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SCHEMES AND ESTIMATES FOR THE LONG-TIME

NUMERICAL SOLUTION OF MAXWELL’S EQUATIONS FOR

LORENTZ METAMATERIALS

JICHUN LI AND SIMON SHAW

Abstract. We consider time domain formulations of Maxwell’s equations for the Lorentz model
for metamaterials. The field equations are considered in two different forms which have either six
or four unknown vector fields. In each case we use arguments tuned to the physical laws to derive
data-stability estimates which do not require Gronwall’s inequality. The resulting estimates are,
in this sense, sharp. We also give fully discrete formulations for each case and extend the sharp
data-stability to these. Since the physical problem is linear it follows (and we show this with
examples) that this stability property is also reflected in the constants appearing in the a priori

error bounds. By removing the exponential growth in time from these estimates we conclude
that these schemes can be used with confidence for the long-time numerical simulation of Lorentz
metamaterials.

Key words. Maxwell’s equations, Lorentz model, metamaterial, Galerkin and mixed finite
element method, long-time integration, time stepping.

1. Introduction

Electromagnetic metamaterials are artificially structured materials which exhibit
exotic properties such as negative refractive index and reversed Doppler effects. The
successful construction of such metamaterials in 2000 triggered a wave of further
study of metamaterials and exploration of their applications in diverse areas such
as sub-wavelength imaging and cloaking. More details can be found in monographs
such as [9, 28, 34, 7] and references cited therein.

Although the finite element approximation of Maxwell’s equations has been ex-
tensively documented for ‘classical’ materials (see, for example, [3, 4, 8, 14, 31,
33, 37] and their references), there is now an opportunity to build on this body of
knowledge for the development and analysis of finite element methods (FEM) for
Maxwell’s equations for metamaterials. In this direction we mention [10, 11, 5, 2, 21]
for the time-harmonic form, and [19, 20, 16] for the time-domain form. Our focus
here is on the Lorentz model which, as we will see below, introduces additional un-
knowns for electrical and magnetic polarizations. These are governed by ordinary
differential equations (in time) which hold at each point in space and have the effect
of making the (meta)material dispersive, or ‘frequency dependent’. In this context
we recall also the work on the time-domain Maxwell’s equations in general disper-
sive media in [1, 17, 24, 35, 27, 36]. In particular, [1] contains a study of numerical
dispersion for Debye and Lorentz media and [35] gives long-time stability and error
estimates for a Debye model.
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In recent years there have been several efforts in developing and analyzing some
FEMs for the time-domain Maxwell’s equations for Lorentz metamaterials (see, for
example, [22] and the references therein). However most of these previous results
for data-stability and error bounds were derived with the use of Gronwall-type
inequalities and, hence, are of limited practical use due to the exponential growth,
in time, of the constants. This article improves upon this current ‘state of the art’
by building upon the ‘long-time’ results in [35] for two popular numerical schemes.

To be precise, in Section 2 we describe the time domain formulation of Maxwell’s
equations for Lorentz metamaterials. In Sections 3 and 4, respectively, the field
equations are considered in two different forms which have, respectively, six and four
unknown vector fields. In each case we use arguments tuned to the physical laws
to derive data-stability estimates which do not require Gronwall’s inequality. The
resulting estimates are sharp, in that they contain stability constants that are time
independent, and appear to be novel. We also give fully discrete formulations for
each case and extend the sharp data stability to these formulations. Moreover, since
the physical problem is linear the error terms obey essentially the same stability
estimates but with data replaced by approximation error. With this in mind we
can therefore show by examples that the long-time stability properties of these
schemes are also reflected in the a priori error bounds. The time dependence in
these constants then arises from the time dependence in the norms of the data
and exact solution and produces, at worst, low-order-polynomial growth in time
rather than the exponential growth that arises from Gronwall arguments. Hence,
we can conclude that the resulting numerical schemes can be used with confidence
for the long time numerical simulation of Lorentz metamaterials. This is the major
contribution of the work presented below. In Section 5 we close with a short
discussion of the formulations.

Throughout our notation is mostly standard. For example, C > 0 will denote a
generic positive constant (independent of the finite element mesh size h and time
step size τ) and we let (Hσ(Ω))3 be the standard Sobolev space equipped with the
norm ‖ · ‖σ and semi-norm | · |σ. Specifically, ‖ · ‖0 will mean the (L2(Ω))3-norm.
From [31] (for example) we also recall the standard spaces for Maxwell problems,

H(curl; Ω) = {v ∈ (L2(Ω))3 : ∇× v ∈ (L2(Ω))3},
H0(curl; Ω) = {v ∈ H(curl; Ω) : n× v = 0 on ∂Ω},
Hσ(curl; Ω) = {v ∈ (Hσ(Ω))3 : ∇× v ∈ (Hσ(Ω))3},

where σ > 0 is a real number, and Ω is a bounded Lipschitz polyhedral domain in
R3 with connected boundary ∂Ω and outward directed unit normal n. We equip
H(curl; Ω) with norm ‖v‖0,curl = (‖v‖20+‖curl v‖20)1/2, and Hσ(curl; Ω) with norm

‖v‖σ,curl = (‖v‖2σ+‖curl v‖2σ)1/2. For clarity, in the rest of the paper we introduce

the vector notation L2(Ω) = (L2(Ω))3 and Hσ(Ω) = (Hσ(Ω))3 and also we often
omit the explicit display of the dependence of quantitites on x ∈ Ω because we
want to focus on the handling of their time dependence. The spatial dependencies
are handled in a standard way. Further notation is introduced as and when needed.

2. The governing equations

In general terms, the problem of electromagnetic wave propagation requires the
solution of Maxwell’s equations,

(1) ∇×E = −∂B

∂t
, and ∇×H =

∂D

∂t
in Ω× I
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where E(x, t) and H(x, t) are the electric and magnetic fields, and where D(x, t)
and B(x, t) are the corresponding electric and magnetic flux densities. We will be
more specific about inital and boundary data below but here, to close the problem,
we note that in a general (linear) medium D and B are related to the electric and
magnetic fields E and H through the constitutive relations

(2) D = ǫ0E + P ≡ ǫE and B = µ0H +M ≡ µH.

Here ǫ0 is the vacuum permittivity, µ0 is the vacuum permeability, and P (re-
spectively M) is the induced electric (respectively magnetic) polarization. The
introduction of ǫ and µ as the permittivity and permeability of the underlying
medium implies that there is a functional relationship between E and P , and be-
tweenH andM , and it is the form of these relationships that determines the type
of medium and its properties. It is convenient to first discuss these models in the
frequency domain although later we will revert to the time domain for the specific
formulations that we study.

One of the most general models used for modeling wave propagation in meta-
materials (see, for example [22]) is the so-called Lorentz model, whose permittivity
and permeability are described by
(3)

ǫ(ω) = ǫ0

(
1−

ω2
pe

ω2 − ω2
e0 − jΓeω

)
, µ(ω) = µ0

(
1−

ω2
pm

ω2 − ω2
m0 − jΓmω

)
,

where ωpe (respectively ωpm) is the electric (respectively magnetic) plasma fre-
quency, Γe (respectively Γm) is the electric (respectively magnetic) damping fre-
quency, ωe0 (respectively ωm0) is the electric (respectively magnetic) resonance
frequency, j =

√
−1 is the imaginary unit, and ω is a general frequency. Notice

that when ωe0 = ωm0 = 0, the Lorentz model reduces to the Drude model (e.g. [22])
which is another popular metamaterial model:

(4) ǫ(ω) = ǫ0

(
1−

ω2
pe

ω(ω − jΓe)

)
, µ(ω) = µ0

(
1−

ω2
pm

ω(ω − jΓm)

)
.

Furthermore, if we set Γe = Γm = 0 then this Drude model reduces to the cold
plasma model,

(5) ǫ(ω) = ǫ0

(
1−

ω2
pe

ω2

)
, µ(ω) = µ0

(
1−

ω2
pm

ω2

)

and so we see that, as long as we allow for these reductions, the study of the Lorentz
model, (3), presented below also includes these other models. Therefore, in the rest
of this article, unless specified clearly to the contrary, we will assume that all of the
physical parameters are positive (i.e. ǫ0, µ0, ωe0, ωm0, . . . ).

Moving away from the frequency domain formulation we recall from [20], or
infer from (3) above, the following equations for the time-domain Lorentz model
for metamaterials:

ǫ0
∂E

∂t
+

∂P

∂t
−∇×H = 0, in Ω× (0, T ),(6)

µ0
∂H

∂t
+

∂M

∂t
+∇×E = 0, in Ω× (0, T ),(7)
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1

ǫ0ω2
pe

∂2P

∂t2
+

Γe

ǫ0ω2
pe

∂P

∂t
+

ω2
e0

ǫ0ω2
pe

P −E = 0, in Ω× (0, T ),(8)

1

µ0ω2
pm

∂2M

∂t2
+

Γm

µ0ω2
pm

∂M

∂t
+

ω2
m0

µ0ω2
pm

M −H = 0, in Ω× (0, T ).(9)

To make the problem well-posed, we assume that (6)-(9) are supplemented by the
perfectly-conducting boundary condition

(10) n×E = 0 on ∂Ω,

and, with x dependence suppressed, the initial conditions

E(0) = E0, H(0) =H0,(11)

P (0) = P 0, M (0) =M 0,
∂P

∂t
(0) = P 1,

∂M

∂t
(0) =M1,(12)

where E0,H0,P 0,M0,P 1, and M1 are given functions.
Now that the physical model is completely specified we notice that there are

several ways in which we could approach it in terms of giving a fully discrete
numerical approximation. If we work with the model as described then, in the
simplest case, we need to store ten vector fields: the current and previous time
steps for E and H and three consecutive time levels for P and M (i.e. thirty
scalar fields in R3). And, furthermore, we would need a time stepper that can
handle the second time derivatives. We do not consider the discretization of second
order ODE’s in this article but instead first, in Section 3, we reduce (8) and (9)
to first order ODE’s by defining J = P t and K = M t where, here and below,
the subscript denotes partial differentiation. We then need only handle first time
derivatives in the time stepping but we will have to store twelve vector fields.
Alternatively, in Section 4, we introduce another formulation which uses ony four
vector fields at each of two time levels but requires the time integrals of J and K.
Since, in the time-discrete setting, these can be updated by recursion this scheme
requires the storage of only ten vector fields.

We also note that we could formulate this Lorentz model in first-order form
with only two vector fields, E and H . The result is a system of convolution-type
integrodifferential equations with non-monotone kernels of positive type. In the
discrete formulation these ‘history integrals’ can be updated in a recursive way by
introducing complex arithmetic and using Euler’s formula, and the scheme would
need only eight real vector fields to be stored in memory. We do not study this
scheme here because of the difficulties associated with proving that the discrete
memory term is also of positive type. In general we can expect such a proof to be
non-trivial and, for example, refer to the analysis in [30] for the case of monotone
kernels.

It is not the purpose of this study to reach any decision as to which of these
schemes is the ‘best’ since that would require a more practical study organised
around a well-chosen set of numerical tests. Rather we show, in each case, that a
careful treatment of the dispersive terms results in data-stability estimates for both
the continuous and discrete problems with constants that grow much more slowly
with time that Gronwall-type estimates would suggest. This analysis carries over
to the constants in the a priori error bounds.
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3. Investigation of the Lorentz model in six variables

Following our previous work in [20] we can rewrite the Lorentz model (6)-(9) as,

ǫ0
∂E

∂t
−∇×H + J = 0,(13)

µ0
∂H

∂t
+∇×E +K = 0,(14)

1

ǫ0ω2
pe

∂J

∂t
+

Γe

ǫ0ω2
pe

J −E +
ω2
e0

ǫ0ω2
pe

P = 0,(15)

ω2
e0

ǫ0ω2
pe

∂P

∂t
− ω2

e0

ǫ0ω2
pe

J = 0,(16)

1

µ0ω2
pm

∂K

∂t
+

Γm

µ0ω2
pm

K −H +
ω2
m0

µ0ω2
pm

M = 0,(17)

ω2
m0

µ0ω2
pm

∂M

∂t
− ω2

m0

µ0ω2
pm

K = 0,(18)

where we define the induced electric and magnetic currents J = P t and K =M t.
Note that redundant coefficients are included in (16) and (18) in order to make the
forthcoming stability and error analysis easier to follow.

Letting V ∗ denote the topological dual space of V = H0(curl; Ω) and denoting
the standard L2(Ω) inner product as ( · , · ), it is then easy to see that a weak
formulation of (13)-(18) can be written as: Find E ∈ H1(0, T ;V ∗) ∩ L2(0, T ;V ),
and J ,P ,H,K,M ∈ H1(0, T ;L2(Ω)) such that

ǫ0(Et,φ)− (H ,∇× φ) + (J ,φ) = 0, ∀ φ ∈ H0(curl; Ω),(19)

µ0(Ht,ψ) + (∇×E +K,ψ) = 0, ∀ ψ ∈ L2(Ω),(20) (
1

ǫ0ω2
pe

J t +
Γe

ǫ0ω2
pe

J −E +
ω2
e0

ǫ0ω2
pe

P ,φ1

)
= 0, ∀ φ1 ∈ L2(Ω),(21)

(
ω2
e0

ǫ0ω2
pe

P t −
ω2
e0

ǫ0ω2
pe

J ,φ2

)
= 0, ∀ φ2 ∈ L2(Ω),(22)

(
1

µ0ω2
pm

Kt +
Γm

µ0ω2
pm

K −H +
ω2
m0

µ0ω2
pm

M ,ψ1

)
= 0, ∀ ψ1 ∈ L2(Ω),(23)

(
ω2
m0

µ0ω2
pm

M t −
ω2
m0

µ0ω2
pm

K,ψ2

)
= 0, ∀ ψ2 ∈ L2(Ω),(24)

subject to the boundary condition (10) and initial conditions

E(x, 0) = E0(x), J(x, 0) = J0(x), P (x, 0) = P 0(x),(25)

H(x, 0) =H0(x), K(x, 0) =K0(x), M(x, 0) =M 0(x).(26)

Choosing the test functions in (19)-(24) as E,H ,J ,P ,K and M , respectively,
and summing up the results, we can easily obtain (see [20, Lemma 5.1]) the following
data-stability for the continuous time system:

ǫ0||E(t)||20 + µ0||H(t)||20 +
1

ǫ0ω2
pe

||J ||20 +
1

µ0ω2
pm

||K||20

+
ω2
e0

ǫ0ω2
pe

||P (t)||20 +
ω2
m0

µ0ω2
pm

||M (t)||20
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6 ǫ0||E(0)||20 + µ0||H(0)||20 +
1

ǫ0ω2
pe

||J(0)||20

+
1

µ0ω2
pm

||K(0)||20 +
ω2
e0

ǫ0ω2
pe

||P (0)||20 +
ω2
m0

µ0ω2
pm

||M (0)||20.

To design a mixed finite element method, we partition Ω by a family of regular
tetrahedral (or hexaderal) meshes Th with maximum mesh size h and, as long as we
bear in mind the effect of solution-regularity, we can in principle use any order of
Raviart-Thomas-Nédélec finite element spaces on this mesh. For tetrahedra (e.g.,
[32] and [31]), for any l > 1, and with Sl = {~p ∈ (p̃l)

3,x · ~p = 0}, these spaces are,

Uh = {uh ∈ H(div; Ω) : uh|K ∈ (pl−1)
3 ⊕ p̃l−1x, ∀ K ∈ Th},

V h = {vh ∈ H(curl; Ω) : vh|K ∈ (pl−1)
3 ⊕ Sl, ∀ K ∈ Th},

while for Raviart-Thomas-Nédélec cubic elements (e.g., [32] and [31]) we have,

Uh = {uh ∈ H(div; Ω) : uh|K ∈ Ql,l−1,l−1 ×Ql−1,l,l−1 ×Ql−1,l−1,l, ∀ K ∈ Th},
V h = {vh ∈ H(curl; Ω) : vh|K ∈ Ql−1,l,l ×Ql,l−1,l ×Ql,l,l−1, ∀ K ∈ Th}.

Here pk denotes the space of polynomials of degree k, p̃k denotes the space of
homogeneous polynomials of degree k, and Qi,j,k denotes the space of polynomials
whose degrees are less than or equal to i, j, k in variables x, y, z, respectively. To
impose the boundary condition (10), we denote V 0

h = {v ∈ V h : v×n = 0 on ∂Ω}.
It is easy to see that

(27) ∇× V h ⊂ Uh.

For error analysis, we need two more operators. The first one is the standard
L2(Ω)-projection operator Π2: For any H ∈ L2(Ω), Π2H ∈ Uh satisfies

(28) (Π2H −H,ψh) = 0, ∀ ψh ∈ Uh

and where norms of Π2H −H can be estimated by standard best approximation
arguments. The second is the standard Nédélec interpolation operator Πh defined
from H(curl; Ω) to V h. We refer to the literature (e.g. [31, Thm, 5.41]) for full
details but here for the ℓ−th order first-type curl-conforming Nédélec spaces in [32],
we will assume error bounds of the form

(29) ‖E −ΠhE‖0 + ‖∇ × (E −ΠhE)‖0 6 Chℓ‖E‖
H

ℓ(curl;Ω).

These estimates should be regarded in the context of the usual technical assump-
tions of the mesh being shape-regular.

To define a fully discrete scheme, we assume that the time interval (0, T ) is
divided into N uniform subintervals by points 0 = t0 < t1 < · · · < tN = T,
where tk = kτ and τ = T/N is the time step, and denote the k-th subinterval by
Ik = [tk−1, tk]. Moreover, we introduce the backward and average operators:

δτu
k = (uk − uk−1)/τ, uk = (uk + uk−1)/2,

for any function uk = u(·, kτ), with 0 6 k 6 N.
For the purposes of comparison with what follows, let us first recall the Crank-

Nicolson scheme constructed in [20, p.634] for solving the system (13)-(18): For
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k = 1, 2, · · · , N, find Ek
h ∈ V 0

h,J
k
h,P

k
h ∈ V h and Hk

h,K
k
h,M

k
h ∈ Uh such that

ǫ0(δτE
k
h,φh)− (H

k

h,∇× φh) + (J
k

h,φh) = 0,(30)

µ0(δτH
k
h,ψh) + (∇×Ek

h,ψh) + (K
k

h,ψh) = 0,(31)

1

ǫ0ω2
pe

(δτJ
k
h,φ1h) +

Γe

ǫ0ω2
pe

(J
k

h,φ1h)− (E
k

h,φ1h) +
ω2
e0

ǫ0ω2
pe

(P
k

h,φ1h) = 0,(32)

ω2
e0

ǫ0ω2
pe

(δτP
k
h,φ2h)−

ω2
e0

ǫ0ω2
pe

(J
k

h,φ2h) = 0,(33)

1

µ0ω2
pm

(δτK
k
h + ΓmK

k

h + ω2
m0M

k

h,ψ1h)− (H
k

h,ψ1h) = 0,(34)

ω2
m0

µ0ω2
pm

(δτM
k
h,ψ2h)−

ω2
m0

µ0ω2
pm

(K
k

h,ψ2h) = 0,(35)

hold true for any φh ∈ V 0
h,ψh,ψ1h,ψ2h ∈ Uh and φ1h,φ2h ∈ V h, and are subject

to the initial approximations

E0
h(x) = ΠhE0(x), J

0
h(x) = ΠhJ0(x), P

0
h(x) = ΠhP 0(x),

H0
h(x) = Π2H0(x), K

0
h(x) = Π2K0(x), M

0
h(x) = Π2M0(x).

Choosing the test functions in (30)-(35) as E
k

h,H
k

h,J
k

h,P
k

h,K
k

h and M
k

h, re-
spectively, and summing up the results, we can obtain (cf. [20, Lemma 5.2]) the
following discrete stability estimate, which has the exactly same form as the one
obtained for the continuous time system: for any k > 1, we have

ǫ0||Ek
h||20 + µ0||Hk

h||20 +
1

ǫ0ω2
pe

||Jk
h||20 +

1

µ0ω2
pm

||Kk
h||20 +

ω2
e0

ǫ0ω2
pe

||P k
h||20

+
ω2
m0

µ0ω2
pm

||Mk
h||20 6 ǫ0||E0

h||20 + µ0||H0
h||20 +

1

ǫ0ω2
pe

||J0
h||20

+
1

µ0ω2
pm

||K0
h||20 +

ω2
e0

ǫ0ω2
pe

||P 0
h||20 +

ω2
m0

µ0ω2
pm

||M0
h||20.

Although the computational solution of (30)-(35) appears rather demanding it
actually requires only minor modifications to a standard Crank-Nicolson Maxwell
solver. In each time step, we first solve a linear system for Ek

h and Hk
h, after using

(32)-(35) to eliminate all but these from (30) and (31). Then we update Jk
h and

Kk
h using two simple recursive formulas, and finally update P k

h and Mk
h through

simple algebra operations. For the details see [20, p.635].
Now let us consider a leap-frog scheme for solving the system (13)-(18): Given

initial approximations E0
h,J

1

2

h ,P
0
h,H

1

2

h ,K
0
h,M

1

2

h , for k = 1, 2, · · · , N, find Ek
h ∈

V 0
h,J

k+ 1

2

h ,P k
h ∈ V h and H

k+ 1

2

h ,Kk
h,M

k+ 1

2

h ∈ Uh such that

ǫ0(δτE
k
h,φh)− (H

k− 1

2

h ,∇× φh) + (J
k− 1

2

h ,φh) = 0,(36)

µ0(δτH
k+ 1

2

h ,ψh) + (∇×Ek
h,ψh) + (Kk

h,ψh) = 0,(37)

1

ǫ0ω2
pe

(δτJ
k+ 1

2

h ,φ1h) +
Γe

ǫ0ω2
pe

(
1

2
(J

k+ 1

2

h + J
k− 1

2

h ),φ1h)

− (Ek
h,φ1h) +

ω2
e0

ǫ0ω2
pe

(P k
h,φ1h) = 0,(38)
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ω2
e0

ǫ0ω2
pe

(δτP
k
h,φ2h)−

ω2
e0

ǫ0ω2
pe

(J
k− 1

2

h ,φ2h) = 0,(39)

1

µ0ω2
pm

(δτK
k
h,ψ1h) +

Γm

µ0ω2
pm

(
1

2
(Kk

h +Kk−1
h ),ψ1h)

− (H
k− 1

2

h ,ψ1h) +
ω2
m0

µ0ω2
pm

(M
k− 1

2

h ,ψ1h) = 0,(40)

ω2
m0

µ0ω2
pm

(δτM
k+ 1

2

h ,ψ2h)−
ω2
m0

µ0ω2
pm

(Kk
h,ψ2h) = 0,(41)

hold true for any φh ∈ V 0
h,ψh,ψ1h,ψ2h ∈ Uh and φ1h,φ2h ∈ V h. For the practical

purpose of obtaining the initial half-step values it is usual to start this leap-frog
scheme from zero or constant initial data. We then note that (36)-(41) can be
implemented as follows: at each time step, first solve (36), (39) and (40) and then
solve (37), (38) and (41). Each of these solves can be done in parallel if required.

The following discrete data-stability estimate shows that the solution remains
bounded independently of the time interval, (0, T ), of integration provided that the
time step is small enough.

Theorem 3.1. Let cv = 1√
µ0ǫ0

denote the speed of light in a vacuum, and let

cinv > 0 be the constant in the standard inverse estimate,

(42) ||∇ × uh||0 6 cinvh
−1||uh||0, ∀ uh ∈ V h.

Then, under the time step constraint

(43) τ 6 min

{
1

2ωpe
,

1

2ωpm
,

1

2ωe0
,

1

2ωm0
,

h

2cvcinv

}
,

for any k > 1, we have

ǫ0||Ek
h||20 + µ0||Hk+ 1

2

h ||20 +
1

ǫ0ω2
pe

||Jk+ 1

2

h ||20 +
1

µ0ω2
pm

||Kk
h||20

+
ω2
e0

ǫ0ω2
pe

||P k
h||20 +

ω2
m0

µ0ω2
pm

||Mk+ 1

2

h ||20 6 3

(
ǫ0||E0

h||20 + µ0||H
1

2

h ||20

+
1

ǫ0ω2
pe

||J
1

2

h ||20 +
1

µ0ω2
pm

||K0
h||20 +

ω2
e0

ǫ0ω2
pe

||P 0
h||20 +

ω2
m0

µ0ω2
pm

||M
1

2

h ||20
)
.(44)

Remark 3.2. We have implicitly assumed that none of the ω’s are zero in (43).
These cases can be dealt with by simple adaptations of this argument.

Proof. Choosing φh = τ
2 (E

k
h +Ek−1

h ),ψh = τ
2 (H

k+ 1

2

h +H
k− 1

2

h ),φ1h = τ
2 (J

k+ 1

2

h +

J
k− 1

2

h ), φ2h = τ
2 (P

k
h +P

k−1
h ),ψ1h = τ

2 (K
k
h+K

k−1
h ),ψ2h = τ

2 (M
k+ 1

2

h +M
k− 1

2

h ) in
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(36)-(41), respectively, summing up the results, and using the following identities:

(∇×Ek
h,H

k+ 1

2

h +H
k− 1

2

h )− (H
k− 1

2

h ,∇× (Ek
h +Ek−1

h ))

= (∇×Ek
h,H

k+ 1

2

h )− (∇×Ek−1
h ,H

k− 1

2

h ),

(J
k− 1

2

h ,Ek
h +Ek−1

h )− (Ek
h,J

k+ 1

2

h + J
k− 1

2

h ) = (J
k− 1

2

h ,Ek−1
h )− (J

k+ 1

2

h ,Ek
h),

(Kk
h,H

k+ 1

2

h +H
k− 1

2

h )− (H
k− 1

2

h ,Kk
h +Kk−1

h )

= (Kk
h,H

k+ 1

2

h )− (Kk−1
h ,H

k− 1

2

h ),

(P k
h,J

k+ 1

2

h + J
k− 1

2

h )− (J
k− 1

2

h ,P k
h + P k−1

h ) = (P k
h,J

k+ 1

2

h )− (P k−1
h ,J

k− 1

2

h ),

(M
k− 1

2

h ,Kk
h +Kk−1

h )− (Kk
h,M

k+ 1

2

h +M
k− 1

2

h )

= (M
k− 1

2

h ,Kk−1
h )− (M

k+ 1

2

h ,Kk
h),

we have

0 =
ǫ0
2
(||Ek

h||20 − ||Ek−1
h ||20) +

µ0

2
(||Hk+ 1

2

h ||20 − ||Hk− 1

2

h ||20)

+
||Jk+ 1

2

h ||20 − ||Jk− 1

2

h ||20
2ǫ0ω2

pe

+
ω2
e0

2ǫ0ω2
pe

(||P k
h||20 − ||P k−1

h ||20) +
||Kk

h||20 − ||Kk−1
h ||20

2µ0ω2
pm

+
ω2
m0

2µ0ω2
pm

(||Mk+ 1

2

h ||20 − ||Mk− 1

2

h ||20) +
Γe

τǫ0ω2
pe

||τ
2
(J

k+ 1

2

h + J
k− 1

2

h )||20

+
Γm

τµ0ω2
pm

||τ
2
(Kk

h +Kk−1
h )||20 +

τ

2
[(∇×Ek

h,H
k+ 1

2

h )− (∇×Ek−1
h ,H

k− 1

2

h )]

+
τ

2
[(J

k− 1

2

h ,Ek−1
h )− (J

k+ 1

2

h ,Ek
h)] +

τ

2
[(Kk

h,H
k+ 1

2

h )− (Kk−1
h ,H

k− 1

2

h )]

+
τω2

e0

2ǫ0ω2
pe

[(P k
h,J

k+ 1

2

h )− (P k−1
h ,J

k− 1

2

h )]

+
τω2

m0

2µ0ω2
pm

[(M
k− 1

2

h ,Kk−1
h )− (M

k+ 1

2

h ,Kk
h)].

Summing this over k = 1 to N we obtain,

ǫ0
2 ||E

N
h ||20 + µ0

2 ||HN+ 1

2

h ||20 + 1
2ǫ0ω2

pe
||JN+ 1

2

h ||20 + 1
2µ0ω2

pm
||KN

h ||20 +
ω2

e0

2ǫ0ω2
pe
||PN

h ||20

+
ω2

m0

2µ0ω2
pm

||MN+ 1

2

h ||20 6 ǫ0
2 ||E

0
h||20 + µ0

2 ||H
1

2

h ||20 + 1
2ǫ0ω2

pe
||J

1

2

h ||20 + 1
2µ0ω2

pm
||K0

h||20

+
ω2

e0

2ǫ0ω2
pe
||P 0

h||20 +
ω2

m0

2µ0ω2
pm

||M
1

2

h ||20 − τ
2 [(∇×EN

h ,H
N+ 1

2

h )− (∇×E0
h,H

1

2

h )]

− τω2

e0

2ǫ0ω2
pe
[(PN

h ,J
N+ 1

2

h )− (P 0
h,J

1

2

h )] +
τω2

m0

2µ0ω2
pm

[(M
N+ 1

2

h ,KN
h )− (M

1

2

h ,K
0
h)],

+ τ
2 [(J

N+ 1

2

h ,EN
h )− (J

1

2

h ,E
0
h)]− τ

2 [(K
N
h ,H

N+ 1

2

h )− (K0
h,H

1

2

h )],(45)

and then using the Cauchy-Schwarz inequality and the inverse estimate (42) we
have

τ

2
(∇×EN

h ,H
N+ 1

2

h ) 6
τ

2
· cinvh−1||EN

h ||0||HN+ 1

2

h ||0

=
τ

2
· cvcinvh−1√ǫ0||EN

h ||0
√
µ0||HN+ 1

2

h ||0

6

(τcvcinv
2h

)2
δ1ǫ0||EN

h ||20 +
µ0

4δ1
||HN+ 1

2

h ||20
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for all δ1 > 0. Similarly, for all δi > 0 for i = 2, . . . , 5, we have first,

τ

2
(J

N+ 1

2

h ,EN
h ) 6

τωpe

2
· 1√

ǫ0ω2
pe

||JN+ 1

2

h ||0
√
ǫ0||EN

h ||0

6

(τωpe

2

)2
δ2ǫ0||EN

h ||20 +
1

4δ2
· 1

ǫ0ω2
pe

||JN+ 1

2

h ||20,

second,

τ

2
(KN

h ,H
N+ 1

2

h ) 6
τωpm

2
· 1√

µ0ω2
pm

||KN
h ||0

√
µ0||HN+ 1

2

h ||0

6

(τωpm

2

)2 δ3
µ0ω2

pm

||KN
h ||20 +

µ0

4δ3
||HN+ 1

2

h ||20,

and lastly,

τω2
e0

2ǫ0ω2
pe

(PN
h ,J

N+ 1

2

h ) 6
1

4δ4
· 1

ǫ0ω2
pe

||JN+ 1

2

h ||20 + (
τωe0

2
)2δ4 ·

ω2
e0

ǫ0ω2
pe

||PN
h ||20,

τω2
m0

2µ0ω2
pm

(M
N+ 1

2

h ,KN
h ) 6 (

τωm0

2
)2δ5 ·

1

µ0ω2
pm

||KN
h ||20 +

1

4δ5
· ω2

m0

µ0ω2
pm

||MN+ 1

2

h ||20.

Note that similar estimates can be obtained for the five terms in (45) that involve
the initial data, the estimate (44) can then be obtained by substituting the above
estimates into (45) and choosing δi and τ properly. A simple choice is to select
δ1 = · · · = δ5 = 2 and require (43). This concludes the proof. �

Remark 3.3. We note that the stability estimate (44) just obtained for the leap-
frog scheme has exactly the same form as the stability estimate for the continuous
problem, except that the stability coefficient is raised from unity to three. It is easy
to see from the proof that this constant of 3 in (44) can be reduced, but not to unity.

Remark 3.4. Following similar ideas of our early work [20], we can use the ideas
above to prove the following error estimate:

||Ek −Ek
h||0 + ||Hk+ 1

2 −Hk+ 1

2

h ||0 + ||Jk+ 1

2 − Jk+ 1

2

h ||0 + ||Kk −Kk
h||0

+||P k − P k
h||0 + ||Mk+ 1

2 −Mk+ 1

2

h ||0 6 C(hl + τ2)

where the time dependence of C is due to norms of the data and exact solution,
but not to an invocation of Gronwall’s inequality. This error bound will hold true
if the underlying solutions are smooth enough and the errors in the initial data
are bounded as O(hl + τ2). Here l > 1 denotes the order of the basis functions in
the finite element spaces Uh and V h. The proof of this result with the modified
constant is omitted here due to its length. A full example of an error bound with
temporally-sharp constants is given later in Theorem 4.6.

4. Investigation of the Lorentz model in four variables

If we solve (16) for P and (18) for M and substitute the results into (15) and
(17) we can rewrite the Lorentz model (13)-(18) as

ǫ0Et −∇×H + J = 0, µ0Ht +∇×E +K = 0,(46)

1

ǫ0ω2
pe

J t +
Γe

ǫ0ω2
pe

J +
ω2
e0

ǫ0ω2
pe

∫ t

0

J(s)ds−E = f(0),(47)

1

µ0ω2
pm

∂K

∂t
+

Γm

µ0ω2
pm

K +
ω2
m0

µ0ω2
pm

∫ t

0

K(s)ds−H = g(0),(48)
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where

f(0) =
1

ǫ0ω2
pe

(J t(0) + ΓeJ(0))−E(0), g(0) =
1

µ0ω2
pm

(Kt(0)+ ΓmK(0))−H(0)

are time independent and known.
We consider the following weak formulation of (46)-(48): FindE ∈ H1(0, T ;V ∗)∩

L2(0, T ;V ), and J ,H,K ∈ H1(0, T ;L2(Ω)) such that

ǫ0(Et,φ)− (H ,∇× φ) + (J ,φ) = 0, µ0(Ht,ψ) + (∇×E +K,ψ) = 0,(49)
(

1

ǫ0ω2
pe

J t +
Γe

ǫ0ω2
pe

J +
ω2
e0

ǫ0ω2
pe

∫ t

0

J(s)ds−E,φ1

)
= (f(0),φ1),(50)

(
1

µ0ω2
pm

Kt +
Γm

ǫ0ω2
pm

K +
ω2
m0

µ0ω2
pm

∫ t

0

K(s)ds−H,ψ1

)
= (g(0),ψ1),(51)

∀ φ ∈ H0(curl; Ω), ∀ ψ ∈ L2(Ω), ∀ φ1 ∈ L2(Ω) and ∀ ψ1 ∈ L2(Ω)

subject to the boundary condition (10) and initial data (x-dependence omitted):

(52) E(0) = E0, J(0) = J0, H(0) =H0, K(0) =K0.

Our first result for this formulation demonstrates long-time data stability and
provides a comparator for the discrete stability estimate that follows in Theo-
rem 4.4.

Theorem 4.1. For the solution (E,H,J ,K) of (49)-(52) and any t ∈ (0, T ], we
have the following data-stability estimates:
(i) If ωe0, ωm0 6= 0, then

(53) E(t) 6 2E(0) +
4ǫ0ω

2
pe

ω2
e0

||f (0)||20 +
4µ0ω

2
pm

ω2
m0

||g(0)||20,

where we denote the energy

E(t) = ǫ0||E(t)||20 + µ0||H(t)||20 +
1

ǫ0ω2
pe

||J ||20 +
1

µ0ω2
pm

||K||20

+
ω2
e0

ǫ0ω2
pe

∣∣∣∣
∣∣∣∣
∫ t

0

J(s)ds

∣∣∣∣
∣∣∣∣
2

0

+
ω2
m0

µ0ω2
pm

∣∣∣∣
∣∣∣∣
∫ t

0

K(s)ds

∣∣∣∣
∣∣∣∣
2

0

.(54)

Moreover, defining a new energy E1(t) as E(t) but without the integral terms in
(54), we also have

(55) E1(t) 6 E1(0) +
ǫ0ω

2
pe

ω2
e0

||f (0)||20 +
µ0ω

2
pm

ω2
m0

||g(0)||20,

(ii) For the Lorentz and Drude models where Γe,Γm 6= 0 we have,

(56) E(t) 6 E(0) + T

(
ǫ0ω

2
pe

Γe
||f(0)||20 +

µ0ω
2
pm

Γm
||g(0)||20

)
,

where E(t) denotes the same energy as case (i).
(iii) For the cold plasma model where Γe = Γm = ωe0 = ωm0 = 0 we have,

(57) E(t) 6 2E(0) + 4

ǫ0ω2
pe

||J(0)||20 +
4

µ0ω2
pm

||K(0)||20,
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where in this case the energy is re-defined as,

E(t) = ǫ0||E(t)||20 + µ0||H(t)||20
+ ǫ0ω

2
pe

∣∣∣
∣∣∣
∫ t

0 E(s)ds
∣∣∣
∣∣∣
2

0
+ µ0ω

2
pm

∣∣∣
∣∣∣
∫ t

0 H(s)ds
∣∣∣
∣∣∣
2

0
.(58)

Again, defining a new energy E1(t) by dropping the integral terms in (58), we also
have

(59) E1(t) 6 E1(0) +
1

ǫ0ω2
pe

||J(0)||20 +
1

µ0ω2
pm

||K(0)||20.

Proof. (i) Choosing φ = E,ψ =H ,φ1 = J ,ψ1 =K in (49)-(51), respectively, we
obtain

(60)
1

2

dE
dt

+
Γe

ǫ0ω2
pe

||J ||20 +
Γm

µ0ω2
pm

||K||20 = (f (0),J) + (g(0),K)

and then integrating this from 0 to t and using the Cauchy-Schwarz and Young’s
inequalities, we have

1
2 (E(t) − E(0)) 6 ǫ0ω

2

pe

ω2

e0

||f(0)||20 +
µ0ω

2

pm

ω2

m0

||g(0)||20

+
ω2

e0

4ǫ0ω2
pe

∣∣∣
∣∣∣
∫ t

0
J(s)ds

∣∣∣
∣∣∣
2

0
+

ω2

m0

4µ0ω2
pm

∣∣∣
∣∣∣
∫ t

0
K(s)ds

∣∣∣
∣∣∣
2

0
,

which yields (53) easily. The stability estimate in (55) can then be obtained from
the following inequality

1
2 (E(t) − E(0)) 6 ǫ0ω

2

pe

2ω2

e0

||f(0)||20 +
µ0ω

2

pm

2ω2

m0

||g(0)||20

+
ω2

e0

2ǫ0ω2
pe

∣∣∣
∣∣∣
∫ t

0
J(s)ds

∣∣∣
∣∣∣
2

0
+

ω2

m0

2µ0ω2
pm

∣∣∣
∣∣∣
∫ t

0
K(s)ds

∣∣∣
∣∣∣
2

0
.

(ii) In this case, the proof is completed by substituting the following estimates

(f (0),J) 6
Γe

2ǫ0ω2
pe

||J ||20 +
ǫ0ω

2
pe

2Γe
||f (0)||20,

(g(0),K) 6
Γm

2µ0ω2
pm

||K||20 +
µ0ω

2
pm

2Γm
||g(0)||20,

into (60).
(iii) When Γe = Γm = ωe0 = ωm0 = 0, the original governing equations (13)-(18)

reduce to

ǫ0Et −∇×H + J = 0, µ0Ht +∇×E +K = 0,(61)

J t = ǫ0ω
2
peE, Kt = µ0ω

2
pmH.(62)

Solving (62) for J and K and substituting into (61) gives,

ǫ0Et −∇×H + ǫ0ω
2
pe

∫ t

0

E(s)ds = −J(0),(63)

µ0Ht +∇×E + µ0ω
2
pm

∫ t

0

H(s)ds = −K(0),(64)

and then on multiplying (63) and (64) by E and H, respectively, integrating over
Ω and using the energy definition (58), we obtain

(65)
1

2

dE
dt

= −(J(0),E)− (K(0),H).
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Integrating (65) from 0 to t, and using the Cauchy-Schwarz inequality, we have

1
2 (E(t)− E(0)) = −

(
J(0),

∫ t

0 E(s)ds
)
−
(
K(0),

∫ t

0 H(s)ds
)
6 1

ǫ0ω2
pe
||J(0)||20

+
ǫ0ω

2

pe

4

∣∣∣
∣∣∣
∫ t

0
E(s)ds

∣∣∣
∣∣∣
2

0
+

µ0ω
2

pm

4

∣∣∣
∣∣∣
∫ t

0
H(s)ds

∣∣∣
∣∣∣
2

0
+ 1

µ0ω2
pm

||K(0)||20,

which easily leads to the proof of (57). To prove the stability bound in (59), we
just need to use the following estimate,

1

2
(E(t) − E(0))

= −
(
J(0),

∫ t

0

E(s)ds

)
−
(
K(0),

∫ t

0

H(s)ds

)

6
1

2ǫ0ω2
pe

||J(0)||20 +
ǫ0ω

2
pe

2

∣∣∣∣
∣∣∣∣
∫ t

0

E(s)ds

∣∣∣∣
∣∣∣∣
2

0

+
µ0ω

2
pm

2

∣∣∣∣
∣∣∣∣
∫ t

0

H(s)ds

∣∣∣∣
∣∣∣∣
2

0

+
1

2µ0ω2
pm

||K(0)||20.

This completes the proof. �

Remark 4.2. In Theorem 4.1 we examined the stability in three different cases
and used more careful reasoning than is usually encountered in this type of study
in order to avoid using the Gronwall inequality. To emphasize this extra effort we
remark that from (60), the estimates

(f(0),J)+(g(0),K) 6
1

2ǫ0ω2
pe

||J ||20+
ǫ0ω

2
pe

2
||f(0)||20+

1

2µ0ω2
pm

||K||20+
µ0ω

2
pm

2
||g(0)||20,

and the Gronwall inequality, we derive the following general stability estimate that
covers all the cases:

(66) E(t) 6 C(E(0) + ||f (0)||20 + ||g(0)||20),
where the constant C > 0 depends on those physical parameters in (3), and expo-
nentially in T due to the usage of the Gronwall inequality. Here the energy E is
defined by

E(t) = ǫ0||E(t)||20 + µ0||H(t)||20 +
1

ǫ0ω2
pe

||J ||20 +
1

µ0ω2
pm

||K||20

+
ω2
e0

ǫ0ω2
pe

∣∣∣∣
∣∣∣∣
∫ t

0

J(s)ds

∣∣∣∣
∣∣∣∣
2

0

+
ω2
m0

µ0ω2
pm

∣∣∣∣
∣∣∣∣
∫ t

0

K(s)ds

∣∣∣∣
∣∣∣∣
2

0

.(67)

The main point here is that although one can derive coarse bounds without much
effort, extra work is (for this problem) rewarded with sharper estimates.

Theorem 4.1 demonstrates that one can consider the model on a case-by-case
basis in terms of the allowed values of the parameters. To save space and keep the
arguments simple and demonstrative we will from here on (unless clearly specified
otherwise) assume that all parameters in (3) are positive.

To begin with we let ĨJh
k
and ĨKh

k
denote trapezoidal rule quadrature approx-

imations that satisfy the following recursive formulas:

ĨJh
0
= 0, ĨJh

k
= ĨJh

k−1
+

τ

2
(Jk

h + Jk−1
h ), ∀ k > 1,(68)

ĨKh

0
= 0, ĨKh

k
= ĨKh

k−1
+

τ

2
(Kk

h +Kk−1
h ), ∀ k > 1.(69)
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Then, using the same spatial finite element discretization framework as earlier, we
now consider the following Crank-Nicolson scheme for solving the system (46)-(48):

For k = 1, 2, · · · , N, find Ek
h ∈ V 0

h,J
k
h ∈ V h and Hk

h,K
k
h ∈ Uh such that

ǫ0(δτE
k
h,φh)− (H

k

h,∇× φh) + (J
k

h,φh) = 0,(70)

µ0(δτH
k
h,ψh) + (∇×Ek

h,ψh) + (K
k

h,ψh) = 0,(71)

1

ǫ0ω2
pe

(δτJ
k
h,φ1h) +

Γe

ǫ0ω2
pe

(J
k

h,φ1h)− (E
k

h,φ1h)

+
ω2
e0

ǫ0ω2
pe


 ĨJh

k
+ ĨJh

k−1

2
,φ1h


 = (f(0),φ1h),(72)

1

µ0ω2
pm

(δτK
k
h,ψ1h) +

Γm

µ0ω2
pm

(K
k

h,ψ1h)− (H
k

h,φ1h)

+
ω2
m0

µ0ω2
pm


 ĨKh

k
+ ĨKh

k−1

2
,ψ1h


 = (g(0),ψ1h),(73)

hold true for any φh ∈ V 0
h,ψh,ψ1h ∈ Uh,φ1h ∈ V h, and are subject to the initial

approximations

E0
h(x) = ΠhE0(x), J

0
h(x) = ΠhJ0(x),

H0
h(x) = Π2H0(x), K

0
h(x) = Π2K0(x).

Next, we need the following identity for the stability analysis of scheme (70)-(69).

Lemma 4.3. For each i ∈ {1, . . . , N} we have

(74) 2

N∑

j=1

j−1∑

i=1

fifj =

(
N∑

i=1

fi

)2

−
N∑

i=1

f2
i .

Proof. The proof follows from this simple manipulation,

2

N∑

j=1

j−1∑

i=1

fifj =

N∑

j=1

j−1∑

i=1

fifj +

N∑

j=1

N∑

i=j+1

fifj =

N∑

j=1




j−1∑

i=1

fifj +

N∑

i=j+1

fifj




=

N∑

j=1

(
N∑

i=1

fifj − f2
j

)
=

(
N∑

i=1

fi

)2

−
N∑

j=1

f2
j .

�

With Lemma 4.3 we can now provide the following discrete stability estimates.
These are the discrete forms of the estimates for the continuous problem as stated
in Theorem 4.1.

Theorem 4.4. Denote the discrete energy

Eh(k) = ǫ0||Ek
h||20 + µ0||Hk

h||20 +
1

ǫ0ω2
pe

||Jk
h||20 +

1

µ0ω2
pm

||Kk
h||20

then:
(i) If ωe0, ωm0 6= 0, then for any 1 6 k 6 N , we have

(75) Eh(k) 6 Eh(0) +
ǫ0ω

2
pe

ω2
e0

||f (0)||20 +
µ0ω

2
pm

ω2
m0

||g(0)||20.
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(ii) If Γe,Γm 6= 0, then for any 1 6 k 6 N , we have

(76) Eh(k) 6 Eh(0) + T

(
ǫ0ω

2
pe

Γe
||f (0)||20 +

µ0ω
2
pm

Γm
||g(0)||20

)
.

Proof. From the recursive formula (68), we have ĨJh
k
= ĨJh

k−1
+ τJ

k

h = · · · =
τ
∑k

l=1 J
l

h, which leads to

 ĨJh

k
+ ĨJh

k−1

2
, τJ

k

h


 =

(
τ

2
J

k

h + τ

k−1∑

l=1

J
l

h, τJ
k

h

)
= τ2

[
1

2
||Jk

h||20 +
k−1∑

l=1

(J
l

h,J
k

h)

]
.

Summing this from k = 1 to k = N and using Lemma 4.3, we have

(77)


 ĨJh

k
+ ĨJh

k−1

2
, τJ

k

h


 =

τ2

2

∣∣∣∣∣

∣∣∣∣∣

N∑

k=1

J
k

h

∣∣∣∣∣

∣∣∣∣∣

2

0

.

Choosing φh = τ
2 (E

k
h + Ek−1

h ),ψh = τ
2 (H

k
h + Hk−1

h ),φ1h = τ
2 (J

k
h + Jk−1

h ),

ψ1h = τ
2 (K

k
h +Kk−1

h ) in (70)-(73), respectively, then summing up the resultants
from k = 1 to k = N and using (77), we obtain

ǫ0
2 (||E

N
h ||20 − ||E0

h||20) + µ0

2 (||HN
h ||20 − ||H0

h||20) + 1
2ǫ0ω2

pe
(||JN

h ||20 − ||J0
h||20)

+ 1
2µ0ω2

pm
(||KN

h ||20 − ||K0
h||20) + τΓe

ǫ0ω2
pe

∑N
k=1 ||J

k

h||20

+ τΓm

µ0ω2
pm

∑N
k=1 ||K

k

h||20 +
τ2ω2

e0

2ǫ0ω2
pe

∣∣∣
∣∣∣
∑N

k=1 J
k

h

∣∣∣
∣∣∣
2

0
+

τ2ω2

m0

2µ0ω2
pm

∣∣∣
∣∣∣
∑N

k=1K
k

h

∣∣∣
∣∣∣
2

0

=
∑N

k=1 τ(f (0),J
k

h) +
∑N

k=1 τ(g(0),K
k

h).(78)

(i) The proof of (75) is completed by substituting the following estimates into
(78):

τ

(
f(0),

N∑

k=1

J
k

h

)
6

ǫ0ω
2
pe

2ω2
e0

||f (0)||20 +
τ2ω2

e0

2ǫ0ω2
pe

∣∣∣∣∣

∣∣∣∣∣

N∑

k=1

J
k

h

∣∣∣∣∣

∣∣∣∣∣

2

0

,

τ

(
g(0),

N∑

k=1

K
k

h

)
6

µ0ω
2
pm

2ω2
m0

||g(0)||20 +
τ2ω2

m0

2µ0ω2
pm

∣∣∣∣∣

∣∣∣∣∣

N∑

k=1

K
k

h

∣∣∣∣∣

∣∣∣∣∣

2

0

.

(ii) Substituting the following estimates into (78),

τ(f (0),J
k

h) 6
τǫ0ω

2
pe

2Γe
||f(0)||20 +

τΓe

2ǫ0ω2
pe

||Jk

h||20,(79)

τ(g(0),K
k

h) 6
τµ0ω

2
pm

2Γm
||g(0)||20 +

τΓm

2µ0ω2
pm

||Kk

h||20.(80)

then concludes the proof of (76) �

To save space we did not consider the case Γe = Γm = ωe0 = ωm0 = 0 in
Theorem 4.4 although one could examine this case by following the argument given
in Theorem 4.1 for the continuous problem.

To give an error analysis for the Crank-Nicolson scheme (70)-(69) we need the
following lemma. The error estimate for the trapezoidal rule for numerical quadra-
ture is very standard and included here for completeness.
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Lemma 4.5. Let X be a Banach space. For any function J ∈ H2(0, T ;X) we have
the following step-wise error bound,

(81)

∣∣∣∣∣

∣∣∣∣∣J
k − 1

τ

∫ tk

tk−1

J(t)dt

∣∣∣∣∣

∣∣∣∣∣

2

X

6
τ3

4

∫ tk

tk−1

||Jtt(t)||2X dt, ∀ J ∈ H2(0, T ),

for every k ∈ {1, 2, . . . , N}. Furthermore, for the approximation ĨJ
k
to
∫ tk
0

J(t) dt
defined by the recursive trapezoidal rule formula given by (68) we have the error
bound, ∣∣∣∣

∣∣∣∣ĨJ
k
−
∫ tk

0

J(t) dt

∣∣∣∣
∣∣∣∣
X

6

√
Tτ2

2
‖Jtt‖L2(0,T ;X)

for every k ∈ {1, 2, . . . , N}.
Proof. For (81) we refer to [19, p.3165] and then using the triangle and Cauchy-
Schwarz inequalities we obtain,

∣∣∣∣
∣∣∣∣ĨJ

k
−
∫ tk

0

J(t) dt

∣∣∣∣
∣∣∣∣
X

6
√
tk




k∑

l=1

τ

∣∣∣∣∣

∣∣∣∣∣J
l − 1

τ

∫ tl

tl−1

J(t) dt

∣∣∣∣∣

∣∣∣∣∣

2

X




1/2

and an application of (81) then completes the proof. �

Theorem 4.6. For the solution (Ek
h,H

k
h,J

k
h,K

k
h) of (70)-(73), we have the fol-

lowing error estimate: For every time level k > 1,

ǫ0||Ek −Ek
h||20 + µ0||Hk −Hk

h||20 +
1

ǫ0ω2
pe

||Jk − Jk
h||20

+
1

µ0ω2
pm

||Kk −Kk
h||20 6 C(1 + T 2 + T 3)(τ4 + h2l)

+ C(||E0 −E0
h||20 + ||H0 −H0

h||20 + ||J0 − J0
h||20 + ||K0 −K0

h||20),(82)

where l > 1 denotes the degree of the finite element spaces V h and Uh and C is
a constant that depends on time only through the Lp(0, T ) norms of the underlying
solution that arise from the approximation-error terms.

Remark 4.7. We do not give full details of the constant C in Theorem 4.6 because
it would obscure the main point that the constant governing the error growth (in
the indicated norms) is of order O(T 3/2) rather than O(ecT ) (for some c > 0). For
a flavour of the type of terms hidden in C we refer forward to (93).

Proof. Integrating (49)-(51) with respect to t first from 0 to tk and then from 0 to
tk−1, using these to form finite differences in time and then dividing the resultants
by τ , we obtain the following four equalities

ǫ0(δτE
k,φ)−

(
1
τ

∫ tk
tk−1

Hds,∇× φ
)
+
(

1
τ

∫ tk
tk−1

Jds,φ
)
= 0,(83)

µ0(δτH
k,ψ) +

(
1
τ

∫ tk
tk−1

∇×Eds+ 1
τ

∫ tk
tk−1

Kds,ψ
)
= 0,(84)

1
ǫ0ω2

pe
(δτJ

k,φ1) +
Γe

ǫ0ω2
pe

(
1
τ

∫ tk
tk−1

Jds,φ1

)

+
ω2

e0

ǫ0ω2
pe

(
1
τ

∫ tk
tk−1

∫ s

0 J(χ)dχds,φ1

)
=
(

1
τ

∫ tk
tk−1

Eds+ f(0),φ1

)
,(85)

1
µ0ω2

pm
(δτK

k,ψ1) +
Γm

µ0ω2
pm

(
1
τ

∫ tk
tk−1

Kds,ψ1

)

+
ω2

m0

µ0ω2
pm

(
1
τ

∫ tk
tk−1

∫ s

0
K(χ)dχds,ψ1

)
=
(

1
τ

∫ tk
tk−1

Hds+ g(0),ψ1

)
.(86)
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Now, to derive error equations we recall the definitions earlier near to (28) and

(29) and set ξkh = ΠhE
k −Ek

h ∈ V h, η
k
h = Π2H

k −Hk
h ∈ Uh, ξ

k
1h = ΠhJ

k − Jk
h ∈

V h and ηk1h = Π2K
k −Kk

h ∈ Uh. Subtracting (70)-(73) from (83)-(86) and using
these definitions then gives four error equations:

(a) ǫ0(δτξ
k
h,φh)− (ηkh,∇× φh) + (ξ

k

1h,φh) = ǫ0(δτ (ΠhE
k −Ek),φh)

−
(
Π2H

k − 1

τ

∫ tk

tk−1

Hds,∇× φh

)
+

(
ΠhJ

k − 1

τ

∫ tk

tk−1

Jds,φh

)
,(87)

(b) µ0(δτη
k
h,ψh) + (∇× ξ

k

h,ψh) + (ηk1h,ψh) = µ0(δτ (Π2H
k −Hk),ψh)

+

(
∇×

(
ΠhE

k − 1

τ

∫ tk

tk−1

Eds

)
,ψh

)
+

(
Π2K

k − 1

τ

∫ tk

tk−1

Kds,ψh

)
,(88)

(c)
1

ǫ0ω2
pe

(δτ ξ
k
1h + Γeξ

k

1h,φ1h)− (ξ
k

h,φ1h) =
1

ǫ0ω2
pe

(δτ (ΠhJ
k − Jk),φ1h)

+
Γe

ǫ0ω2
pe

(
ΠhJ

k − 1

τ

∫ tk

tk−1

Jds,φ1h

)
−
(
ΠhE

k − 1

τ

∫ tk

tk−1

Eds,φ1h

)

+
ω2
e0

ǫ0ω2
pe


 ĨJh

k
+ ĨJh

k−1

2
− 1

τ

∫ tk

tk−1

∫ s

0

J(χ)dχds,φ1h


 ,(89)

(d)
1

µ0ω2
pm

(δτη
k
1h + Γmηk1h,ψ1h)− (ηkh,ψ1h) =

1

µ0ω2
pm

(δτ (Π2K
k −Kk),ψ1h)

+
Γm

µ0ω2
pm

(
Π2K

k − 1

τ

∫ tk

tk−1

Kds,ψ1h

)
−
(
Π2H

k − 1

τ

∫ tk

tk−1

Hds,ψ1h

)

+
ω2
m0

µ0ω2
pm


 ĨKh

k
+ ĨKh

k−1

2
− 1

τ

∫ tk

tk−1

∫ s

0

K(χ)dχds,ψ1h


 .(90)

In the above we also recalled that ∇× V h ⊂ Uh.

Next we select φh = τξ
k

h, ψh = τηkh, φ1h = τξ
k

1h, ψ1h = τηk1h in (87)-(90) and
note that several terms can be altered or eliminated by using the L2 projection.
Specifically, the following replacements can be made,

(Π2H
k
,∇× ξ

k

h) = (H
k
,∇× ξ

k

h), (Π2H
k
, ηk1h) = (H

k
, ηk1h),

(Π2K
k
, ηkh) = (K

k
, ηkh), (Π2K

k
, ηk1h) = (K

k
, ηk1h),

and the eliminations result from (δτ (Π2H
k−Hk), ηkh) = (δτ (Π2K

k−Kk), ηk1h) = 0.
These give,

ǫ0
2
(||ξkh ||20 − ||ξk−1

h ||20) +
µ0

2
(||ηkh||20 − ||ηk−1

h ||20)

+
1

2ǫ0ω2
pe

(||ξk1h||20 − ||ξk−1
1h ||20) +

1

2µ0ω2
pm

(||ηk1h||20 − ||ηk−1
1h ||20)

+
τΓe

ǫ0ω2
pe

||ξk1h||20 +
τΓm

µ0ω2
pm

||ηk1h||20 = τǫ0(δτ (ΠhE
k −Ek), ξ

k

h)

−τ

(
H

k − 1

τ

∫ tk

tk−1

Hds,∇× ξ
k

h

)
+ τ

(
ΠhJ

k − 1

τ

∫ tk

tk−1

Jds, ξ
k

h

)
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+τ

(
∇×

(
ΠhE

k − 1

τ

∫ tk

tk−1

Eds

)
, ηkh

)
+ τ

(
K

k − 1

τ

∫ tk

tk−1

Kds, ηkh

)

+
τ

ǫ0ω2
pe

(δτ (ΠhJ
k − Jk), ξ

k

1h) +
τΓe

ǫ0ω2
pe

(
ΠhJ

k − 1

τ

∫ tk

tk−1

Jds, ξ
k

1h

)

+
τω2

e0

ǫ0ω2
pe


 ĨJh

k
+ ĨJh

k−1

2
− 1

τ

∫ tk

tk−1

∫ s

0

J(χ)dχds, ξ
k

1h




+
τΓm

µ0ω2
pm

(
K

k − 1

τ

∫ tk

tk−1

Kds, ηk1h

)
− τ

(
H

k − 1

τ

∫ tk

tk−1

Hds, ηk1h

)

+
τω2

m0

µ0ω2
pm


 ĨKh

k
+ ĨKh

k−1

2
− 1

τ

∫ tk

tk−1

∫ s

0

K(χ)dχds, ηk1h




−τ

(
ΠhE

k − 1

τ

∫ tk

tk−1

Eds, ξ
k

1h

)
=

12∑

i=1

Erri,(91)

where these twelve error terms have been introduced for convenience and we deal
with them each in turn. For the remainder of this proof C will denote a generic
positive constant that is independent of time, h, τ and the exact or approximate
solutions.

First, by the Cauchy-Schwarz inequality, the standard interpolation error esti-
mate (29) for ΠhE −E, and the following estimate [19, p.3165]:

||δτuk||20 6
1

τ

∫ tk

tk−1

||ut(t)||20dt, ∀ u ∈ H1(0, T ; (L2(Ω))3),

we have

Err1 6 τǫ0||δτ (ΠhE
k −Ek)||0||ξ

k

h||0

6 τǫ0 ·
δ1
T
||ξh||2l∞ +

T ǫ0
4δ1

∫ tk

tk−1

||(ΠhE −E)s(s)||20ds

6 τǫ0 ·
δ1
T
||ξh||2l∞ +

CTh2l

4δ1

∫ tk

tk−1

||Et||2Hl(curl;Ω)ds,(92)

where here and below δi will denote an arbitrary positive number and we define
||ξh||l∞ := max16k6N ||ξkh||0. Summing (92) from k = 1 to N , we therefore have

N∑

k=1

Err1 6 δ1ǫ0||ξh||2l∞ +
CTh2l

δ1
||Et||2L2(0,T ;Hl(curl;Ω)).

Similarly, by using Lemma 4.5 to obtain the following estimate,

∣∣∣∣∣

∣∣∣∣∣u
k − 1

τ

∫ tk

tk−1

u(t)dt

∣∣∣∣∣

∣∣∣∣∣

2

0

6
τ3

4

∫ tk

tk−1

||utt(t)||20dt, ∀ u ∈ H2(0, T ; (L2(Ω))3),
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and integrating by parts to move the curl we obtain,

N∑

k=1

Err2 6

N∑

k=1

τ

∣∣∣∣∣

∣∣∣∣∣∇×
(
H

k − 1

τ

∫ tk

tk−1

Hds

)∣∣∣∣∣

∣∣∣∣∣
0

||ξkh||0

6

N∑

k=1

τ

(
Tτ3

16δ2

∫ tk

tk−1

||∇ ×Htt||20 dt+
δ2
T
||ξh||2l∞

)

6 δ2||ξh||2l∞ +
Tτ4

16δ2
||∇ ×Htt||2L2(0,T ;L2(Ω)).

By similar techniques, we have the following estimates:

N∑

k=1

Err3 6

N∑

k=1


τ δ3

T
||ξkh||20 +

Tτ

2δ3


||ΠhJ

k − Jk||20 +
∣∣∣∣∣

∣∣∣∣∣J
k − 1

τ

∫ tk

tk−1

Jds

∣∣∣∣∣

∣∣∣∣∣

2

0






6 δ3||ξh||2l∞ +
CT

δ3

(
τ4||J tt||2L2(0,T ;L2(Ω)) + Th2l||J ||2L∞(0,T ;Hl(curl;Ω))

)
,

N∑

k=1

Err4 6 δ4||ηh||2l∞+
CT

δ4

(
τ4||∇ ×Ett||2L2(0,T ;L2(Ω))

+Th2l||E||2L∞(0,T ;Hl(curl;Ω))

)
,

N∑

k=1

Err5 6 δ5||ηh||2l∞ +
Tτ4

16δ5
||Ktt||2L2(0,T ;L2(Ω)),

N∑

k=1

Err6 6
δ6

ǫ0ω2
pe

||ξ1h||2l∞ +
CTh2l

δ6
||J t||2L2(0,T ;Hl(curl;Ω)),

N∑

k=1

Err7 6
δ7

ǫ0ω2
pe

||ξ1h||2l∞+
CT

δ7

(
τ4||J tt||2L2(0,T ;L2(Ω))

+Th2l||J ||2L∞(0,T ;Hl(curl;Ω))

)
,

N∑

k=1

Err9 6 δ9||η1h||2l∞ +
Tτ4

16δ9
||Ktt||2L2(0,T ;L2(Ω)),

N∑

k=1

Err10 6 δ10||η1h||2l∞ +
Tτ4

16δ10
||Htt||2L2(0,T ;L2(Ω)),

N∑

k=1

Err12 6 δ12||ξ1h||2l∞ +
CT

δ12

(
τ4||Ett||2L2(0,T ;L2(Ω))

+Th2l||E||2L∞(0,T ;Hl(curl;Ω))

)
.

We now move on to investigate the more difficult terms, Err8 and Err11. Since
they are similar we give the detailed working only for Err8. First, recalling (68)
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and the introduction of ĨJ
k
in Lemma 4.5, a simple splitting gives,

(
ǫ0ω

2
pe

τω2
e0

)
Err8 =


 ĨJh

k
+ ĨJh

k−1

2
− ĨJ

k
+ ĨJ

k−1

2
, ξ

k

1h




+


 ĨJ

k
+ ĨJ

k−1

2
− 1

τ

∫ tk

tk−1

∫ s

0

J(χ) dχds, ξ
k

1h


 .

Using the recursive formulas (68), and recalling that J
l
= (J(tl) + J(tl−1))/2 we

have,

ĨJh
k
+ ĨJh

k−1

2
− ĨJ

k
+ ĨJ

k−1

2
=

τ

2
(J

k

h − Jk
) + τ

k−1∑

l=1

(J
l

h − J l
)

=
τ

2
(J

k

h −ΠhJ
k
+ΠhJ

k − Jk
) + τ

k−1∑

l=1

(J
l

h −ΠhJ
l
+ΠhJ

l − J l
)

=
τ

2
(−ξ

k

1h +ΠhJ
k − Jk

) + τ

k−1∑

l=1

(−ξ
l

1h +ΠhJ
l − J l

)

and with this we can now split Err8 into three components:

(
ǫ0ω

2
pe

τω2
e0

)
Err8 = −

(
τ

2
(ξ

k

1h, ξ
k

1h) + τ

k−1∑

l=1

(ξ
l

1h, ξ
k

1h)

)

+
τ

2

(
ΠhJ

k − Jk
, ξ

k

1h

)
+ τ

k−1∑

l=1

(
ΠhJ

l − J l
, ξ

k

1h

)

+


 ĨJ

k
+ ĨJ

k−1

2
− 1

τ

∫ tk

tk−1

∫ s

0

J(χ) dχds, ξ
k

1h




= E1 + E2 + E3.

The next step is to sum this over k = 1, . . . , N and, first, from Lemma 4.3,

N∑

k=1

E1 = −τ

2

∣∣∣∣∣

∣∣∣∣∣

N∑

i=1

ξ
i

1h

∣∣∣∣∣

∣∣∣∣∣

2

0

6 0

and so can be discarded. For E2 we get,

E2 6
τ

2
||ΠhJ

k − Jk||0 ||ξ
k

1h||0 + τ
k−1∑

i=1

||ΠhJ
i − J i||0 ||ξ

k

1h||0

6 CThl||J ||L∞(0,T ;Hl(curl;Ω))||ξ
k

1h||0
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after using (29). Lastly, noting that

ĨJ
k
+ ĨJ

k−1

2
− 1

τ

∫ tk

tk−1

∫ s

0

J(χ) dχds

=
ĨJ

k
+ ĨJ

k−1

2
− 1

2

(∫ tk

0

J(s) ds+

∫ tk−1

0

J(s) ds

)

+
1

2

(∫ tk

0

J(s) ds+

∫ tk−1

0

J(s) ds

)
− 1

τ

∫ tk

tk−1

∫ s

0

J(χ) dχds

=
1

2

(
ĨJ

k −
∫ tk

0

J(s) ds

)
+

1

2

(
ĨJ

k−1 −
∫ tk−1

0

J(s) ds

)

− 1

τ

(∫ tk

tk−1

∫ s

0

J(χ) dχ ds− τ

2

(∫ tk

0

J(χ) dχ+

∫ tk−1

0

J(χ) dχ

))
.

Using this with Lemma 4.5 then gives,

E3 6
1

2
||ξk1h||0

(√
Tτ2||J tt||L2(0,tk;L2(Ω)) + τ3/2||J t||L2(tk−1,tk;L2(Ω)

)
.

Finally, we return to Err8, sum over k = 1, . . . , N , use these results with two
Young’s inequalities and infer the analogous result for Err11 to obtain,

N∑

k=1

Err8 +

N∑

k=1

Err11 6
τΓe

2ǫ0ω2
pe

N∑

k=1

||ξk1h||20 +
τΓm

2µ0ω2
pm

N∑

k=1

||ηk1h||20

+ CT 3h2l||J ||2L∞(0,T ;Hl(curl;Ω)) + C(1 + T 2)τ4||J t||2H1(0,T ;L2(Ω))

+ CT 3h2l||K||2L∞(0,T ;Hl(Ω)) + C(1 + T 2)τ4||Kt||2H1(0,T ;L2(Ω)).(93)

The proof is now completed first by assembling all of these estimates and choosing
the δi so that each term can be controlled by ‘kicking-back’ the corresponding left-
hand side term. The last two steps are to take the maximum with respect to N
and then use triangle inequality along with approximation results to restore the full
error terms to the left hand side. �

5. Conclusions

We have presented two practical schemes for the time-domain simulation of
Maxwell’s equations for Lorenz metamaterials. In each case we have provided
data-stability estimates for both the continuous and discrete problems without us-
ing Gronwall inequalities. As a result the constants in these estimates do not grow
exponentially in T . Instead the constant is either bounded independently of T , as in
Theorems 3.1, 4.1 and 4.4 or grows with T 1/2, as in Theorems 4.1 and 4.4. We also
gave one extensive example, Theorem 4.6, to demonstrate how these arguments can
be extended to an a priori error analysis and this showed that the constant in the
error bound is of order O(T 3/2) in that case. As a result, apart from this moderate
(at least, as compared to exp(cT )) growth in the constant the error growth can be
expected to be dominated only by the underlying time dependence in the higher
derivatives of the exact solution and data.
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