u(tk−j)

∆tα
, vN

)

N
− α0(∂xπ

1,0
N u(tk+1), ∂xvN ).

Note that in the last equality above we have used the fact that (∂xπ
1,0
N u(tk+1), ∂xvN )N

= (∂xπ
1,0
N u(tk+1), ∂xvN ). From (1), we have (∂αt u(tk+1), vN ) = −(∂xu(tk+1), ∂xvN ).

Then by using (19), (20), and the above equality, we obtain

(εk+1
2 , vN )N

= α0(L
α
t u(tk+1), vN )− α0(L

α
t u(tk+1), vN )N + α0(∂

α
t u(tk+1)− Lα

t u(tk+1), vN ).

Now we use (6), (8), and (35) to yield

|(εk+1
2 , vN )N | ≤ cα0

(

N−m‖∂αt u‖L∞(Hm)

+∆t2−α‖∂2t u‖L∞(L2) +∆t2−αN−m‖∂2t u‖L∞(Hm)

)

‖vN‖0,N .

Taking vN = ek+1
N in (34), and combining all above estimates together, we obtain

AN (ek+1
N , ek+1

N ) = ‖ek+1
N ‖21,N

≤
k−1
∑

j=0

(bj − bj+1)‖ek−j
N ‖0,N‖ek+1

N ‖1,N + bk‖e0N‖0,N‖ek+1
N ‖1,N

+cα0(N
−m‖∂αt u‖L∞(Hm) +∆t2−α‖∂2t u‖L∞(L2)

+∆t2−αN−m‖∂2t u‖L∞(Hm))‖ek+1
N ‖1,N ,

which gives

‖ek+1
N ‖1,N ≤

k−1
∑

j=0

(bj − bj+1)‖ek−j
N ‖0,N + bk‖e0N‖0,N

+cα0(N
−m‖∂αt u‖L∞(Hm) +∆t2−α‖∂2t u‖L∞(L2)

+∆t2−αN−m‖∂2t u‖L∞(Hm)).

Finally, following the same lines as in Theorem 3.1 allows us to get first

‖ekN‖1,N ≤ cb−1
k−1α0(N

−m‖∂αt u‖L∞(Hm) +∆t2−α‖∂2t u‖L∞(L2)

+N−m∆t2−α‖∂2t u‖L∞(Hm))

≤ cTα

1− α

(

N−m‖∂αt u‖L∞(Hm) +∆t2−α‖∂2t u‖L∞(L2)

+∆t2−αN−m‖∂2t u‖L∞(Hm)

)

,

then, by the triangle inequality

‖u(tk)− ukN‖1,N ≤ ‖u(tk)− π
1,0
N u(tk)‖1,N + ‖ukN − π

1,0
N u(tk)‖1,N

≤ cN1−m‖u‖L∞(Hm) +
cTα

1− α
(N−m‖∂αt u‖L∞(Hm)

+∆t2−α‖∂2t u‖L∞(L2) +∆t2−αN−m‖∂2t u‖L∞(Hm)).

The estimate (33) for the case α→ 1 can be obtained in a similar way as in Theorem
3.1 for the same case. This completes the proof of the theorem.
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4. Numerical results

The full scheme (31) is implemented exactly as in [16]: by choosing the La-

grangian polynomial {hj}N−1
j=1 based on the LGL points as the basis functions, we

arrive at each time step at a linear system as follows:

(36) (B + α0A)u
k+1 = f,

where B is the mass matrix with the entries Bij := ωiδij , i, j = 1, . . . , N − 1, and
A is the stiffness matrix with the entries:

Aij :=

N
∑

q=0

DqiDqjωq, Dij := h′j(ξi), i, j = 1, . . . , N − 1.

uk+1 is the nodal unknown vector (uk+1
N (ξj))

N−1
j=1 , the right hand side vector f is

given by (FN (hi))
N−1
j=1 .
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Figure 1. Errors for the smooth solution as a function of the
polynomial degree N for α = 0.1.
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Figure 2. Errors for the smooth solution as a function of the
polynomial degree N for α = 0.5.
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The system (36) is symmetric positive definite, thus can be solved by employing
the conjugate gradient method.

We now present some numerical results to verify the error estimates. The nu-
merical test is carried out in the same framework as in [16]. Our focus here is
to confirm that the error behavior obeys the rate law O(∆t2−α) + O(N1−m) pre-
dicted in Theorem 3.2 rather than O(∆t2−α) + O(∆t−1N1−m) derived in [16].
To this end, we consider the problem (1)-(3) with an additional forcing term
f(x, t) := 3

Γ(2−α) t
3−α sin(2πx) + 4π2t3 sin(2πx) and initial condition g(x) := 0,

such that the exact solution is u(x, t) = t3 sin(2πx). For this smooth solution the
convergence in space is expected to be exponential.
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Figure 3. Error for the smooth solution versus the time step size
∆t for α = 0.1, N = 17.
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Figure 4. Error for the smooth solution versus the time step size
∆t for α = 0.5, N = 17.

To check the spatial accuracy, we compute the errors ‖u(T )−ukN‖ in the discrete
H1, L2, and L∞ norms, and investigate the error behavior with respect to the
polynomial degree N for a small enough time step size. In Fig. 1 and Fig. 2, we
present the errors as a function of the polynomial degree N for ∆t = 10−4 and
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α = 0.1, 0.5 respectively. We can draw a number of conclusions from these two
figures: 1) The straight lines in the semi-log coordinates indicate that the errors
decay exponentially; 2) Although the accuracy of the numerical solutions slightly
decreases when the order of the fractional derivative increases, the latter does not
effect the exponential convergence rate of the proposed method; 3) The straight lines
equally indicate that for ∆t = 10−4 and N ≤ 17 the temporal error is negligible
as compared to the spatial error. That is, the spatial error term dominates the
temporal error term in the error estimate for ∆t ≤ 10−4 and N ≤ 17.
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Figure 5. Errors for the solution of limited regularity as a func-
tion of the polynomial degree N for α = 0.1.
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Figure 6. Error for the solution of limited regularity versus the
time step size ∆t for α = 0.1, N = 17.

Keeping the third point above in mind, we now fix N = 17 and let ∆t vary from
10−1 to 10−5, and the results obtained are plotted in Fig. 3 and Fig. 4. Obviously
in the ranges ∆t > 10−3 for α = 0.1 and ∆t > 10−4 for α = 0.5, the error stemming
from the time discretization dominates the spatial discretization error. Therefore
the total error decreases when the time stepping size decreases in these ranges until
it reaches a size ∆tc such that the spatial error becomes dominant. The error decay
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rate is indeed of order 2−α, which is in a very good agreement with the theoretical
prediction. It is observed in Fig. 3 and Fig. 4 that the size ∆tc for α = 0.1 and
α = 0.5 are approximately 10−3 and 10−4 respectively. What we want to emphasize
here is the error behavior after ∆t = ∆tc. Fig. 3 and Fig. 4 show that the
error stops decreasing when ∆t < ∆tc because the spatial error term now becomes
dominant. But it is interesting to see that the error converges to a constant as ∆t
tends to 0, which clearly indicates that the error behaves like O(∆t2−α)+O(N1−m)
as predicted in Theorem 3.2 rather than O(∆t2−α) + O(∆t−1N1−m) as given in
[16].

The convergence behavior is further verified by testing a solution of limited
regularity. That is, we check the convergence rate of the proposed method for the

exact solution with limited regularity in I × (0, 2) as follows: u(x, t) = t3(x− 2)x
5
2 .

In Fig. 5, we present the errors versus the polynomial degrees N in a log-log plot
for α = 0.1 with fixed ∆t = 10−4. The N−3 decay rate is also shown for comparison
reason. We observe here the algebraic convergence rates, which is conform to the
spatial regularity of the exact solution.

The errors versus the time step for fixed N = 17 are plotted in Fig. 6 to
investigate the error decay rate with respect to ∆t. It is observed that the error
keeps decreasing when ∆t decreases in a range of relatively large time step sizes
until the spatial error becomes the leading error. Then this spatial leading error
remains unchanged when ∆t continues to decrease. This observation once again
confirms the error estimate established in Theorem 3.2.

5. Concluding remarks

In this paper we considered the numerical analysis of a known scheme for the
time-fractional diffusion equation. We derived a sharper estimate for the time and
space errors of this scheme by providing a more accurate coefficient in the time
error term and removing the undesirable factor in the space error term. This new
error estimate was then confirmed through a series of numerical tests.
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