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DISCRETE LEAST SQUARES HYBRID APPROXIMATION

WITH REGULARIZATION ON THE TWO-SPHERE

YANG ZHOU

Abstract. In this paper we consider the discrete constrained least squares problem coming
from numerical approximation by hybrid scheme on the sphere, which applies both radial basis
functions and spherical polynomials. We propose a novel l2 − l1 regularized least square model
for this problem and show that it is a generalized model of the classical “saddle point” model.
We apply the alternating direction algorithm to solve the l2 − l1 model and propose a convenient
stopping criterion for the algorithm. Numerical results show that our model is more efficient and
accurate than other models.
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1. Introduction

Numerical approximation on the sphere is nowadays a widely studied problem
arising in plenty of science landscapes such as geophysics, astrophysics, and surface
reconstruction. Amongst varieties of different approaches, the hybrid approxima-
tion scheme [7, 11, 16, 19] seems an attractive method, which employs both the
radial basis functions (RBF) and spherical harmonic polynomials. Often the un-
derlying motivation has been the need to approximate geophysical quantities. It is
well understood that the radial basis functions could approximate rapidly varying
data over short distance effectively, whereas the spherical harmonic polynomials
are more suitable for slowly varying data on a global scale.

In this paper we will discuss approximating a continuous function f ∈ C(S2)
using both radial basis functions and spherical harmonic polynomials, where S2

represents the unit sphere in three dimensional space as

S2 = {x = (x, y, z) ∈ R3 : x2 + y2 + z2 = 1},
and C(S2) denotes the space of all continuous functions defined on S2. We assume
that the values of f are given at a distinct data point set

XN = {x1, . . . ,xN , N ∈ N} ⊂ S
2.

To construct the radial basis functions, we choose all points in XN as the center
points and employs a (strictly) positive definite kernel φ [15, 19, 20] which satisfies

(1)

N
∑

i=1

N
∑

j=1

αiφ(xi,xj)αj ≥ 0,

for any point set of XN ⊂ S2 and for all N ∈ N, with equality for distinct points
xj only if α1 = α2 = . . . = αN = 0. Then the RBFs are defined as φ(·,xj) with
j = 1, . . . , N . Additionally, we assume that kernel φ is zonal, which means

φ(xi,xj) = φ(xi · xj),
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for arbitrary i, j = 1, . . . , N , where xi · xj denotes the Euclidean inner product in
R

3. Then we can define a space of RBFs as

XXN ,φ = XN = span{φ(·,xj) : xj ∈ XN}.
Further more, denote by

Fφ = span{φ(·,xj) : xj ∈ S
2, j ∈ 1, . . . , N, N ∈ N},

which is a reproducing kernel pre-Hilbert space [19] under the inner product

(2)

〈

N
∑

i=1

αiφ(·,xi),

N
∑

j=1

α′
jφ(·,xj)

〉

φ

=

N
∑

i=1

N
∑

j=1

αiα
′
jφ(xi,xj),

and the norm

(3)

∥

∥

∥

∥

∥

N
∑

i=1

αiφ(·,xi)

∥

∥

∥

∥

∥

φ

=

N
∑

i=1

N
∑

j=1

αiαjφ(xi,xj),

with αj ∈ R, j = 1, · · · , N . Let Nφ be the completion of Fφ and then we can
obtain that Nφ is a reproducing kernel Hilbert space (RKHS). It is well known and
could be easily verified that the reproducing kernel [11] φ of Nφ satisfies

φ(x,y) = φ(y,x), ∀ x, y ∈ S
2,

φ(·,y) ∈ Nφ, y ∈ S
2,

and

〈f, φ(·,y)〉φ = f(y), y ∈ S
2, f ∈ Nφ.

Another space we will apply is defined as

PL = {spherical polynomials of degree ≤ L}
= span{Yℓ,k : ℓ = 0, . . . , L, k = 1, . . . , 2ℓ+ 1},

with its dimension denoted by

dL =

L
∑

ℓ=0

(2ℓ+ 1) = (L+ 1)2.

Here Yℓ,k is a fixed L2-orthonormal real spherical harmonic polynomial [1] of degree
ℓ and order k defined on S2, which we can express by the denotation of L2(S

2) inner
product on S2 as

〈Yℓ,k, Yℓ′,k′〉
L2

=

∫

S2

Yℓ,kYℓ′,k′dω(x) = δℓ,ℓ′δk,k′ ,

with

ℓ, ℓ′ = 0, . . . , L, k = 1, . . . , 2ℓ+ 1, k′ = 1, . . . , 2ℓ′ + 1,

where dω(x) denotes the normalized surface measure, and δℓ,ℓ′ is the Kronecker
delta. According to the addition theorem, a zonal radial basis function has a
expansion of the form

(4) φ(·,x) =
∞
∑

ℓ=0

φ̂ℓPℓ(·,x) =
∞
∑

ℓ=0

φ̂ℓ
2ℓ+ 1

2ℓ+1
∑

k=1

Yℓ,k(·)Yℓ,k(x),

where φ̂ℓ > 0, ℓ = 0, . . . ,∞ when φ is a strictly positive kernel. Here Pℓ is the
Legendre polynomial of degree ℓ in 3-dimension normalized to Pℓ(1) = 1.
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Now let XN ⊂ S2 be fixed, then the approximation of f ∈ C(S2) with both
RBFs and spherical harmonics can be defined as

(5) ΛX,Lf =

N
∑

j=1

αjφ(·,xj) +

L
∑

ℓ=0

2ℓ+1
∑

k=1

βℓ,kYℓ,k,

with the orthogonal condition

(6)

N
∑

j=1

αjv(xj) = 0, ∀v ∈ PL,

where αj , j = 1, . . . , N , βℓ,k, ℓ = 0, . . . , L, k = 1, . . . , 2ℓ + 1, are the coefficients
of the RBFs and spherical harmonics, and L denotes the maximal degree of the
spherical harmonics applied in the approximation. The values of f are given at
the N -point set XN = {x1, . . . ,xN} ⊂ S

2, and we insist that XN is a fundamental
system of degree L, see [2, 4, 16]. Thus the approximation ΛX,Lf is to find an
element u ∈ XN and v ∈ PL as

u =

N
∑

j=1

αjφ(·,xj),

v =
L
∑

ℓ=0

2l+1
∑

k=1

βℓ,kYℓ,k,

satisfying condition (5) and (6). Usually, we can directly force ΛX,Lf(xi) =
f(xi), i = 1, . . . , N . Then let f := f(XN ) be the column vector with

f := [f(x1), . . . , f(xN )]T ∈ R
N ,

A := A(XN ) ∈ RN×N and Q := Q(XN) ∈ RN×(L+1)2 with their entries as

(7) Ai,j := φ(xi,xj), i, j = 1, . . . , N,

and

(8) Qi,ℓk := Yℓ,k(xi), i = 1, . . . , N, ℓ = 0, . . . , L, k = 1, . . . , 2ℓ+ 1,

and substitute (7), (8) to (5), (6), we could obtain a saddle point linear system as

(9)

[

A Q
QT 0

] [

α
β

]

=

[

f
0

]

.

Since the kernel we choose for constructing the RBFs is strictly positive definite,
the matrix A here is positive definite. Moreover, the fact that XN is a fundamental
system implies that Q is of full column rank. Under these two conditions, equation
(9) is well-posed and has a unique solution.

Condition (6) is added to guarantee the polynomial accuracy and the efficiency
of the approximation (5). Under the assumption that Q is of full column rank, the
approximation form (5) with condition (6) has an algebraic accuracy with degree
L. That means, when the function f is a spherical polynomial with its order no
greater than L, the condition will guarantee that ΛX,Lf ≡ f holds no matter how
the point set XN is chosen.

To keep the efficiency of the approximation with both RBFs and spherical har-
monics, the obtained linear combination of RBFs u is expected to be φ–orthogonal
or L2–orthogonal to the spherical harmonic space PL. In this sense we can have
that 〈u, v〉φ = 0 or 〈u, v〉L2

= 0 for arbitrary element v ∈ PL. Since Yℓ,k, ℓ =
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1, . . . , L, k = 1, . . . , 2ℓ + 1 is a basis of PL, the orthogonal condition could be
presented as

(10) 〈u, Yℓ,k〉φ = 0 for ℓ = 0, . . . , L, k = 1, . . . , 2ℓ+ 1,

or

(11) 〈u, Yℓ,k〉L2
= 0 for ℓ = 0, . . . , L, k = 1, . . . , 2ℓ+ 1.

From the definition of the two different inner products and φ̂ℓ > 0, ℓ = 0, . . . ,∞ in
(4) we can obtain that

〈u, Yℓ,k〉φ =

〈

N
∑

j=1

αjφ(·,xj), Yℓ,k

〉

φ

=

N
∑

j=1

αj 〈φ(·,xj), Yℓ,k〉φ

=

N
∑

j=1

αjYℓ,k(xj) = 0, for ℓ = 1, ..., L, k = 1, ...2ℓ+ 1,

and

〈u, Yℓ,k〉L2
= 〈

N
∑

j=1

αjφ(·,xj), Yℓ,k〉L2

=

N
∑

j=1

αj

∫

S2

φ(x,xj)Yℓ,k(x)dω(x)

=

N
∑

j=1

αj

∫

S2

∞
∑

ℓ′=0

φ̂ℓ
2ℓ+ 1

2ℓ+1
∑

k′=1

Yℓ′,k′(x)Yℓ′,k′Yℓ,k(x)dω(x)

=

N
∑

j=1

αj

φ̂ℓ
2ℓ+ 1

Yℓ,k(xj) = 0, for ℓ = 1, ..., L, k = 1, ...2ℓ+ 1,

which are both equivalent to the equation

(12) QTα = 0.

Le Gia, Watson, Sloan in [11] declared that problem (9) can also be explained as a
continuous constrained least squares problem as

(13) min
u∈XN

1

2
‖u− f‖2φ

s.t. 〈u, Yℓ,k〉φ = 0, ℓ = 0, . . . , L, k = 1, . . . , 2ℓ+ 1,

where the ‖ · ‖φ is defined as in (3). With notations (7)(8) the problem can be
reformulated as

min
α
αTAα − αT f

s.t. QTα = 0.
(14)

By introducing the vector β as the Lagrangian multiplier and deriving the KKT
condition of this problem we can also obtain system (9).

The paper is organized as follows. In Section 2 we develop the “saddle point”
model (9) into a l2 − l1 regularized least squares form as (24) to improve the
approximation. Then we apply the alternating direction method (ADM) to solve
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the problem presented in this section. We obtain that in each iteration of ADM,
the problem can be decomposed to solving a linear system and a separable convex
programming. Especially, a simply-formed and effective stopping criterion is given
for this algorithm in this section. In Section 3 several numerical tests are established
to show the efficient performance of the model conclusion is given in Section 4.

2. Problem formulation

In this section we pay our attention to study the least square approximation
problem which also employs both the RBFs and the spherical harmonics. It is well
known that (9) is an effective model for approximation problem in many cases. Now
we consider a generalized least squares formula for hybrid approximation. Firstly,
instead of using the data point set XN as the center point set of RBFs, we use a
different point set XN∗

= {x∗
1,x

∗
2, . . . ,x

∗
N∗

} as the center point set to construct the
RBFs. As we declared in the last section, in the original saddle point model (9) the
data point set is directly chosen as the center point set when we creating RBFs.
As far as we know, no theoretical result has been established to insist this choice
as far as we know. Naturally, we have some new notations about this new center

point set as matrix A ∈ RN×N⋆ and Q∗ ∈ RN×(L+1)2 defined by

(15) Ai,j := φ(xi,x
∗
j ), i = 1, . . . , N, j = 1, . . . , N∗,

and

(16) (Q∗)i,ℓ2+k := Yℓ,k(x
∗
i ), i = 1, . . . , N∗, k = 1, . . . , 2ℓ+ 1, ℓ = 0, . . . , L.

Then the orthogonal condition (6) is equivalent to

(17) QT
∗ α = 0.

In this case, we still always assume that XN∗
to be a fundamental system, which

implies that Q∗ is of full column rank. Now we consider the new linear system

(18)

[

A Q
Q∗ 0

] [

α
β

]

=

[

f
0

]

.

If we here assume that N > N∗ and A is of full column rank, this system will be
over determined and has no solution. In this case, instead of equation (18), we
consider its least squares form as

min
α,β

1

2
‖Aα+Qβ − f‖22(19)

s.t. QT
∗ α = 0,

or

min
α,β

1

2
αQ∗Q

T
∗ α(20)

s.t. Aα+Qβ − f = 0.

The solution of problem (19) satisfies the condition (6) strictly whereas the solution
of problem (20) interpolates the data f exactly. To meet a balance of this two
aspects, we consider its penalized form as a more general case. we plus the two
objective functions in the two models with a penalized parameter multiplied on one
of them, and then can obtain its l2 − l2 penalized form as

(21) min
α,β

1

2
‖Aα+Qβ − f‖22 + λ‖QT

∗ α‖22,

where λ is the regularized or penalized parameter to balance the approximation
and the orthogonal condition. This problem is a smooth convex unconstrained
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programming. By deriving its first order necessary condition, we can obtain a
linear system which is easy to solve.

Moreover, we usually want the orthogonal condition to hold for as many ℓ and
k, ℓ = 0, . . . , L, k = 1, . . . , 2ℓ + 1, as possible. That is to say, we want the vector
QT

∗ α as sparse as possible. Based on this point of view, the l2− l0 is more advisable
to consider:

(22) min
α,β

1

2
‖Aα+Qβ − f‖22 + λ‖QT

∗ α‖0.

This problem is non-lipschitz nonconvex and can have multiple local minimizers.
However, we should note that problem (22) is non-convex and NP hard [5, 9, 12].
Hence we should consider an approximation of this model instead. A good approx-
imation is that replacing the l0 norm by lp norm, with the form as

(23) min
α,β

1

2
‖Aα+Qβ − f‖22 + λ‖QT

∗ α‖p,

where 0 < p < 1, which is named low order penalty problem. However, the problem
is nonsmooth and nonconvex. For the convenience of computing, a convex approxi-
mation form is expected to make this problem easier to solve. As the closest convex
form of model (22), we take the l1 regularization replacing the l0 one. Thus problem
(19) becomes non-smooth but convex programming as

(24) min
α,β

1

2
‖Aα+Qβ − f‖22 + λ‖QT

∗ α‖1.

Remark 1. The solution of the saddle point system (9), if exists, is also an opti-
mal solution of optimization problem (19), (21), (22),(23) and (24) when choosing
XN∗

= {x∗
1,x

∗
2, . . . ,x

∗
N∗

} = XN .

The existence of solution for system (9) guarantees that the optimal values of
all objective functions in (24), (19), (23) and (22) equals to 0.

Remark 2. Systems (19), (23), (22) and (24) all guarantee the exactness for
polynomials of degree ≤ L. That is, for ∀f ∈ PL, (α

∗, β∗) is the optimal solution
for all the four problems, in which α∗ = 0 and β∗ satisfies

f =
L
∑

l=0

2ℓ+1
∑

k=1

β∗
ℓ,kYℓ,k,

where β∗ = (β∗
ℓ,k), ℓ = 0, . . . , L, k = 1, . . . , 2ℓ + 1. In this situation, β∗ is unique

and all the objective functions equal to 0.

The ‖ · ‖1 regularizer in (24) is to guarantee condition (12) which forces u, the
linear combination of RBFs, separated from the spherical harmonic polynomial
space PL and λ is the regularization parameter to balance the two parts. This
leads to (24) as a non-smooth and convex optimization problem. The problem also
requires that both XN and XN∗

are fundamental systems [2] which guarantee that
both Q and Q∗ are of full column rank.

Now we consider using the alternating direction method (ADM) to solve the
problem (24). The basic idea of ADM goes back to the work of Gabay and Mercier
[8]. The motivation of this method is to solve a separable programming by sep-
arating it into two or more easier subproblems. Since the method requires that
the objective function is separable, first we introduce an auxiliary variable vector
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y = QT
∗ α ∈ R(L+1)2 and (30) can be reformulated into a constrained optimization

problem as

(25) min
α,β

1

2
‖Aα+Qβ − f‖22 + λ‖y‖1

s.t. QT
∗ α− y = 0,

which is a structured convex constrained optimization problem and can be solved
by the ADM method. Let z be the Lagrangian multiplier and 0 < ρ ≤ 1 be the
augmented Lagrangian parameter for the linear constraint QT

∗ x − y = 0, then the
augmented lagrangian function of (25) is

(26) L(x,y, z) =
1

2
‖Aα+Qβ − f‖22 + λ‖y‖1 − zT (QT

∗ α− y) +
ρ

2
‖QT

∗ α− y‖22.

Then a framework of the alternating direction method for problem (24) could be
given as Algorithm 1.

Algorithm 1: ADM for solving l2 − l1 regularized model (24)

Step 0: Initialization. Make an initial guess v0 = (y0, z0).
Step 1: Find a new x. For given (yk, zk), solve the convex quadratic

programming

xk+1 =

(

αk+1

βk+1

)

=argmin

{

1

2
‖Aα+Qβ − f‖22 − (zk)T (QT

∗ α− yk)

+
ρ

2
‖QT

∗ α− yk‖22
}

.

(27)

Step 2: Find a new y. Use zk and the obtained xk+1 to solve the
convex separable quadratic programming

(28) yk+1 = argmin
{

λ‖y‖1 − (zk)T (QT
∗ α

k+1 − y) +
ρ

2
‖QT

∗ α
k+1 − y‖22

}

.

Step 3: Update the lagrangian operator. Update zk as zk+1 =
zk − ρ(QT

∗ α
k+1 − yk+1) and go back to step 1 until convergence.

Since our problem (24) is convex, the convergence of Algorithm 1 is covered by
the analysis given in [6] where each ADM subproblem is required to be solved more
and more accurately as the algorithm proceeds. In step 2, by deriving its first-order
optimality condition, solving (27) could lead to seeking the solution of the following
linear system:

(29)

[

ATA+ ρQ∗Q
T
∗ ATQ

QTA QTQ

] [

αk+1

βk+1

]

=

[

AT f + ρQ∗y
k +Q∗z

k

QT f

]

.

Now we denote by

M =
[

A Q
]

, x =

[

α
β

]

, B =
[

QT
∗ 0

]

and

J =

[

M
B

]

=

[

A Q
QT

∗ 0

]

where M ∈ RN×(N∗+(L+1)2), B ∈ R(L+1)2×(N∗+(L+1)2) and

J ∈ R(N+(L+1)2)×(N∗+(L+1)2).
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Lemma 3. Linear system (29) has a unique solution if

rank (J) = N∗ + (L+ 1)2.

Especially, when we assume that XN∗
= XN and they are fundamental systems with

order L, we have that the solution of (24) is unique and also an optimal solution
of problem (9), (19), (22), (23) and (21).

Proof. For (29) we could obtain that
[

ATA+ ρQ∗Q
T
∗ ATQ

QTA QTQ

]

=

[

AT

QT

]

[

A Q
]

+ ρ

[

Q∗

0

]

[

QT
∗ 0

]

= MTM + ρBTB.

The above matrix is invertible if and only if the zero vector is the unique solution
of the system

Jx = 0.

Then we can get that

N∗ + (L + 1)2 ≤ rank (J) ≤ N∗ + (L+ 1)2.

Especially, when we assume that XN∗
= XN and they are fundamental systems,

we can obtain that rank(J) = N+(L+1)2 = N∗+(L+1)2. Therefore, the solution
of problem (24) is unique. Moreover, in this case we can have Aα+Qβ− f = 0 and
QTα = 0 hold at the same time because the equation (9) is well posed. Thus, the
unique solution of (24) is also solution of problem (9), (19), (22) and (23).

The proof of the lemma is completed. �

Now we consider the subproblem (28) in step 3. The format of problem (24)
could be simplified as

(30) min
x

1

2
‖Mx− f‖22 + λ‖Bx‖1
s.t. Bx− y = 0.

We denote by (Bxk+1)i as the ith column of the vector Bxk+1. Then problem (28)
can be reformulated as

yk+1 = argmin







λ

(L+1)2
∑

i=1

|yi| −
(L+1)2
∑

i=1

(zk)i((Bxk+1)i − yi)

+
ρ

2

(L+1)2
∑

i=1

((Bxk+1)i − yi)
2







= argmin







(L+1)2
∑

i=1

(λ|yi| − (zk)i((Bxk+1)i − yi) +
ρ

2
((Bxk+1)i − yi)

2)







.

(31)

We see that (31) is a separable optimization problem. Then the problem can be
separated to (L + 1)2 one-dimension subproblems as

(32) yk+1
i = argmin

{

λ|yi|+ (zk)iyi +
ρ

2
((Bxk+1)i − yi)

2
}

,

and by the first order optimal condition, we have that

0 ∈ λ∂(|yi|)− zki − ρ(Bxk+1)i + ρyi,



336 Y. ZHOU

where ∂(|yi|) denotes the subdifferential of the nondifferentiable convex function
|yi|. We could note that this step is equivalent to a scalar shrinkage process and the
solution of (31) is developed based on the relative conclusion in [17] as following.

Remark 4. The solution of (32) could be given by the formulation

yk+1
i =

1

ρ

(

max
{

0, ρ(Bxk+1)i + (zk)i − λ
}

−max
{

0,−ρ(Bxk+1)i − (zk)i − λ
})

.

(33)

Now we consider the stopping criterion of Algorithm 1. By deriving the first-
order optimality condition (25), we have

(34)











MTMx−MT f −BT z = 0,

0 ∈ λ∂(‖y‖1) + z,

Bx− y = 0.

Hence problem (25) has the following variational inequality characterization: find

ω ∈ Ω := RN∗+3(L+1)2 such that

(35) ω ∈ Ω, λ(|y′| − |y|) + 〈ω′ − ω, F (ω)〉 ≥ 0, ∀ω′ ∈ Ω,

where

(36) ω =





x
y
z



 and F (ω) =





MTMx−MT f −BT z
z

Bx− y



 .

Let (xk+1,yk+1, zk+1) ∈ Ω be generated by Algorithm 1. We denote by Ω∗ =
{(x∗,y∗, z∗)} the solution set of problem (25). Note that system (29) is equivalent
to find an xk+1 satisfying

〈

x′ − xk+1,MTMxk+1 −MT f −BT zk + ρBTBxk+1− ρBTyk
〉

≥ 0,

∀x′ ∈ R
N∗+(L+1)2 .

Simultaneously, we have

λ(|y′| − |yk+1|)−
〈





x′ − xk+1

y′ − yk+1

z′ − zk+1



 ,





MTMxk+1 −MT f −BT zk+1

zk+1

ρ(Bxk+1 − yk+1)



+





ρBT (yk+1 − yk)
0

zk+1 − zk





〉

≥ 0,

(37)

for any (x′,y′, z′) ∈ Ω. Therefore, (xk+1,yk+1, zk+1) is a solution of (25) if and
only if yk = yk+1 and zk+1 = zk. Then we could establish a stopping criterion for
Algorithm 1 according to this conclusion:

(38) max{‖yk − yk+1‖2, ‖zk − zk+1‖2} ≤ ǫ,

where ǫ > 0.

3. Numerical results

In this section we establish some numerical experiments to test the efficiency of
the approximation model proposed in the above section. The models and algorithms
are implemented in Matlab 2011b equipped on a Lenovo Thinkcenter PC equipped
with Intel Core i7-3770 3.4G Hz CPU, 8 GB RAM running Windows 7.
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The choice of kernels for constructing positive definite RBFs is multiple. In this
paper we choose the “Wendland” function as the kernel of RBFs, which is a kind
of piece wise function with compact support and is proved to be positive definite
on S2, see [19]. The function is defined as

φ(x,y) = ψ(|x− y|) = ψ(
√

2− 2x · y), x,y ∈ S
2,

where ψ(r) could be one of the three choices as

ψ0(r) = (1− r)2+ ∈ C0(R),

ψ2(r) = (1− r)4+(4r + 1) ∈ C2(R),

ψ4(r) = (1− r)6+(35r
2 + 18r + 3) ∈ C4(R).

Note that ψi, i = 0, 2, 4 are all continuous but ψ0 is not differentiable at r = 0.
In our experiment, numerical tests has proved that approximation residuals do not
vary so much by choosing different RBFs, so here we will only apply the kernel ψ2

which is continuous differentiable on R to construct the RBFs. Sometime scaling
of the compact support is employed to improve the approximation, but scaling also
results in large condition number of A, which will lead to long solving time. That
may influence the solving time for each different method differently. Hence for
fairness we will not use scaling in this experiment if nothing announced.

In this paper we do not pay much attention to the choice of regularized parameter
λ in (23), though it may influence the result of approximation. However, how to
choose λ is still a significant and open problem which is worth studying in the
future. As a part of remedy of that, we would try several different selections of λ,
as λ = 10−3, 10−2, · · · , 103, and record the best results among them.

We choose two different types of point sets as the data set and center point set
for RBFs. One type is a set with its points (approximately) uniformly distributed
on the whole sphere. The minimal energy [14], extremal spherical design [4] and
well conditioned spherical t-design [2] systems are all uniformly distributed point
systems. Here we will use equal area partitioning method (EAP) which is proposed
by Saff [14] to generate the points.

The other type is a non-uniformly distributed set with points distributed densely
in a small cap region and relatively sparsely in the rest region of the sphere. Ob-
viously, this kind of point sets will lead to ill conditioned matrix and more solving
time. We still can generate this type of point set XN using EAP method. The
basic scheme is that we first generate some points densely and uniformly in the
small cap region using EAP and then generate points sparsely in the rest region.
In each time of test, we apply the same type of the data set and center point set.
That means if a non-uniformly distributed point set is selected as data point set in
one test, then the center point set will also be selected as non-uniformly with the
same cap region and vice versa. We should also note that the theory of keeping
matrix M of full column rank is still not studied. But in practical tests it is not
difficult to choose the data set and center set to make this condition hold.

3.1. Approximate Franke function. In the first experiment, to test the model
(24) and Algorithm 1 mentioned in our paper, the Franke function with the form

f(x) =f(x, y, z) = 0.75 exp(−(9x− 2)2/4− (9y − 2)2/4− (9z − 2)2/4)

+ 0.75 exp(−(9x+ 1)2/49− (9y + 1)/10− (9z + 1)/10)

+ 0.5 exp(−(9x− 7)2/4− (9y − 3)2/4− (9z − 5)2/4)

− 0.2 exp(−(9x− 4)2 − (9y − 7)2 − (9z − 5)2), (x, y, z) ∈ S
2

(39)
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is chosen as the target function to approximate, which is modified by Renka [13].
Note that the Franke function is continuously differentiable on S

2. We choose the
both two types of point set mentioned above: scattered data systems (SD), which
represent the non-uniformly distributed point sets, and equal area partitioning sys-
tems (EAP), which represent the uniformly distributed point sets.

Especially, we should note that here the infinity norms of the residuals are ap-
proximate values. We all know that it is a complicated and time-consuming process
to calculate the precise value of infinity norm of a function on S2. The scheme to
approximate the values is that we choose a uniformly distributed test point set
Xt with large cardinalities and then use the maximal residual evaluated at Xt

to approximate the infinity norm. Define Λp,q as the approximation obtained by
problem

(40) min
α,β

1

2
‖Aα+Qβ − f‖pp + λ‖QT

∗ α‖qq,

where p, q = 1, 2. Then the residuals are obtained as

Rp,q = ‖Λp,qf − f‖∞ ≈ max
x∈Xt

|Λp,qf(x)− f(x)|.

Simultaneously, we also present the residual norms by applying the saddle point
model (9) to get approximate the target function defined as

RX,L = ‖ΛX,Lf − f‖∞ ≈ max
x∈Xt

|ΛX,Lf(x)− f(x)|,

in the table, of which both the center point set and data set are XN∗
. Here we use

an equal area partitioning point set with 106 points as the test set Xt.
Besides the model (24) we investigate in this paper, the l2 − l2, l1 − l1 and the

saddle point model (9) are also tested in this experiment. Since the l2−l2 model can
be reformulated as a linear system, we will solve it by the minimal residual method
(MINRES), as what is applied to equation (9). For l1 − l1 model, the problem is
non-smooth but convex. There are many popular methods and packages to solve
a convex problem, such as the SPG [3], which is written in Fortran 77 and is
proved to be efficient for many continuous differentiable optimization problems. In
this experiment we would apply a package called CVX which is written by Matlab
for comparison. The SDPT3 solver [18] is chosen in this package, which employs
an infeasible primal-dual predictor-corrector path-following method and could deal
with varieties of convex problem. To test the efficiency of Algorithm 1, we also
solve model (24) using SDPT3 for comparison.

We collect the infinity norms of the approximation residuals and CPU times in
seconds for solving process for each model as presented in Table 1. From the table
it is natural to see that all residuals R2,1, R2,2, R1,1 and RX,L generally decrease
when N∗ turns larger, which means that the approximation is more accurate. For
the same scale it is obviously to see that R2,1 is always the smallest among the
residuals. Also we could see that ADM is an efficient solver for our model. For
same scale and same type of point set, ADM needs the least time to solve its model.
For similar scale but different types of point sets, l2 − l1 model using ADM costs
similar time for both the SD and the EAP case, whereas other models need much
more time to solve for SD case than the EAP case.

Moreover, for solving model (24) using different algorithms we can conclude from
the second and third column of the table that ADM spends less time than SDPT3
in any case. And also, model (24) is solved faster than l1 − l1 model when same
algorithm is applied, seen from the third and fourth column.
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Table 1. Residuals (R·,·) and CPU time (T·,·) with different mod-
els for hybrid approximation with L = 10.

Type(N ,N∗) R2,1(T2,1) R2,1(T2,1) R2,2(T2,2) R1,1(T1,1) RX,L(TX,L)

Methods ADM SDPT3 MINRES SDPT3 MINRES

EAP(2000,400) 0.0433(0.02) 0.0433(4.50) 0.0471(0.05) 0.687(55) 0.0446(0.01)

EAP(4000,800) 0.0165(0.23) 0.0165(18.9) 0.0360(0.14) 0.0305(198) 0.0221(0.08)

EAP(6000,1200) 0.0068(0.25) 0.0068(110.7) 0.0372(0.39) 0.0076(490) 0.0095(0.25)

EAP(8000,1600) 0.0040(0.56) 0.0040(276.2) 0.0377(0.81) 0.0076(927) 0.0071(0.63)

EAP(10000,2000) 0.0018(0.69) 0.0018(738.6) 0.0368(0.87) 0.0031(2438) 0.0031(0.69)

SD(1993,399) 0.0535(0.03) 0.0535(0.03) 0.0563(0.06) 0.0845(46) 0.0514(0.04)

SD(3979,801) 0.0261(0.13) 0.0261(0.13) 0.0450(0.22) 0.0336(216) 0.0336(0.10)

SD(5974,1194) 0.0109(0.27) 0.0109(0.27) 0.0437(0.79) 0.0162(698) 0.0150(0.52)

SD(7964,1592) 0.0080(0.57) 0.0080(0.57) 0.0438(1.5) 0.0151(1132) 0.0126(1.39)

SD(9954,1993) 0.0040(0.95) 0.0040(0.95) 0.0438(2.5) 0.0076(1828) 0.0071(2.47)

3.2. Approximate Franke function with noise. In this subsection we will
approximate the Franke function with some noise. We denote the noisy function as

f δ(x) = f(x) + δ(x),

where for each x, δ(x) is a sample of a normal random variable with mean 0 and
standard deviation σ = 0.05. In this experiment we aim to restore the function f
through approximating f δ using the proposed model (23). The saddle point model
(9) will also be compared with (23) for restoration of the original function. The
approximate infinity norms of residuals are still recorded to measure the approx-
imation quality. Since we have found that the equal area partition point systems
behave well in the first experiment, in this experiment we only choose the EAP
system for test. The infinity norms of the residual are still recorded to measure the
quality of the approximation.

Table 2. Residuals of approximation for f δ.

N ,N∗,L R2,1 R2,2 R1,1 RX,L

121,36,5 0.3312 0.3187 0.3915 0.3968

441,121,5 0.1129 0.1129 0.1708 0.1646

961,256,5 0.1035 0.1035 0.1134 0.1395

961,256,10 0.1039 0.1039 0.1152 0.1449

1681,441,5 0.0959 0.0959 0.1179 0.1585

1681,441,10 0.0861 0.0861 0.1255 0.1591

Numerical Results for this experiment are shown in Table 2. From the table we
could find that for noisy case, the regularized models, including l2 − l1, l2 − l2 and
l1− l1, provide more accurate restoration for the original target function. In Figure
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(a) f (b) fδ

(c) restoration by ℓ2 − ℓ1 (d) restoration by ℓ2 − ℓ2

(e) restoration by ℓ1 − ℓ1 (f) restoration by saddle point system

Figure 1. Shapes of f , f δ and its restoration.

1 we present the shapes of Franke function f , the noisy function f δ and restorations
using model appearing in the above Table 2. Especially, the l2 − l1, l2 − l2 models
still own similar residuals and perform better than the l1− l1 model. However, it is
hard to say that for noisy case, which type of regularized model performs best. It
may depend on the property of the noise, which probably will be a long standing
problem.

3.3. Approximate Franke function plus cap function. In this subsection we
seek to approximate the Franke function plus a cap function as

fcap(x) = f(x) + g(x) = f(x) +

{

ρ cos
(

π arccos(xc·x)
2r

)

, x ∈ C(xc, r),

0, otherwise.

In this experiment we choose xc = (−0.5, 0.5,
√
0.5)T ,r = 0.5 and ρ = 1

r
. It is

easy to see that fcap is a continuous but non-differentiable function on the sphere.
Thus, when we use continuous differentiable functions to approximate the fcap,
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Table 3. Residuals of approximation for fcap with L = 10.

N ,N∗ R2,1 R2,2 R1,1 RX,L

1993,399 0.1007 0.1040 0.1456 0.1467

2987,598 0.0708 0.0836 0.1096 0.1232

3979,801 0.0673 0.0814 0.0793 0.1101

4980,994 0.0565 0.0745 0.0826 0.0925

5974,1194 0.0490 0.0749 0.0625 0.0745

errors near the cap boundary often are much larger than other parts. To get a close
estimate of the uniform residual for this case, we choose the test set Xt to be a type
with whose points are distributed densely around the cap boundary. Similarly, to
obtain better approximation, we will choose points denser in the cap region than the
rest region. Also we should note that in each region the points could be uniformly
distributed, which may lead to good approximation. In this sense, we apply the
SD point systems as the center point set and data point set. In this experiment we
set the scaling parameter σ = 0.5, which means that in the RBFs kernel ψi(r) the
variable r is replaced by r

σ
to reduce the compact support area of each function.

Table 3 shows the numerical results of this experiment. From the table we can
see that for all point sets we apply to the approximation, the l2 − l1 model (24)
keeps the best approximation among the four models.

4. Conclusion

In this paper we generalize the original hybrid approximation “saddle point”
model to a regularized l2 − l1 least squares problem. We apply the ADM method
to solve this problem and give a convenient and effective stopping criterion for
this problem. Numerical results show that the proposed model and algorithm are
efficient for this kind of problem.
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