
INTERNATIONAL JOURNAL OF c© 2015 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 12, Number 2, Pages 254–267

ON THE COMPARISON OF PROPERTIES OF RAYLEIGH

WAVES IN ELASTIC AND VISCOELASTIC MEDIA

YANGYANG HE, JINGHUAI GAO, AND ZHANGXIN CHEN

Abstract. Dispersion properties of Rayleigh-type surface waves are widely used in environmen-

tal and engineering geophysics to image and characterize a shallow subsurface. In this paper, we

numerically study the Rayleigh-type surface waves and their properties in 2D viscoelastic media.
A finite difference method in a time-space domain is proposed, with an unsplit convolutional

perfectly matched layer (C-PML) absorbing boundary condition. For two models that have ana-
lytical expressions of wave fields/dispersion curves, we calculate their wave fields and compare the

analytical and numerical solutions to demonstrate the validity of this method. For the case where

a medium has a high Poisson’s ratio, say 0.49, traditional finite difference methods with a PML
boundary condition are not stable when modeling Rayleigh waves but the proposed method is sta-

ble. For a laterally heterogeneous viscoelastic media model (Model 1) and a two-layer viscoelastic

media model (Model 2) with a cavity, we use this method to obtain their corresponding Rayleigh
waves. For several quality factors, the dispersion properties of these Rayleigh waves are analyzed.

The results of Model 1 show that in a shallow subsurface, the phase velocity of a fundamental

mode of the Rayleigh waves increases considerably with a quality factor Q decreasing; the phase
velocity increases with Poisson’s ratio increasing. The results of Model 2 indicate that the energy

of higher modes of the Rayleigh waves become strong when Q decreases.

Key words. Rayleigh waves, elastic and viscoelastic media, convolutional perfectly matched

layer, stability, finite difference method.

1. Introduction

In most surface seismic surveys, a different frequency component of a surface
wave has a different phase velocity. This dispersion property is of fundamental
interest in oil exploration, engineering and environmental studies. Rayleigh waves
were used to construct S-wave velocity profiles [20, 24, 25, 27, 28], study attenuation
[6, 26] and investigate cavities in a shallow subsurface [11].

The Rayleigh waves can be simulated by solving wave equations through numer-
ical methods. One of the most popular numerical methods is the finite difference
method (FDM). Several approaches were applied at a free surface to model these
Rayleigh waves in elastic media using the FDM [12, 16, 19, 30, 29]. In particu-
lar, the accuracy of heterogeneous staggered-grid finite difference modeling of the
Rayleigh waves has been studied by [4].

In reality, inelasticity of earth materials has an important influence on wave prop-
agation, particularly on surface waves. It is necessary to simulate Rayleigh waves
and analyze their dispersion properties in viscoelastic media, for example. Several
works [5, 10, 9] have studied the Rayleigh waves in a viscoelastic half-space. An-
dersion et al. [1] gave a relationship between Rayleigh wave attenuation coefficients
and the quality factors QP and QS for P- and S-waves. Xia [26] inverted a quality
factor Q from Rayleigh waves using this relationship. However, this relationship
is based on a layered earth model, and it is difficult to deal with complex media
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such as laterally heterogeneous media. The finite difference method may be used in
the study of such cases. The approaches applied to handle a free surface boundary
condition in viscoelastic media are similar to those in elastic media. Carcione [6]
presented Rayleigh waves forward modeling in linear viscoelastic media. Hestholm
[14] studied finite difference modeling of seismic scattering from free-surface topog-
raphy in 3D viscoelastic media. Saenger and Bohlen [23] described the application
of a rotated staggered grid (RSG) to viscoelastic wave equations. However, these
works did not study the effect of a quality factor Q on the dispersion properties of
Rayleigh waves.

Absorbing boundary conditions are used to suppress reflections from the trun-
cated edges of a model in the FDM. Bérenger [2] developed an absorbing bound-
ary condition called the perfectly matched layer (PML) to attenuate electromag-
netic waves. This PML has been extended to absorbing acoustic and elastic waves
[8, 13, 17]. Komatitsch and Martin [15] introduced an unsplit convolutional PML
(C-PML) to improve the behavior of the classical PML at grazing incidence. How-
ever, the classical FDM with PML and C-PML is not stable in Rayleigh waves
modeling with a high Poisson’s ratio of media [31].

In this paper, we study the effect of a quality factor Q on the Rayleigh waves
in order to better understand their dispersion properties. We propose a finite dif-
ference method to simulate the Rayleigh waves in viscoelastic media. This method
uses the RSG proposed by [22], which has less numerical dispersion. The validity of
the method is demonstrated using two models that have an analytic solution. The
C-PML absorbing boundary condition is used in this method. It is stable to absorb
the Rayleigh waves with a high Poisson’s ratio of media. With our accurate model-
ing method, we study the dispersion properties of the Rayleigh waves with different
values of the quality factor Q in a shallow subsurface. These Rayleigh waves are
calculated in two models, a laterally heterogeneous model and a two-layer model
with a cavity. The results show that the Q in the near-surface has a strong effect
on the dispersion properties of the Rayleigh waves, and it needs to be considered
in the analysis of the Rayleigh waves in the real world. Our method is based on
a 2D finite difference method in a time-space domain, which can be extended in a
straightforward way to the 3D case.

2. The Method

In this section we introduce the wave equations in viscoelastic media, a free
boundary treatment, and an absorbing boundary condition. A finite difference
method is then developed, and its validity and stability are tested.

2.1. Wave equations. We use a second-order displacement-stress form of the
viscoelastic wave equations in 2D. In a time-space domain, the equations are given
by [7]:

(1) ρüx =
∂σxx
∂x

+
∂σxz
∂z

+ ρfx,

(2) ρüz =
∂σxz
∂x

+
∂σzz
∂z

+ ρfz,

(3) σxx = (λu + 2µu)
∂ux
∂x

+ λu
∂uz
∂z

+ (λr + µr)

L1∑
l=1

e1l + 2µr

L2∑
l=1

e2l,
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(4) σzz = (λu + 2µu)
∂uz
∂z

+ λu
∂ux
∂x

+ (λr + 2µr)

L1∑
l=1

e1l − µr
L2∑
l=1

e2l,

(5) σxz = µu(
∂ux
∂z

+
∂uz
∂x

) + µr

L2∑
l=1

e3l,

(6) ė1l = ΘΦ1l −
e1l

τ
(1)
σl

, l = 1, . . . , L1,

(7) ė2l = (
∂ux
∂x
− Θ

2
)Φ2l −

e2l

τ
(2)
σl

, l = 1, . . . , L2,

(8) ė3l = (
∂ux
∂z

+
∂uz
∂x

)Φ2l −
e3l

τ
(2)
σl

, l = 1, . . . , L2,

(9) Θ =
∂ux
∂x

+
∂uz
∂z

,

(10) Φvl =
1

τ
(v)
σl

(1−
τ

(v)
εl

τ
(v)
σl

), v = 1, 2,

where x = (x, z) are the Cartesian coordinates. ux(x, t) and uz(x, t) are the
displacement components. σxx(x, t), σzz(x, t) and σxz(x, t) are the stress com-
ponents. ρ(x) denotes the density. fx(x, t) and fz(x, t) are the body forces.
t is the time variable. üz is the second derivative of uz with respect to time.
λu = (λr + µr)Mu1 − µrMu2 and µu = µrMu2 are the unrelaxed Lame constants,
and λr and µr are the relaxed Lame constants. Muv, v = 1, 2 are the relaxation
functions evaluated at t = 0, with v = 1 being the dilatational mode and v = 2

being the shear mode. They are given by Muv = 1 −
∑Lv
l=1(1 − τ

(v)
εl

τ
(v)
σl

), v = 1,2.

τ
(v)
εl and τ

(v)
σl are the material relaxation times. e1l(x, t) are the memory variables

related to the L1 mechanisms which describe the viscoelastic characteristics of the
dilatational wave, and e2l(x, t) and e3l(x, t) are the memory variables related to the

L2 mechanisms of the shear wave. The elastic case is obtained when τ
(v)
εl → τ

(v)
σl ,

∀l; then Muv → 1, Φvl → 0, and the memory variables vanish.

2.2. Free surface boundary. A rotated staggered grid (RSG) is used in our
method. Figure 1 shows the locations of wavefield parameters and material param-
eters in the RSG. We assume that the free surface passes through the stress points.
The stresses on the free surface are given by:

(11) σzz = 0, σxz = 0.

Combining (11) with (4) and (5), we obtain

(12)
∂uz
∂z

=
1

λu + 2µu
[λu

∂ux
∂x

+ (λr + 2µr)

L1∑
l=1

e1l − µr
L2∑
l=1

e2l],

(13)
∂ux
∂z

= −∂uz
∂x

,
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Figure 1. The distribution of modeling parameters within the
rotated staggered grid (RSG). The stresses are placed at the filled
circles; the displacements are placed at the filled rectangles. The
free surface passes through the stress point.

Figure 2. A sketch of the half-space homogenous model.

Then (3) can be written as

(14)

σxx = (λu + 2µu + (λu)2

λu+2µu
)∂ux∂x + (λr + µr + λr+2µr

λu+2µu
)
L1∑
l=1

e1l

+(2µr − µr
λu+2µu

)
L2∑
l=1

e2l.

In the numerical scheme, following [22], the derivatives are calculated along the
45 ◦-rotated axes with respect to the Cartesian axes. We use a standard second-
order centered time difference and a fourth-order Runge-Kutta space scheme.

In order to test the validity of our method, the Rayleigh waves are calculated
for two models and compared with analytic solutions. Since there is no analytical
solution for the Rayleigh waves in viscoelastic media in a time-space domain, the
media considered in the two models are elastic. The first model is a half-space
homogenous medium, see Figure 2. The C-PML is used in our method as the
absorbing boundary condition, and it will be discussed in the next section. The
thickness of C-PML is 20 m. The source is an impulse force in the vertical direction
and is located at the middle of the domain ground; its time variation is a Ricker
wavelet (15) with t0 = 0.05 s and f0 = 20 Hz:

(15) h(t) = [1− 2(πf0(t− t0))2]exp[−(πf0(t− t0))2].

The finite difference grid size in the vertical and horizontal directions is 4x =
4z = 2 m, the time step is 0.1 ms and the total modeling time is 0.45 s. Figure 3
is the seismograms of one shot gather. The spacing distance between the adjacent
receivers is 2 m. In the homogenous elastic medium, there is no velocity dispersion
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Figure 3. Vertical components of the Rayleigh wave in the half-
space homogenous elastic medium.

Figure 4. Seismograms (particle displacement) of analytical and
numerical results; the offset is 120 m; (a) Horizontal component.
(b) Vertical component.

in Rayleigh waves. Figure 4 compares the seismograms of our numerical result with
the analytic solutions [3]; the offset is 120 m. The two seismograms are in good
agreement. Our method performs well in the Rayleigh waves modeling.

The second model is a two-layer model, see Figure 5. The parameters are listed
in Table 1. The thickness of C-PML is 10 m. The source is an impulse force
in the vertical direction and is located on the ground, and its time variation is
a Ricker wavelet (15), with t0 = 0.05 s and f0 = 20 Hz. The FD grid size is
4x = 4z = 0.5 m, the time step is 0.1 ms, and the total modeling time is 1 s.
Figure 6 is a shot gather. The spacing distance between the adjacent receivers is 0.5
m. In the layered medium the dispersion of the Rayleigh waves occurs and higher
mode Rayleigh waves are generated. In order to study the dispersion properties
of these Rayleigh waves, computing the phase velocity of the Rayleigh waves is
the standard analysis method used in most works. Park et al. [21] proposed a
wavefield transformation method to construct the image of dispersion curves of the
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Figure 5. A sketch of two-layer model.

Table 1. Parameters of two-layer medium.

z /m ρ /(kg/m3) Vs /(m/s) Vp /(m/s)

The first layer 10 2000 200 800
The second layer 90 2000 400 1200

Figure 6. Vertical components of one shot seismograms in model 2.

Rayleigh waves. This method is used in our work. The image of these dispersion
curves is shown in Figure 7(a). The dispersion curves of different modes are clearly
identified. The phase velocities picked from the fundamental mode dispersion curve
are compared with the theoretical values in Figure 7(b). The performance of our
method is satisfactory.

2.3. Absorbing boundaries. The PML is now widely used in the modeling of
wave propagation; however, it may have a problem in the Rayleigh wave modeling.
The shallow earth material is complex; in particular, its Poisson’s ratio is sometimes
greater than 0.4. Zeng et al. [31] have studied the stability of the classical FD with
PML and C-PML when modeling Rayleigh waves with a high Poisson’s ratio of
the medium by using numerical testing. They designed a half-space homogenous
medium with Poisson’s ratios varying from 0.10 to 0.49. The size of their 2D model
is 50 m × 50 m and the thickness of PML is 10 m. The P-wave velocity is 520
m/s and the density is 1500 kg/m3. The FD grid size is 4x = 4z = 0.1 m, the
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Figure 7. The image of dispersion curves of the Rayleigh waves
in two-layer model. (a) Image of dispersion curves; (b) Dispersion
curves. The red line is obtained from (a), and the blue line is the
theoretical value.

time step is 0.05 ms, the maximum number of time loops is 40,000, and the total
simulation time is 2 s. The FD with PML or C-PML would be considered stable if
the simulation was completed without divergence. Zeng et al.’s work showed that
the classical FD with both PML and C-PML is unstable if Poisson’s ratio of the
medium is greater than 0.39.

In this paper we use the C-PML in our FD method to model the Rayleigh waves
in viscoelastic media. The efficiency of this absorbing boundary can be seen in
Figure 3; there is no wave reflected from the absorbing boundary. We use the
numerical testing shown above to study the stability of C-PML in our method.
Here we define E as follows:

(16) E(t) =
∑
x

∑
z

|uz(x, z, t)|.

It is a sum of the absolute value of uz on every grid at each time. We model
the Rayleigh wave propagation with Poisson’s ratio γ varying from 0.46 to 0.49.
The numerical results are shown in Figure 8. Our method have completed all
the numerical tests without divergence. The FD with C-PML is stable with a high
Poisson’s ratio in our method. The difference between Zeng et al.’s method and our
method is listed in Table 2. We use different differential equations and discretization
grids. One speculation over the cause of the stability is that the dispersion relations
for the RSG are independent of the Poisson’s ratio.

The numerical tests and stability analysis above indicate that our method is
an accurate and stable numerical method. With this method, we can model wave
propagation with different parameters of media to better understand the properties
of the Raleigh waves.

3. Numerical Results

In this section we simulate the Rayleigh wave propagation in two viscoelastic
media to study the effect of a quality factor Q on the dispersion properties of
Rayleigh waves.
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Figure 8. The value of E with different Poisson’s ratio γ.

Table 2. The difference between Zeng et al.’s method and our method.

Zeng et al.’s method Our method

Equations
First-order velocity-stress Second-order displacement-stress

form of the elastic form of the viscoelastic
wave equations wave equations

Grids
Madariaga-Virieux Rotated staggered

staggered grid grid

Stability
The classical FD with PML Our FD with C-PML

and C-PML is unstable is stable

Figure 9. (a) The profile of VS in Model 1; (b) the vertical com-
ponent of single-shot seismograms.

3.1. Model 1: A laterally heterogeneous model. Model 1 is a laterally het-
erogeneous medium. The profile of S-velocity VS is indicated in Table 3 and shown
in Figure 9(a). The medium has four layers and VS increases along the x-axis in
each layer. The FD grid size is 4x = 4z = 0.5 m, the time step is 0.1 ms, and the
total simulation time is 1 s. The source is an impulse force in the vertical direction
and is located at (100 m, 0.25 m), and its time variation is a Ricker wavelet (15)
with t0 = 0.05 s and f0 = 20 Hz. For simplicity, we make QS and QP equal in
every layer; that is, QS = QP = Q.
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Table 3. The VS profile in Model 1.

z / m 5 10 10 75

VS/ (m/s)
150 + 0.5x 250 + 0.5x 350 + 0.5x 450 + 0.5x

x/ m

Figure 10. The dispersion curves with different parameters. (a)
Q1 = Q2 = Q3 = Q4 = Q = 20; (b) Q1 = Q2 = Q3 = Q4 = Q =
50; (c) Q1 = 20, Q2 = Q3 = Q4 = ∞; (d) Q1 = 50, Q2 = Q3 =
Q4 =∞; (e)Q2 = 20, Q1 = Q3 = Q4 =∞.

We now show the effects of Q and Poisson’s ratio γ on the Rayleigh waves. First,
when Q1, Q2, Q3, and Q4 in the four layers are changed and second, when Poisson’s
ratio γ is changed, we compute the dispersion curves of the fundamental mode
Rayleigh wave and compare them with an elastic reference case. When we change
Poisson’s ratio γ, VS remains constant and the velocity of P-wave is calculated
according to γ.
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Figure 11. A sketch of Model 2.

The single-shot seismograms of Rayleigh waves in an elastic medium are shown
in Figure 9(b). The spacing distance between adjacent receivers is 0.5 m. Figure
10 indicates the dispersion curves of the fundamental mode Rayleigh waves with
different parameters of the medium. In Figure 10(a), the Q in the four layers are
Q1 = Q2 = Q3 = Q4 = 20; in Figure 10(b), Q1 = Q2 = Q3 = Q4 = 50. In Figure
10(c), the Q in the first layer is Q1 = 20 and the other layers are elastic media. In
Figure 10(d), Q1 = 50. In Figure 10(e), the first, third and fourth layers are elastic
media, and the second layer is viscoelastic with Q2 = 20. Poisson’s ratio of the
medium, γ, varies from 0.2 to 0.4 for each Q profile. The effects of Q and Poisson’s
ratio γ on the Rayleigh waves are concluded as follows:

1) For every frequency the phase velocity of the fundamental mode Rayleigh wave
in a viscoelastic medium is higher than that of the fundamental mode Rayleigh wave
in an elastic medium.

2) The phase velocity increases considerably with the quality factor Q1 in the
first layer but increases a little with the quality factor Q2 in the second layer.

3) The higher Poisson’s ratio, the higher the phase velocity.

3.2. Model 2: A two-layer model with cavity. Cavity detecting underground
is important because it may lead to a natural or human-made hazard. Model 2 is a
two-layer medium with a cavity, see Figure 11. The parameters for these two layers
are listed in Table 1. The size of this square-shape cavity is 25 m × 25 m. A cavity
of this size is observed sometimes in real world, such as a solution cavity. The
cavity is located in the second layer with an S-wave velocity of 0.1 m/s, a P-wave
velocity of 0.1 m/s and a density of 0.1 kg/m3; the upper right vertex of this cavity
is at position (62.5 m, 10 m). The source is located at (50 m, 0.25 m) and its time
variation is a Ricker wavelet (15) with t0 = 0.05 s and f0 = 20 Hz. The size of the
cavity is about 2 times that of the dominant wavelength of the Rayleigh waves; the
cavity depth allows the smallest wavelength of these Rayleigh waves to propagate
above it. The FD grid size is 4x = 4z = 0.5 m, the time step is 0.003125 ms, and
the total simulation time is 1 s.

For simplicity, we make QS and QP in the first layer equal and assign to them
three different values QS = QP = Q = ∞, 30, and 20. The seismograms of
vertical displacement components are shown in Figure 12. A reflection pattern
of the Rayleigh waves due to the cavity is clearly visible in these seismograms.
Actually, some Rayleigh waves are reflected several times between the cavity and
the soil surface. The dispersion images are shown in Figure 13. This figure clearly
shows that the higher modes of the Rayleigh waves are involved; the energy of those
higher modes of the Rayleigh waves becomes stronger when Q decreases. We note
that there is a discontinuity in the image of the dispersion curve around f = 23
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Figure 12. The seismograms of vertical displacement components
in Model 2. (a) elastic medium; (b) Q = 30; (c) Q = 20.

Figure 13. The images of dispersion curves of the Rayleigh wave
in Model 2. (a) elastic medium; (b) Q = 30; (c) Q = 20.
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Figure 14. The images of dispersion curves of the Rayleigh waves
in Model 2 with different centre frequency f0 of the source. (a)
f0 = 15 Hz; (b) f0 = 30 Hz.

Hz when Q = 20. The location of this discontinuity does not change when varying
the centre frequency f0 of the source, see Figure 14. Gelis et al. [11] studied the
influence of the depth and size of a cavity on the dispersion curves of fundamental
mode Rayleigh waves in elastic media. In viscoelastic media, the higher modes of
Rayleigh waves have strong energy and can provide information for the parameters
of the material underground in some practical applications. The influence of the
depth and size of a cavity underground on the dispersion properties of higher mode
Rayleigh waves in viscoelastic media will be investigated in further work.

4. Conclusions

We have proposed an accurate and stable 2D finite difference method to model
Rayleigh waves in viscoelastic media. The C-PML in this method is stable when
Poisson’s ratio of the media is high. Using this method, the Rayleigh waves in
complex media can be modeled to better understand the dispersion properties of
these Rayleigh waves.

The wave propagations have been calculated in a laterally heterogeneous medium
and a two-layer medium with a cavity with different values of Q. The dispersion
properties of Rayleigh waves in viscoelastic media have been compared with those in
the elastic case. Model 1 has shown that in a shallow subsurface, the phase velocity
of the fundamental mode of the Rayleigh waves increases with Q decreasing and the
phase velocity increases with Poisson’s ratio increasing. The results of Model 2 have
indicated that the energy of the higher modes of the Rayleigh waves become stronger
when Q decreases. The difference of the Rayleigh waves between viscoelastic and
elastic media shows that the Q in the near-surface should be considered in the
analysis of the Rayleigh waves in the real world. Our method presented in this
paper is based on 2D finite-difference modeling in a time-space domain. It will be
developed in a 3D and surface topography case in further work.
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