
INTERNATIONAL JOURNAL OF c© 2015 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 12, Number 2, Pages 268–285

PHASE FIELD SIMULATION OF DROP FORMATION IN A

COFLOWING FLUID

JIEWEI LIU∗ AND XIAO-PING WANG

Abstract. We numerically investigate the dynamics of drop formation when a Newtonian fluid is
injected through a tube into another immiscible, co-flowing Newtonian fluid with different density
and viscosity using the phase field method. The two phase system is modeled by a coupled
three dimensional Cahn-Hilliard and Navier-Stokes equation in cylindrical coordinates. And the
contribution from the chemical potential has been taken into account in the classical Navier-Stokes
equation. The numerical method involves a convex splitting scheme for the Cahn-Hilliard equation
and a projection type scheme for the momentum equation. Our study of the dynamics of the drop
formation is motivated by the experimental work by Utada et al [Phys. Rev. Lett. 99(2007),
094502] on dripping and jetting transition. The simulation results demonstrate that the process of
drop formation can be reasonably predicated by the phase field model we used. Our simulations
also identify two classes of dripping to jetting transition, one controlled by the Capillary number
of the outer fluid and another one controlled by the Weber number of the inner fluid. The results
match well with the experimental results in Utada et al [A. S. Utada, A. Fernandez-Nieves, H.
A. Stone, and D. A. Weitz, Phys. Rev. Lett. 99(2007), 094502] and Zhang [Chem. Eng. Sci.

54(1999), 1759-1774]. We also study how the dynamics of the drop formation depends on the
various physical parameters of the system. Similar behaviors with existing results are obtained
for most parameters, yet different behavior is observed for density ratio λρ and viscosity ratio λη .
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1. Introduction

Dispersion of one fluid into another fluid through a vertical tube is of great
importance in scientific research because of its widespread applications in the in-
dustrial production, like copolymers, cosmetics, capsules and pharmaceutics (Hua
et al. [16]). The potential use of the dispersion technology is always limited by its
ability to precisely control the size distribution of the droplets (Carlson et al.[5]).
Over the last decade, many experiments have been carried out (A. M. Gañán-
Calvo [9], Umbanhowar et al. [31], Gañán-Calvo et al. [10], Cramer et al. [6],
Garstecki et al. [11], Utada et al. [30]), aiming at developing technologies to pro-
duce mono-disperse droplets with controllable size. It is found that a coflowing
outer fluid or flow-focusing technique could produce smaller drops and give rise to
mono-dispersion (Chuang et al. [7], Gañán-Calvo et al. [10], Utada et al. [30]).

Numerical simulation serves as a good complementary to the experimental in-
vestigation and theoretical analysis. Numerical methods for simulating multi-phase
problems can be divided into two classes: sharp interface method and diffuse inter-
face method. The advantage of the diffuse interface method is its ability to handle
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the topological change of the interface which is important in the current application
to the drop formation and dynamics.

Many numerical studies have been carried out for the coflowing fluid-fluid system
using the sharp interface methods. Oguz and Prosperetti [19] studied the dynamics
of gas bubble growth and detachment in a liquid for ir-rotational flow using a
boundary integral method. As a complementary to the research by Oguz and
Prosperetti [19] that focused mainly on inertial effect, Wong et al. [32] studied the
motion of a pinned gas bubble expanding or contracting from a submerged capillary
tip for flows with low Reynolds number using the boundary integral method. Zhang
and Stone [36] studied drop formation in a quiescent and coflowing fluid by solving
the governing Stokes equation using the boundary integral method, with the main
focus on the assessment of the influence of three dimensionless number on drop
evolution and breakup. In a series papers, Richards et al. [22, 23, 24] developed
a robust and stable numerical method which combined the volume-of-fluid (VOF)
method [15] and the continuous-surface-force (CSF) method [2] to simulate liquid-
liquid systems. Using the same numerical method as Richards et al. [22, 23, 24],
Zhang [34] investigated the drop formation dynamics in the dripping region and
found good agreement with his experiment. More recently, Suryo and Basaran
[27] studied the tip streaming forming from a tube in a coflowing outer fluid under
creeping flow conditions. They solved the Stokes equations using the Galerkin finite
element method for spatial discretization and adaptive finite difference method for
time integration.

Diffuse interface method has also been used to simulate the drop formation and
dynamics. Zhou et al. [35] investigated drop formation in the quiescent air and flows
in a flow-focus device. The dynamics of drop formation can be classified into two
regimes. One is dripping, and the other is jetting. Previous research on coflowing
fluid mainly focus on the dynamics of liquid drop or gas bubble. The transition from
dripping to jetting has not been studied numerically, to the author’s knowledge. In
this paper, we give a systematic numerically studies of drop formation dynamics
in a three dimensional coflowing fluid-fluid system in cylindrical coordinates. The
motion of the interface is modeled by a diffuse interface model consisting of the
Cahn-Hilliard Navier-Stokes equations. The numerical method involves a convex
splitting scheme for the Cahn-Hilliard equation and a projection type scheme for
the Navier-Stokes equation. We study how the dynamics of the drop formation
depends on the various physical parameters of the system. In particular, we are
interested in the dripping to jetting transition behavior.

The rest of this paper is organized as follows: In section 2, we describe the
mathematical formulation of the problem, including governing equations, boundary
and initial conditions, in both dimensional and dimensionless form. In section 3, we
present the numerical method for solving the Cahn-Hilliard Navier-Stokes equations
with different density and viscosity ratio. Section 4 shows our numerical results and
the comparison with the experiments. Two different classes of dripping-to-jetting
transition observed in the experimental paper [29] are identified. Section 5 is the
conclusion.

2. Problem formulation

In our problem, an incompressible Newtonian fluid with density ρi and viscosity
ηi is injected through a vertical capillary tube of radius Ri into a coflowing, immis-
cible, incompressible Newtonian fluid with density ρo and viscosity ηo, the outer
fluid is contained in a coaxial cylindrical tube of radius Ro. The dispersed phase
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and the continuous phase flow at constant flow rates of Qi and Qo respectively. A
schematic diagram is shown in Figure 1. It is convenient to adopt the cylindrical
coordinate system {r, z, θ} with its origin at the intersection of the centerline cl and
the inflow boundary z = 0, where {r, z, θ} represent the radial coordinate, axial co-
ordinate and azimuthal angle respectively. We assume radial symmetry, therefore
all variables are independent of the azimuthal angle θ.
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Figure 1. Schematic diagram of drop formation in another
coflowing fluid.

The phase field model of the two phase system consists of Cahn-Hilliard equation

(1)
∂φ

∂t
+ v · ▽φ =M △ µ,

where

(2) µ = −K △ φ− rφ+ uφ3;

and Navier-Stokes equation with the contribution from the chemical potential

(3) ρ[
∂v

∂t
+ (v · ▽)v] = −▽ p+▽ · [ηD(v)] + µ▽ φ+ ρg;

with incompressibility condition

(4) ▽ · v = 0;

Density and viscosity are assumed as an interpolation function of φ,

(5) ρ = ρi
1− φ

2
+ ρo

1 + φ

2
, η = ηi

1− φ

2
+ ηo

1 + φ

2
.

In equations (1)-(5), µ is the chemical potential, v = {uz, ur} is the fluid velocity
where uz and ur represent the axial and radial components respectively, p is the
pressure, g = (g, 0) with g being the gravitational acceleration constant, D(v) =
▽v+▽vT is the strain rate. Parameters K, r, u in equation (2) originated from
the free energy of the system F [φ] =

∫

dr = [ 12K(∇φ)2− 1
2rφ

2+ 1
4uφ

4] [20], and are

relate to the interface thickness ξ =
√

K/r, the interfacial tension γ = 2
√
2r2ξ/3u,

and the two homogeneous equilibrium phases φ± = ±
√

r/u ( = ±1 in our problem),
M is the phenomenological mobility coefficient[21].

The system (1)-(5) is solved subjected to the following boundary conditions. The
three phase contact line, where the interface of the inner and outer fluids meets the
solid surface, is assumed to be pinned to the sharp edge of the tube at all time,
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as in the paper of Zhang [34]. No-slip and no-penetration conditions are imposed
along the solid walls of the inner and outer tubes,

(6) v = 0, at {r = Ri, 0 ≤ z ≤ Li} or at r = Ro.

(7)
∂µ

∂r
= 0,

∂φ

∂r
= 0, at {r = Ri, 0 ≤ z ≤ Li} or at r = Ro.

Well upstream of the tube exit, the inflow condition at z = 0 for the inner tube is

(8) ur(0, r, t) = 0, uz(0, r, t) = 2
Qi

πR2
i

[1− (
r

Ri
)2], for 0 ≤ r ≤ Ri.

And that for the outer tube is the fully developed velocity profile, according to Bird
et al. [3],

ur(0, r, t) = 0, uz(0, r, t) = 2
Qo

πR2
o

[
1− ( r

Ro
)2 + 1−(Ri/Ro)

2

ln(Ro/Ri)
ln( r

Ro
)

1− (Ri

Ro
)4 − (1−(Ri/Ro)2)2

ln(Ro/Ri)

],(9)

for Ri ≤ r ≤ Ro.

The velocity profiles (8)-(9) are also adopted by Suryo and Basaran [27] to study

tip streaming under creeping flow conditions. It’s easy to check that
∫ Ri

0
uzdr = Qi

and
∫ Ro

Ri
uzdr = Qo. Inflow boundary conditions for φ and µ are

(10) φ(0, r, t) =

{

−1, if 0 ≤ r ≤ Ri

1, if Ri < r ≤ Ro

,

(11) µ(0, r, t) = 0, 0 ≤ r ≤ Ro.

Along the central line cl, we use symmetric boundary conditions, i.e.,

(12)
∂uz
∂r

= 0, ur = 0,
∂φ

∂r
= 0,

∂µ

∂r
= 0, at r = 0.

Suppose the length of outer tube is long enough such that the outflow condition
will not affect the drop formation process significantly, and at the outlet boundary
z = Sl, we can assume

(13)
∂uz
∂z

= 0, ur = 0,
∂φ

∂z
= 0,

∂µ

∂z
= 0.

Initially, both the inner and outer fluids are quiescent, so

(14) v(z, r, 0) = 0,

on the whole region. The inner fluid only occupies the inner tube, thus

(15) φ(z, r, 0) =

{

−1, if 0 ≤ r ≤ Ri and 0 ≤ z ≤ Li

1, otherwise
.

We now introduce the following characteristic scales,

lc = Ri, vc =
Qi

πR2
i

, ρc = ρi, ηc = ηi, φc =
√

r/u,

then the dimensionless counterpart of the system (1)-(5) are the followings, where
we have used the same notations for the dimensionless variables

(16)
∂φ

∂t
+ v · ▽φ = Ld △ µ,
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where

(17) µ = −ǫ△φ− φ/ǫ+ φ3/ǫ,

(18) Reρ[∂v
∂t

+ (v · ▽)v] = −▽ p+▽ · [ηD(v)] + Bµ▽ φ+
Bo
Ca (ρ− 1)jz,

(19) ▽ · v = 0,

(20) ρ =
1− φ

2
+ λρ

1 + φ

2
, η =

1− φ

2
+ λη

1 + φ

2
,

with the boundary conditions

(21) v = 0, at {r = 1, 0 ≤ z ≤ Li} or at r = a.

(22)
∂µ

∂r
= 0,

∂φ

∂r
= 0, at {r = 1, 0 ≤ z ≤ Li} or at r = a.

The inflow boundary conditions (8)-(11) change to

(23) ur(0, r, t) = 0, uz(0, r, t) = 2[1− r2], for 0 ≤ r ≤ 1.

(24)

ur(0, r, t) = 0, uz(0, r, t) = 2
Qr

a2
[
1− ( ra )

2 + 1−(1/a)2

ln(a) ln( ra )

1− ( 1a )
4 − (1−(1/a)2)2

ln(a)

], for 1 ≤ r ≤ a.

(25) φ(0, r, t) =

{

−1, if 0 ≤ r ≤ 1

1, if 1 < r ≤ a

(26) µ(0, r, t) = 0, 0 ≤ r ≤ a.

Dimensionless forms of conditions (12)-(14) is the same as their dimensional forms,

(27)
∂uz
∂r

= 0, ur = 0,
∂φ

∂r
= 0,

∂µ

∂r
= 0, at r = 0.

(28)
∂uz
∂z

= 0, ur = 0,
∂φ

∂z
= 0,

∂µ

∂z
= 0, at z = Sl.

(29) v(z, r, 0) = 0.

And initial condition for φ (15) now becomes

(30) φ(z, r, 0) =

{

−1, if 0 ≤ r ≤ 1 and 0 ≤ z ≤ Li

1, otherwise.

The dimensionless parameters introduced in equation (16)-(30) are Reynolds

number Re ≡ ρcvclc
ηc

= ρiQi

ηiπRi
, which measures the relative importance of inertial

force to viscous force; Capillary number Ca ≡ ηcvc
γ = ηiQi

γπR2
i

, which measures the rel-

ative importance of the viscous force to surface tension force; Bond number Bo ≡
ρcl

2
cg
γ =

ρiR
2
i g

γ , which measures the relative importance of the gravitational force

to surface tension force; diffusion coefficient Ld ≡ 3Mγ

2
√
2vclc2

= ǫ2 3Mγ

2
√
2vcξ2

= 3Mγπ

2
√
2Qi

,

where 3Mγ

2
√
2vcξ2

is the ratio of a diffusion length Mr
vc

to the interface thickness ξ,

noticing that γ = 2
√
2r2ξ
3u [20]; B = 3γ

2
√
2ηcvc

=
3γπR2

i

2
√
2ηiQi

, which is inversely propor-

tional to the Capillary number; Cahn number ǫ = ξ
lc

= ξ
Ri

, which is the ratio

between interface thickness ξ and length scale lc; λρ = ρo

ρi
, λη = ηo

ηi
, which are the
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density ratio and viscosity ratio respectively; Qr = Qo

Qi
, which is the ratio of the

flow rate of the outer fluid to that of the inner fluid, and a = Ro

Ri
, which is the ratio

of the radius of the outer tube to that of the inner tube.

3. Numerical methods

One needs to overcome several difficulties when designing algorithm for the sys-
tem (16)-(30). As pointed out in previous work [28, 26], one difficulty comes from
the coupling of the velocity and pressure through the incompressibility constraint;
another difficulty comes along with the nonequal density and viscosity of the two
fluids; the third difficulty, comes from the 4th order derivatives, nonlinearity [14]
and the stiffness of the Cahn-Hilliard equation associated with the interfacial width
ǫ. The first difficulty is usually overcome by decoupling the computation of the pres-
sure from the velocity using projection type scheme that was first introduced by
Chorin [4]. A detailed review of the projection method is given by Guermond et al.
[12]. Most of the current projection methods are limited to problems with constant
density and viscosity [26]. Guermond and Salgado [13] proposed a new fractional
time-stepping technique to solve incompressible flows with variable density, which
we will employ in this paper. As for the Cahn-Hilliard equation, a lot of works
have been carried out to develop stable, energy decaying numerical schemes. The
stiffness of the phase equation could be eliminated through two methods [28]: one
method is to add a stabilizing term in the phase equation, as what has been done
in by Yang et al. [33]; the other method is to use the convex splitting approach
proposed by Eyre [8]. The second method has been adopted by Gao and Wang [14]
to study the moving contact line problem. In the following, we are going to apply
the same method of Gao and Wang [14, 37] to solve the system (16)-(30).

The computational domain is

(31) Ω = {(z, r) | 0 ≤ z ≤ Sl, 0 ≤ r ≤ a},
where r = 0 corresponds to the z-axis (the centerline) and r = a corresponds to the
solid wall of the outer tube, z = 0 is the place where the inflow boundary condition
is imposed. Divide Ω into nz × nr smaller cells, with nz, nr being the number
of cells in z and r direction. Cell center, right boundary and top boundary are
represented by (i, j), (i+1/2, j), and (i, j+1/2) respectively. To make it easier for
computation, we assume that the solid wall of the inner tube and its exit are in line
with the cell boundaries. The radial velocity uri,j+ 1

2
and axial velocity uzi+ 1

2
,j are

defined at the low and left boundary of each cell respectively, whereas the phase
filed φi,j , pressure pi,j , chemical potential µi,j are located at the center.

Given an initial condition, {φ0, p0, v0, ψ0}, the time stepping algorithm are the
following:

• Step 1. Update φn, µn according to

(32)

{

φn+1−φn

△t + vn · φn+1 = Ld△µn+1

µn+1 = −ǫ△φn+1 + (sφn+1 − (1 + s)φn + (φn)3)/ǫ

The boundary conditions at the solid walls of the inner and outer tubes,
the lower and right boundaries of Ω are the homogeneous Numann B.C. for
both φ and µ,

(33)
∂φn+1

∂n
= 0,

∂µn+1

∂n
= 0.
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At the left boundary,

(34) φn+1(0, r, t) =

{

−1, if 0 ≤ r ≤ 1

1, otherwise
, µn+1(0, r, t) = 0.

• Step2. Update ρn and ηn according to equation (20).
• Step3. Solve the Navier-Stokes equation using pressure stabilization scheme,

Re[
1
2 (ρ

n+1 + ρn)vn+1 − ρnvn

△t + ρn+1(vn · ▽)vn+1 +
1

2
(▽ · (ρn+1vn))vn+1]

= ∇ · [ηn+1D(vn+1)]−∇(pn + ψn) + Bµn+1∇φn+1 +
Bo
Ca (ρ

n+1 − 1)jz.

(35)

Boundary conditions for the velocity v are the inflow boundary conditions
(23)-(24) at the left, no-slip boundary condition (21) at the solid walls of
the inner and outer tubes, symmetric boundary condition, i.e., the first two
formulas of (27) at the centerline, and outflow boundary condition, i.e., the
first two formulas of (28) at the right.

• Step4. Update ψ in equation (35) using

(36) △ψn+1 =
χ · Re
△t ∇ · vn+1,

where χ ≡ minΩ ρ. Boundary conditions for ψ at the inflow boundary, the
centerline and the solid walls of the inner and outer tubes are

(37)
∂ψn+1

∂n
= 0,

and at the right boundary, we use

(38) ψn+1 = 0,

for simplicity.
• Step5. Update pressure according to

(39) pn+1 = pn + ψn+1.

In our problem, we can simply set the initial condition p0 = 0 and ψ0 = 0
because the fluids are quiescent.

Remark 3.1. We discretize the operator△ in cylindrical coordinate by the standard
finite difference method.

Remark 3.2. Velocity components are defined at the cell boundaries, their values at
the cell center are defined to be the average values of boundary points. Similarly,
the values of φ etc. at the cell boundaries are defined as the average values of
centering points.

4. Results and Discussion

4.1. Effects of dimensionless parameters. In this subsection, we’re going to
study effects of the dimensionless parameters on the dynamics of drop formation.
We focus our attention on their effects on two dimensionless variables, limiting
length LD and volume of the drop VD. Limiting length is defined to be the distance
from the inner tube exit to the tip of the drop at the breakup. For each drop, VD
could be evaluated by VD = uiπR

2
iTd, where Td is the time needed to form the

drop. We measure LD and VD at ”steady state”, i.e., when the limiting length and
drop volume don’t change with the drop number any more. For all cases, we keep
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Sl = 20, a = 3, nz = 200, nr = 30, ǫ = 0.1, Li = 2, ui=1.0, Qr = 10.0, Uo = Qr

a2 ,

B = 3
2
√
2Ca and s = 1.5. For most of the simulations, △t = 2.67E − 3, but it is

adjusted to a smaller value for smaller Re.

4.1.1. Effects of the Reynolds number Re. Figure 2 shows the variation of
(a) LD and (b) VD with Re at three different λη: λη = 0.1, λη = 1, and λη = 10.
All the other dimensionless parameters are kept fixed at Bo = 0.01, Ca = 0.01,
Ld = 0.05, λρ = 0.1. The inserts in figure 2 (a) represent drop shapes at the
breakup for λη = 0.1, and that in figure 2 (b) represent the case for λη = 10.0. The
corresponding values of Re for the inserts, from the left-most to the right-most, are
0.001, 1, 40 respectively in both (a) and (b).
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Figure 2. Variation of (a) the limiting length LD and (b) the
primary drop volume VD with the Reynolds number Re at three
viscosity ratios, λη = 0.1, 1, and 10.0. Here, Bo = 0.01, Ca = 0.01,
Ld = 0.05, λρ = 0.1.

Figure 2 shows that both LD and VD do not change much when O(10−3) <
Re ≤ 10 for all the three cases we consider. When Re ≥ 10, VD decreases for all
cases, LD increases significantly for λη = 10.0 while it increases slowly for the other
two values of λη. As Re increases, the inertia of the drop increases. However, as
long as the combination of the inertia force of drop itself and the viscous drag force
from the outer fluid is not large enough to overcome the surface tension force, the
fluid would break up near the orifice with very short limiting length. When λη
increases, the viscous force from the outer fluid increases, making the volume of the
drop become smaller. As λη increases to 10, the viscous drag force from the outer
fluid is so large that it makes the drop move to a longer distance before the drop
break up. The inserts show that for λη = 0.1 and Re small, there is a thin thread
formed between the main drop and the liquid pendant to the tube. The reason, as
explained by Suryo [25], is that more viscous inner fluid could not only dampen the
oscillations of the drop interface, but also slow down the breakup process, leading
to the formation of a thin thread. This thin thread becomes shorter and shorter as
Re increases and it disappears completely when Re = 10, at which the main drop
connects to the pendant fluid directly. Figure 2 shows the same trends of variations
of LD and VD with Re as figure 13.12 in Suryo’s work [25] which is obtained by
sharp interface method.
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4.1.2. Effects of the Capillary number Ca. Capillary number measures the
relative importance of the viscous force to surface tension force and plays an im-
portant role in the breakup behaviour of the drops. Figure 3 shows the variation
of (a) LD and (b) VD with Ca at three different λρ: λρ = 0.1, λρ = 1, and λρ = 10.
All the other dimensionless parameters are kept fixed at Bo = 0.01, Re = 0.01,
λη = 1.0, Ld = 0.05. The inserts to figure 3 (a) represent drop shapes at the
breakup at four different Ca for λρ = 10.0 and the inserts to figure 3 (b) represent
the case for λρ = 0.1. The corresponding values of Ca for the inserts, from the left-
most to the right-most, are 0.004, 0.01, 0.04, and 0.07 respectively both in figure
(a) and (b).
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Figure 3. Variation of (a) the limiting length LD and (b) the
primary drop volume VD with the Capillary number Ca at three
density ratios, λρ = 0.1, 1, and 10. Here, Bo = 0.01, Re = 0.01,
λη=1.0, Ld = 0.05.

Figure 3 (a) shows that curves for λρ = 0.1 and λρ = 1.0 are nearly the same,
while for λρ = 10.0, the curve shows a bigger LD than the other two curves. For all
three curves, LD first decreases as Ca increases, but the rate of change of the curve
at λρ = 10.0 is larger than that at the other two values of λρ. LD then increases
smoothly as Ca continues to increase, and it suddenly increases to a much larger
value when Ca increases from 0.06 to 0.07 for all the three λρ we consider, indicating
a transition from dripping to jetting. Figure 3 (b) shows that VD keeps decreasing
as Ca increases for all three cases. These phenomena can be explained as follows:
when Ca is small, surface tension force is large compared with the viscous force, so
the drop is held back to the orifice. Longer time is needed for a drop to pinch off,
and more fluid can flow into the drop, so the drop size is bigger. As Ca increases,
the viscous force plays more and more important role in drop formation, and the
effect of surface tension becomes weaker, so the drop can move to longer distance
before it breaks up. Force balance can be reached earlier, which helps to shorten
drop formation period and form drops with smaller size. As the effects of viscous
force large enough, the mechanics changes from dripping to jetting suddenly. Also,
as the outer fluid overweight the inner fluid, fluid surrounding the drop also push it
moving in the gravitational direction. The inserts in figure (a) and (b) tell us these
variations in a more straightforward way. Furthermore, they show that the shape
of the drop is not only affected by λρ, but also by Ca. At λρ = 0.1, the main drop
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is round, while at λρ = 10.0, the main drop is more like a pear with lower half part
bigger than the upper half part. For small Ca, there is a thin thread connecting
the main drop to the pendant fluid, say, the first two drops in figure (a). As Ca
increases, the main drop becomes smaller while the pendant fluid becomes longer,
at the same time, the thin thread disappears, so the main drop connects to the
pendant jet directly. Our results shows the same trends as figure 13.13 in Suryo’s
work [25].

4.1.3. Effects of the viscosity ratio λη. Figure 4 shows the variation of (a)
LD and (b) VD with λη at three Re: Re = 1, Re = 10, and Re = 100. All the
other dimensionless parameters are kept fixed at Bo = 0.01, Ca = 0.01, Ld = 0.05,
λρ = 0.1. The inserts to figure 4 (a) represent drop shapes at the breakup for
Re = 100, the corresponding values of λη, from the left-most to the right-most, are
0.001, 0.1, 1, 2 respectively, and the inserts to figure 4 (b) represent the case when
Re = 1, the corresponding λη, from the left-most to the right-most, is 0.001, 0.1,
10, and 20.
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Figure 4. Variation of (a) the limiting length LD and (b) the pri-
mary drop volume VD with the viscosity ratio λη at three Reynolds
number, Re = 1, 10, and 100. Here, Bo = 0.01, Ca = 0.01,
Ld = 0.05, λρ = 0.1.

Figure 4 (a) shows that LD keeps decreasing as λη increases from O(10−3) to
O(1) for Re = 100, or as λη increases from O(10−3) to O(101) for Re = 1 or
Re = 10; LD then increases suddenly to a large value for all three cases, indicating
a transition from dripping to jetting. Figure 4 (b) shows that VD keeps decreasing
as λη increases. The curves for Re = 1 and Re = 10 are nearly the same when
O(10−1) ≤ λη ≤ 40, but the curve for Re = 100 is very different from the other
two curves. At Re = 100, VD is much smaller than that of the other two Reynolds
number. The inserts can also tell us these differences, furthermore, they show
that at Re = 100, the pendant drop forms a long jet connecting the main drop
to the orifice, while at Re = 1, the jet between the drop and the orifice is very
short for small λη, but it increases as λη increases. When both Re and λη are
small, the inertial force of the inner fluid as well as the viscous drag force of the
outer fluid are relatively small, the surface tension force takes a major effect, so
the drop breaks up in a position near the orifice. As λη increases, the viscous drag
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force from the outer fluid becomes bigger and bigger, the velocity in viscous force
direction increases, which makes the drop moves longer downward and finally forms
a long jet. When Re increases, the inertial force of the inner fluid which pushes
the drop downward takes more and more effect, and the pendant fluid becomes
longer and longer, forming a jet. Meanwhile, the increasing inertial force shortens
drop formation time and decreases the drop size. The inserts also indicate that
the drop shapes are affected by Re. When Re = 100, the lower half part of the
drop is smaller than the upper half part, while the situation is different for Re = 1.
The trend of LD with λη is similar to figure 13.15 (a) in Suryo’s work [25] before
Re = 10. For Re > 10, our results shows a different trend. The reason is that our
result is obtained for drops at ”steady state” when the system is in jetting regime,
and their result is obtained for the first drop when the system has not developed to
jetting regime. The trend of VD is different from figure 13.15 (b) in Suryo’s work
[25] for Re = 100, although for the other two values of Re, they are similar.

4.1.4. Effects of the density ratio λρ. Figure 5 shows the variation of (a)
LD and (b) VD with λρ at three λη: λη = 0.1, λη = 1, and λη = 10. All the
other dimensionless parameters are kept fixed at Re = 0.1, Bo = 0.5, Ca = 0.01,
Ld = 0.05. The inserts to figure 5 (a) represent drop shapes at the breakup when
λη = 10, the corresponding values of λρ, from the left-most to the right-most, are
0.01, 0.1, 1.0 respectively, and the inserts to figure 5 (b) represent the case when
λρ = 0.1, from the left-most to the right-most, λρ = 0.01, 0.1, 0.5, 1.0.
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Figure 5. Variation of (a) the limiting length LD and (b) the
primary drop volume VD with the density ratio λρ at three viscosity
ratio, λη = 0.1, 1, and 10. Here, Re = 0.1, Bo = 0.5, Ca = 0.01,
Ld = 0.05.

Figure 5 (a) shows that LD keeps increasing as λρ increases. When O(10−2) <
λρ ≤ 0.4, the rate of change of LD is small, but when λρ > 0.4, the rate of change
of LD is relatively large, especially for λη = 0.1. Figure 5 (b) shows that VD hardly
changes as λρ increases from O(10−2) to O(10−1). When λρ > O(10−1), VD starts
to increase as λρ increases, and it increases much quickly when λρ > 0.4, especially
for λη = 0.1. The inserts in figure 5 (a) and (b) gives a straightforward impression
of those changes. VD doesn’t change a lot with λρ at λη = 10, but at λη = 0.1, VD
is much larger at λρ = 1.0 than that at λρ = 0.01. We explain all those phenomena
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as follows: We first look at figure 5 (b), as λρ increases and less than 1, the density
difference between the inner fluid and the outer fluid decreases. This has the same
effect as one reduces the gravitational force of a drop which pinches off in air. So
surface tension force plays a major role in drop formation, longer time is needed for
the drop to reach its force balance, more fluid can flow into the drop and result in an
increase in VD. Meanwhile, since the increase in λρ doesn’t affect the length of the
pendant fluid very much, so the increase in VD also leads to an increases in LD. The
inserts indicate that there is a thin thread connecting the main drop to the pendant
liquid at λη = 0.1, however, at λη = 10, the main drop connects to the pendant
liquid directly without a thin thread between them. The reason is that more viscous
inner fluid can dampen or even eliminate the oscillation of the interface, which
makes possible greater thread elongation and extension. Furthermore, the inserts
in figure 5 (a) show a longer jet and a smaller drop than that in figure 5 (b). This
is because a larger λη indicates a lager viscous drag force from the outer fluid, and
it makes the drop move downward. So compared with drops in figure 5 (b), drops
in figure 5 (a) have larger force in downward direction and shorter drop formation
period. Figure 13.16 of Suryo’s work [25] shows a different trend which indicates
that λρ doesn’t affect LD and VD significantly while our results show they do. The

reason is, their definition for G ≡ (ρi−ρo)R
2
i g

γ is different with our definition for

Bo ≡ ρcl
2
cg
γ =

ρiR
2
i g

γ . More specifically, we can related our Bo with their G by the

formula G = −Bo(λρ − 1), as λρ changes, the relative gravitational force G will
actually change. So we think it might be more reasonable to keep Bo rather than
G fixed.

4.1.5. Effects of the Bond number Bo. Figure 6 shows the variation of (a)
LD and (b) VD with Bo at two different λη: λη = 1.0 and λη = 10.0. All the
other dimensionless parameters are kept fixed at Re = 1.0, Ca = 0.01, Ld = 0.05,
λρ = 0.1. The inserts to figure 6 (a) represent drop shapes at the breakup for
different Bond number at λη = 1.0 and inserts to figure 6 (b) represent the case at
λη = 10.0. The values of Bo for the inserts, from the left-most to the right-most,
are 0.0001, 0.01, 0.1 and 1 respectively in both figure (a) and (b). Figure 6 shows
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Figure 6. Variation of (a) the limiting length LD and (b) the
primary drop volume VD with the Bond Number Bo. Here, Re =
1.0, Ca = 0.01, Ld = 0.05, λρ = 0.1.
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that there is nearly no change in LD as well as VD when Bo increases from O(10−4)
to O(10−2), this means that the effect of the gravitational force on drop formation
can be ignored for those values of Bo; when Bo > O(10−2), the gravitational force
starts to take effects and accelerate the drop breakup process. It takes shorter time
for a drop to form and pinch off, thus smaller drops can be formed. We see from
the inserts that the size of the drop decreases while the length of the pendant drop
doesn’t change very much, so both LD and VD decrease with the increasing Bo.
The curve with λη = 1.0 decreases faster than the curve with λη = 10.0. The
inserts show that one can also reduce the drop size by increasing λη. Because as
λη increases, the outer fluid becomes more viscous and exerts larger force on the
drop, dragging the drop moving downward. The variations of LD and VD show the
same trends as figure 13.6 of Suryo’s work [25].

4.1.6. Effects of the diffusion coefficient Ld. Figure 7 shows the variation of
(a) LD and (b) VD with Ld at three different λρ, λρ = 0.1, λρ = 1.0 and λρ = 10.0.
All the other dimensionless parameters are kept fixed at Re = 1.0, Ca = 0.01,
Bo = 0.01, λη = 10.0. The inserts to figure 7 (a) represent drop shapes at the
breakup for three different Ld at λρ = 10.0 and the inserts to figure 7 (b) represent
the case at λρ = 1.0. The values of Ld for the inserts, from the left-most to the
right-most, are 0.01, 0.1 and 0.7 respectively both in figure (a) and (b).
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Figure 7. Variation of (a) the limiting length LD and (b) the
primary drop volume VD with the parameter Ld. Here, Re = 1.0,
Ca = 0.01, Bo = 0.01, λη = 10.0.

Figure 7 shows that the variations of LD and VD with Ld are nearly the same for
all the three λρ we consider. LD decreases slowly as Ld increases, and VD increases
slowly as Ld increases. The parameter Ld is mobility constant. The phase field
model is expected to converge to the sharp interface model when both Ld and ǫ
become small. These two parameters are numerical constants to smooth out the
jump discontinuity across the interface. They should be kept small so that they do
not affect the physical properties of the system. Figure 7 does show that VD and
LD do not change much for small Ld.

4.2. Comparison with the experiments. In this subsection, we compare our
numerical results with two experiments done by Zhang [34] and Utada et al. [29].
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4.2.1. Comparison with the experimental results by Zhang [34]. Based on
CSF + VOF method, Zhang [34] investigated bubble formation dynamics when a
viscous liquid is injected through a vertical tube into another immiscible and viscous
fluid. They focused on the dripping region where the dispersed fluid flowed through
the capillary tube at small flow rate. Good agreement was found between the
numerical results and their experimental results. We now compare our numerical
results with their experiment. The 2-ethyl-1-hexanol is the dispersed fluid and
distilled water is the outer fluid. The viscosities of the inner and outer fluids are
0.089 g cm−1 s−1 and 0.01 g cm−1 s−1, the densities of the inner and outer fluids
are 0.83 g cm−3 and 1.0 g cm−3, respectively. Interfacial tension is 13.2 g s−2.
The dispersed fluid flows through a tube of radius 0.16 cm at the flow rate Q =
5 ml/min = 1

12 cm3/s, and the outer fluid is quiescent. With these data, we

can calculate the dimensionless parameters: Re = ρiQi

ηiπRi
= 1.5461, Ca = ηiQi

γπR2
i

=

0.006986, Bo =
ρiR

2
i g

γ = 1.5776, B = 3
2
√
2Ca , λρ = ρo

ρi
= 1.2048, λη = ηo

ηi
= 0.1123.

We then simulate the dimensionless system with the following settings: Sl = 20,
a = 4, nz = 200, nr = 40, ǫ = 0.1, Li = 2, ui = 1.0, Qr = 0, s = 1.5, Ld = 0.156.

Figure 8 compares the time sequence of bubble shapes of our numerical results
with Zhang’s experiment. From 1 to 9, the time sequences for the left half parts
(experiment) are t = 0.6s, 0.91s, 1.21s, 1.25s, 1.27s, 1.2712, 1.272s, 1.275s, 1.276s,
and for the right half parts (numerical results) are t = 0.6019s, 0.9070s, 1.2121s,
1.2533s, 1.2699s, 1.2712s, 1.2719s, 1.2752s, 1.2760s. It shows that our numerical
results matches well with Zhang’s experiment.

Figure 8. Comparison of the time sequences of bubble shapes.
Right half parts are our numerical results, left half parts are
reprinted from Chem. Eng. Sci., X. Zhang, Dynamics of drop
formation in viscous flows, 54, 1759-1774 (1996), Copyright Else-
vier (1996).

4.2.2. Comparison with the experimental results by Utada et al. (2007).
The dynamics of drop formation can be classified into two regimes. One is dripping
where drops are formed near the tube exit, and the other is jetting where drops
break up away from the orifice and connect to the tube exit through a long and thin
jet. Dripping occurs at low flow rates while jetting occurs at high flow rates. Using
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deionized water and polydimethylsiloxane (PDMS) oils with different viscosities,
Utata et al. [29] tested two classes of dripping to jetting transition. The first class
is controlled by the critical Capillary number of the outer fluid Co = ηouo

γ , which

measures the balance between the viscous shear stress on the drop and the surface
tension force. When C > Co, a jet forms which thins as it moves downstream.
The second class is controlled by the critical weber number of the inner fluid Wi =
ρidtipu

2
i

γ , which measures the balance between the inertial force of the inner fluid and

the surface tension force, dtip represents the diameter of the inner tube. This class
of transition is different from the first one. Instead of decreasing, the jet diameter
increases along its length. Utada et al. [29] tested the critical weber number Wi

and the critical Capillary number Co for different cases and showed that dripping
to jetting transition occurred when Co +Wi ≈ O(1).

We now compare our numerical results with their experiments. Table 1 lists
the densities, viscosities of the inner and outer fluids, and surface tension between
the two fluids for different cases. When ηi/ηo < 1, the continuous phase is PDMS
and the dispersed phase is water; when ηi/ηo ≥ 1, the continuous phase is water
and the dispersed phase is PDMS. The diameters of the inner and outer tubes in
Utada’s experiments are Ri = 10 µm and Ro = 15 µm. In our simulation, we

use a bigger Ro = 30 µm. Given the dimensionless parameter Wi =
2Riρiũ

2
i

γ and

Co = ηoŨo

γ , we can calculate the dimensional average velocities for the inner and

outer fluids: ũi =
√

γWi

2ρiRi
, Ũo = γCo

ηo
. Then, the dimensionless parameters used in

the system of equations can be obtained by: Re = ρiũiRi

ηi
, Ca = ηiũi

γ , Bo =
ρiR

2
i g

γ ,

Qi = ũiR
2
i π, Qo = ŨoR

2
oπ, Qr =

Qo

Qi
, ui = 1.0, Uo = Ũo

ũi
= Qr

a2 . Other settings used

in the simulation are: Sl = 40, a = 3, nz = 400, nr = 30, ǫ = 0.1, Li = 2, s = 1.5,
Ld = 0.25, △t = 2.67E − 3. As a typical example, we first show in figure 9 and

Table 1. physical parameters for each symbol (P: PDMS, w: water).

symbol γ ρi ρo ηi ηo
[g/s2] [g · cm−3] [g · cm−3] [g · cm−1 · s−1] [g · cm−1 · s−1]

triangle 40 0.97(P) 1.0(w) 0.1 0.01
star 4 0.97(P) 1.0(w) 0.1 0.01

diamond 40 0.97(P) 1.0(w) 0.01 0.01
hexagon 40 1.0(w) 0.97(P) 0.01 0.1
square 40 1.0(w) 0.97(P) 0.01 1.0

figure 10 two classes of transition observed in our numerical simulation for the case
represented by the symbol ”star”. The transition in figure 9 is caused by increasing
the Capillary number of the outer fluid Co. The jet thins as it moves downward.
The transition in figure 10 is caused by increasing the weber number of the inner
fluid Wi. Instead of thinning, the jet becomes wider.

Figure 11 compares the state diagram of our numerical results with figure 4 in the
paper of Utada et al. [29]. Dripping to jetting transition is plotted as a function
of Co and Wi. Filled symbols represent dripping and hollow symbols represent
jetting. Symbols ”square”, ”hexagon”, ”triangle”, ”star” in both figure 11 (a) and
(b) represent the same cases, the case represented by the symbol ”diamond” in
figure 11 (a) is the same as that represented by the symbol ”pentagon” in figure
11 (b); the symbol ”diamond” in figure 11 (b) represents the case where ηi

ηo
= 0.01
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Figure 9. Dripping to jetting transition for ”star” when keeping
Wi = 0.06 fixed, increasing Co from 0.03 to 0.04.

Figure 10. Dripping to jetting transition for ”star” when keeping
Co = 0.015 fixed, increasing Wi from 0.1 to 0.2.

with the extra capillary tube to increase Uo, and γ = 40mN/m; and the symbol
”circle” in figure 11 (b) represents the case where ηi

ηo
= 0.1 with the extra capillary

tube to increase Uo, and γ = 40mN/m. Figure 11 shows that our results are in
qualitative agreement with the experimental results.
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Figure 11. State diagrams of the dripping to jetting transition
in a coflowing stream as a function of Co and Wi.
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5. Conclusion

Based on phase field model, we study dynamics of drop formation when a fluid is
injected into another immiscible, coflowing fluid. The effect of various physical pa-
rameters on the drop dynamics are studied systematically and the results are also
compared with the previous work [25]. Furthermore, we compare the numerical
results with Zhang’s experiment [34]. The shape of the bubble during its evolu-
tion matches well with the experiment. Finally, we compare our numerical results
with the experimental results of Utada et al. [29] on the dripping to jetting transi-
tion. Qualitative agreement with their experiment is found. The simulation results
demonstrate that the process of drop formation can be reasonably predicated by
the phase field model we used.
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