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AN ADAPTIVE LINEAR TIME STEPPING ALGORITHM FOR

SECOND-ORDER LINEAR EVOLUTION PROBLEMS

JUNJIANG LAI AND JIANGUO HUANG∗

Abstract. In this paper, we propose and analyze a linear time stepping finite element method
for abstract second order linear evolution problems. For such methods, we derive optimal order a
posteriori error estimates and sharp a posteriori nodal error estimates using the energy approach
and the duality argument. Based on these estimates, we further design an adaptive time stepping
strategy for the previous discretization in time. Several numerical experiments are provided to
show the reliability and efficiency of the a-posteriori error estimates and to assess the effectiveness
of the proposed adaptive time stepping method.
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1. Introduction

Adaptive time stepping methods are very important in developing efficient algo-
rithms for solving evolution problems arising from fluid dynamics, epitaxial growth
and many other applied sciences (cf. [15, 17, 22, 26, 27]). Such methods are able
to adopt feasible time steps for time discretization, largely reducing the computa-
tional cost for getting numerical solutions with desired accuracy. The strategy for
choosing time steps adaptively is very tricky and problem oriented, and one typical
approach corresponds to the construction of an a-posteriori error estimator for the
problem under discussion (cf. [6, 10]). Hence, a posteriori error analysis is very
useful in constructing efficient adaptive time stepping methods.

In the past decade, people have witnessed rapid and sophisticated progresses in
a posteriori error analysis for abstract first order evolution problems (cf. [1–4,14]).
One of the key points of the analysis in these references relies on a higher order
reconstruction of the approximate solution, such that the reconstructed function is
globally continuous as well as a quasi-projector of the approximate solution in some
sense (cf. (3.4) in [3] and (2.7) in [4]). In light of this reconstructed function or its
further modification, the optimal order a posteriori error analysis was established
by the energy method. The a-posteriori superconvergence estimates for the error
at the nodes for Galerkin and Runge-Kutta methods were also derived in [4].

However, to our knowledge, there are few results about a posteriori error anal-
ysis for abstract second order evolution problems (even in linear case), which fre-
quently occur in structural analysis (cf. [9, 11, 12]). In the reference [5], Bernardi
and Süli proposed a fully discrete scheme for the linear wave equation. The dis-
cretization for time derivatives is conducted by the backward Euler scheme with
variable steps. In order to derive a posteriori error analysis, they first extended
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the approximate solutions (the discrete displacement and velocity fields together)
defined on time nodes to the whole time interval by linear interpolation, and then
obtained a first-order system of error equations. Based on this system and a very
technical derivation, they derived a posteriori error bound in time. Moreover, they
also discussed a posterior error analysis in time and space together. In the refer-
ence [14], as an application of their a posteriori error analysis for abstract first-order
problems, Makridakis and Nochetto obtained some a-posteriori error estimates for
the second-order linear wave equation by reformatting it as a system of first-order
equations; for details, see Corollaries 3.13 and 3.14 in [14]. In the reference [7],
Georgoulis, Lakkis and Makridakis proposed a numerical method to solve a linear
wave equation by discretizing the time derivatives via the central difference method
and carrying out spatial discretization via the finite element method. They used
a novel space-time reconstruction of the approximate solution (cf. Definition 4.1
in [7]) and some other techniques to achieve a posteriori L∞(L2)-error bound for
this method. Based on the time stepping method used in [11, 12], Huang, Lai and
Tang proposed in [8] a discrete method for solving abstract second-order linear
evolution problems and developed a posteriori error analysis systematically.

For the method in [8], we conduct the discretization of time derivatives by means
of quadratic continuous discontinuous Galerkin (DG) method, so it has high accu-
racy in approximation. The computational overheads of the method involve nu-
merical solution of a linear system with the linear operator having a 2 by 2 block
structure. However, as is well-known, it is a challenging issue to develop fast solvers
for such a system.

In order to balance the accuracy and computational cost, in this paper we pro-
pose and analyze linear time stepping methods for abstract second-order evolution
problems. For this purpose, we first give the problem we are solving. For any real
number T > 0, we want to find u : [0, T ] → D(A) satisfying

(1)






u′′(t) +Au(t) = f(t), 0 < t < T,
u(0) = u0,
u′(0) = v0,

where (·)′ and (·)′′ denote respectively the first and second order derivatives in time,
A is a positive definite, self-adjoint, linear operator on a Hilbert space (H, 〈·, ·〉)
with domain D(A) dense in H , and f is a function from [0, T ] into H . Throughout
this paper, we assume that

(2) u0, v0 ∈ D(A), f ∈ L2(0, T ; H).

To simplify the presentation, we refer the reader to the monograph [25] for details
about the standard notation corresponding to the above problem.

To discretize problem (1), we use a standard finite element approach for handling
second-order evolution problems, see, e.g., [11–13]. We first define a non-uniform
subdivision for the time interval I := (0, T ):

0 = t0 < t1 < · · · < tN = T,

and use the notations

Jn = (tn−1, tn], kn = tn − tn−1, 1 ≤ n ≤ N.
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Define

V1 =




v : Ī → D(A); v ∈ C(Ī), v|Jn
(t) =

1∑

j=0

tjwj , wj ∈ D(A), 1 ≤ n ≤ N




 ,

W2 =




v : Ī → D(A); v ∈ C1(Ī), v|Jn
(t) =

2∑

j=0

tjwj , wj ∈ D(A), 1 ≤ n ≤ N




 ,

Hq =




v : Ī → H ; v|Jn
(t) =

q∑

j=0

tjwj , wj ∈ H, 1 ≤ n ≤ N




 , q = 0, 1.

Let V1(Jn) and W2(Jn) consist of the restrictions to Jn of the elements of V1 and
W2, respectively. Similarly, denote by Hq(Jn) the restriction of Hq to Jn. Then
our linear time stepping finite element method for (1) is to find U ∈ V1 such that

(3)





∫

Jn

(
〈U ′′, w′〉+ 〈F (t, U), w′〉

)
dt+ 〈U̇n−1

+ − U̇n−1
− , ẇn−1

+ 〉 = 0

∀w ∈ V1(Jn), 1 ≤ n ≤ N,

U0 = u0, U̇0
− = v0,

where

ẇn−1
± := lim

s→0+
w′(tn−1 ± s), wn−1 := w(tn−1), F (t, U) := AU − f(t).

The method (3) is a continuous discontinuous Galerkin (DG) method. For com-
pleteness, we simply show how to derive it based on the DG method for the first-
order evolution equation. Letting v = u′, the equation in (1) can be rewritten
as v′ + F (t, u) = 0. Let U ∈ V1 be the approximate solution of u; let V be the
approximate solution of v, which is assumed to lie in V ′

1 := {w′; w ∈ V1}. Then
according to the DG method for the first-order evolution equation (see, e.g., (2.3)
in [4] or (12.4) in [23]), we know V is determined by

∫

Jn

(
〈V ′, w′〉+ 〈F (t, U), w′〉

)
dt

+ 〈V (tn−1 + 0)− V (tn−1 − 0), ẇn−1
+ 〉 = 0 ∀w ∈ V1(Jn).

Now, unlike the usual way to set up a variational equation between V and U to
enforce the relation v = u′, we directly require that V = U ′ and thus obtain (3)
from the above equation.

We know U ∈ V1 is continuous at t = tn and its restriction to any Jn is a first
order polynomial in the variable t, so U |Jn

is uniquely determined by U̇n
− and Un−1,

i.e.,

(4) U(t) = Un−1 + (t− tn−1)U̇
n
−, t ∈ Jn.

Inserting (4) into the first equation of (3) and on Jn taking w′ to be any element ϕ
in D(A), we have by some direct manipulation that an explicit formulation of this

method is to find {U̇n
−}Nn=1 such that

k2n
2
〈AU̇n

−, ϕ〉+ 〈U̇n
−, ϕ〉

= −kn〈AUn−1, ϕ〉+ 〈U̇n−1
− , ϕ〉+

∫

Jn

〈f, ϕ〉dt ∀ϕ ∈ D(A), 1 ≤ n ≤ N.(5)

Now let us discuss the implementation of the scheme (5). In fact, if the function

U is obtained on Jn−1, then U̇n−1
− and Un−1 are available. Thus, we can obtain
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U̇n
− by solving the linear system (5), and hence the function U on Jn is available

too. In this way, we can obtain the function U in the whole time interval Ī. In
other words, at each time step, we have only to solve a linear system with the linear
operator having 1-by-1 block structure, which can be solved very conveniently.

In order to develop reliable a posteriori error analysis for our method (3), we

require to technically devise a higher order reconstruction Ũ from U in advance.
Motivated by the ideas in higher order reconstruction for numerical solutions of first-
order evolution problems (cf. [1–4, 14]), we successfully work out the answer. Our
key observation is that, not like the first-order evolution problem, the reconstructed
function for the second-order evolution problem must be C1-smooth as well as a

quasi-projector of the approximate solution U . To be more precise, Ũ is uniquely
determined by the relations (7)-(8), which satisfies the variational equation (9).
Using this reconstruction and the energy method, we can derive optimal a posteriori
error estimates for (u − U)′. Moreover, we can also derive sharp a posteriori error
estimator at the time nodes, by means of the duality method as given in [11,
12]. Similar to [8], based on the available a posteriori error estimates, using the
error equidistribution strategy (cf. [6,16]), and following some ideas implied in the
Runge-Kutta-Felberg method (cf. [21]), we are able to devise an adaptive time
stepping method related to (3). We perform several numerical examples to show
the reliability and efficiency of our a posteriori error estimates (estimators) as well
as the effectiveness of the adaptive time stepping method proposed.

The remainder of this paper is organized as follows. The higher order recon-
struction Ũ from U and the corresponding optimal a posteriori error analysis are
given in Section 2. The sharp a posteriori error estimator at the time nodes is
obtained in Section 3. The adaptive time stepping method is devised and discussed
in Section 4. In Section 5, several numerical experiments are performed to illustrate
the reliability and efficiency of our a posteriori error estimates (estimators) and to
assess the effectiveness of our adaptive time stepping method.

2. Optimal a posteriori error analysis

Let e := u− U , with U given by (3). The usual way for bounding the error e is
to use the corresponding error equation e′′(t) +Ae(t) = −R(t), where the residual
R(t) is defined by

(6) R(t) = U ′′(t) +AU(t)− f(t), t ∈ Jn,

or equivalently,

R = −(u− U)′′ −A(u − U)

in view of (1). However, by the error analysis for finite elements, the magnitude
of the quantity R(t) is O(1), and hence we can not derive sharp estimate for the
error e(t) through the previous error equation. As an instance, consider an ordinary
differential equation u′′(t) = f(t) = d with d 6= 0 a real constant. From (4) and
(6), we have

R(t) = −f(t) = −d, t ∈ Jn,

so R(t) is indeed of the size O(1) in this case.

Therefore, as in [1–4, 8, 14], we require a higher order reconstruction Ũ from U ,
to establish optimal a posteriori error analysis.

2.1. Reconstruction. We first introduce an invertible linear operator Ĩ2: V1 →
W2 as follows. With every w ∈ V1 we associate an element w̃ := Ĩ2w ∈ W2 satisfied
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by

(7)





w̃(t0) = w(t0),
w̃′(t0) = v0,
w̃′(t1) = ẇ1

−

on the first subinterval J1 and

(8)

{
w̃′(tn−1) = ẇn−1

− ,
w̃′(tn) = ẇn

−

on other subinterval Jn(2 ≤ n ≤ N). We call w̃ a time reconstruction of w.
Conversely, if w̃ ∈ W2 is given and I1 : W2 → V1 is the interpolation operator
satisfied by {

(I1ϕ)(t0) = ϕ(t0),
˙(I1ϕ)

1

− = ϕ′(t1)

on the first subinterval J1 and

˙(I1ϕ)
n

− = ϕ′(tn)

on other subinterval Jn(2 ≤ n ≤ N). We can recover w locally via interpolation,

i.e., w = I1w̃. Thus, I1 = Ĩ−1
2 .

Using the reconstruction Ũ ∈ W2 of U ∈ V1 which is the solution of (3), we can
deduce from (7)-(8) that for w ∈ V1(Jn),∫

Jn

〈Ũ ′′, w′〉dt = 〈Ũ ′(tn), ẇ
n−1
+ 〉 − 〈Ũ ′(tn−1), ẇ

n−1
+ 〉

= 〈U̇n−1
+ − U̇n−1

− , ẇn−1
+ 〉

= 〈U̇n−1
+ − U̇n−1

− , ẇn−1
+ 〉+

∫

Jn

〈U ′′, w′〉dt.(9)

Inserting (9) into (3) readily gives
∫

Jn

(
〈Ũ ′′, w′〉+ 〈F (t, I1Ũ), w′〉

)
dt = 0 ∀w ∈ V1(Jn), 1 ≤ n ≤ N,

i.e.,

(10) Ũ ′′ + P0F (t, I1Ũ) = 0 ∀ t ∈ Jn,

where Pq (q = 0, 1) is the (local) L2 orthogonal projection operator onto Hq(Jn)
(cf. [4]). Consequently, for each n,

∫

Jn

〈Pqv − v, w〉dt = 0 ∀w ∈ Hq(Jn).

Recall that Ũ is C1-continuous on Ī and its restriction to any Jn is a second order

polynomial in the variable t, so Ũ |Jn
is uniquely determined by Ũn−1, U̇n−1

− and

U̇n
−. If we get the function Ũ on Jn−1, then Ũn−1 is available. Hence, the function

Ũ on Jn is available too. In this way, we can obtain the function Ũ in the whole
time interval Ī. In fact, we have by some direct manipulation that (cf. [18,20]), for
t ∈ Jn, 1 ≤ n ≤ N ,

Ũ(t) = Ũn−1 + knU̇
n−1
− φ0

(
t− tn−1

kn

)
+ knU̇

n
−φ1

(
t− tn−1

kn

)
,

where

φ0(ξ) = −1

2
ξ2 + ξ, φ1(ξ) =

1

2
ξ2.
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Therefore,

(11) Ũ ′′(t) =
1

kn
(U̇n

− − U̇n−1
− ), t ∈ Jn.

On the other hand, observing that

U(t) = Un−1 + knU̇
n−1
+ φ0

(
t− tn−1

kn

)
+ knU̇

n
−φ1

(
t− tn−1

kn

)
,

we know

U(t)− Ũ(t) = kn(U̇
n−1
+ − U̇n−1

− )φ0

(
t− tn−1

kn

)
+ Un−1 − Ũn−1

= k2nŨ
′′(t)φ0

(
t− tn−1

kn

)
+ Un−1 − Ũn−1, t ∈ Jn.(12)

Hence,

Un − Ũn =
1

2
k2nŨ

′′(t) + Un−1 − Ũn−1, t ∈ Jn,

which implies

Un − Ũn =
1

2

n∑

m=1

k2mŨ ′′|Jm
.(13)

2.2. Energy estimates. Let V := D(A1/2) and denote the norms in H and in V
by | · | and ‖ · ‖, with ‖v‖ := |A1/2v| = 〈Av, v〉1/2, respectively. We also use the
following norm notations:

‖v‖L∞(G) := ess sup
t∈G

‖v(t)‖, |v|L∞(G) := ess sup
t∈G

|v(t)|.

Under the assumption (2), we know from [19, 25] that there exists a unique weak
solution u ∈ C([0, T ]; V )

⋂
C1([0, T ]; H) to the evolution problem (1).

Let R̃ be the residual of Ũ given by

(14) R̃(t) := Ũ ′′(t) +AŨ − f(t), t ∈ Jn, 1 ≤ n ≤ N.

Subtracting (14) from the differential equation in (1), we readily have

(15) ẽ′′(t) +Aẽ = −R̃(t),

where ẽ := u− Ũ . Testing (15) with ẽ′ and integrating over t ∈ [0, τ ] gives
∫ τ

0

(
〈ẽ′′(s), ẽ′(s)〉 + 〈Aẽ(s), ẽ′(s)〉

)
ds =

∫ τ

0

〈−R̃(s), ẽ′(s)〉ds.

Using the fact that ẽ(0) = ẽ′(0) = 0 and integration by parts gives

(16)
1

2
|ẽ′(τ)|2 + 1

2
‖ẽ(τ)‖2 =

∫ τ

0

〈−R̃(s), ẽ′(s)〉ds, τ ∈ [0, t],

and hence

1

2

(
max
0≤τ≤t

|ẽ′(τ)|
)2

≤ max
0≤τ≤t

∫ τ

0

|〈R̃(s), ẽ′(s)〉| ds

≤
∫ t

0

|〈R̃(s), ẽ′(s)〉| ds ≤ max
0≤τ≤t

|ẽ′(τ)|
∫ t

0

|R̃(s)| ds.



236 J. LAI AND J. HUANG

In other words,

(17) max
0≤τ≤t

|ẽ′(τ)| ≤ 2

∫ t

0

|R̃(s)| ds.

Now, it follows from (16)-(17) that

1

2

(
max
0≤τ≤t

‖ẽ(τ)‖
)2 ≤

∫ t

0

|〈R̃(s), ẽ′(s)〉| ds

≤ max
0≤τ≤t

|ẽ′(τ)|
∫ t

0

|R̃(s)| ds ≤ 2
( ∫ t

0

|R̃(s)| ds
)2
,

i.e.,

max
0≤τ≤t

‖ẽ(τ)‖ ≤ 2

∫ t

0

|R̃(s)| ds.

It is evident by the triangle inequality that

|(U − Ũ)′|L∞(0, t) ≤ |(u− U)′|L∞(0, t) + max
0≤τ≤t

|(u− Ũ)′(τ)|.

Summarizing the above results, we can get a posteriori error estimates for the
method (3), as described in the following theorem.

Theorem 2.1. Let u and U be the solutions of (1) and (3), respectively, and let Ũ
be the reconstruction of U by (7)-(8). Then, for t ∈ [0, T ], there hold the following
a posteriori error estimates:

max
0≤τ≤t

∣∣(u − Ũ)′(τ)
∣∣ ≤ 2

∫ t

0

|R̃(s)| ds,(18)

max
0≤τ≤t

∥∥(u− Ũ)(τ)
∥∥ ≤ 2

∫ t

0

|R̃(s)| ds,

where the a-posteriori quantity R̃ is given by (14). Moreover, we have the following
lower estimate:

|(U − Ũ)′|L∞(0, t) ≤ |(u− U)′|L∞(0, t) + max
0≤τ≤t

|(u− Ũ)′(τ)|.

Let l1(t) :=
√

3
2 t be the second orthonormal Legendre polynomial in [−1, 1].

And write

tn,∗ :=
tn−1 + tn

2
, 1 ≤ n ≤ N.

Lemma 2.2. For s ∈ Jn, 1 ≤ n ≤ N ,

U(s)− P0U(s) = (s− tn,∗)U
′(s).

Moreover, for t ∈ Jn, 1 ≤ n ≤ N , there holds

2

∫ t

0

|R̃(s)| ds ≤
n∑

m=1

(2
3
k3m|AŨ ′′|L∞(Jm) + k2mt|AŨ ′′|L∞(Jm)

+
1

2
k2m|AU ′|L∞(Jm) + 2

∫

Jm

|f(s)− P0f(s)| ds
)
.(19)

Proof. Let p1 be the second Legendre polynomial shifted to Jn and normalized, i.e.,

p1(t) =

√
2

kn
l1

(
2t− tn−1 − tn

kn

)
, t ∈ Jn.
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Noting that

U(s)− P0U(s) = P1U(s)− P0U(s) =

∫

Jn

U(t)p1(t) dt · p1(s),

we have
(U − P0U)(tn,∗) = 0,

from which it follows that

(20) U(s)− P0U(s) = (s− tn,∗)U
′(s), s ∈ Jn.

From (10) and (14), R̃(s) can be expressed as

(21) R̃(s) = A(Ũ − U)(s) + A(U − P0U)(s)− (f − P0f)(s).

Using (12)-(13) and (20)-(21), we can obtain (19) by some direct manipulation. �

We then differentiate (12) with respect to t to get

(U − Ũ)′(t) = (tn − t)Ũ ′′(t), t ∈ Jn,

leading to

(22) |(U − Ũ)′|L∞(Jn) = kn|Ũ ′′|L∞(Jn), 1 ≤ n ≤ N.

Applying (18), (22) and noting that

|(u− U)′|L∞(0, t) ≤ max
0≤τ≤t

∣∣(u − Ũ)′(τ)| + |(U − Ũ)′|L∞(0, t),

we obtain the following result.

Theorem 2.3. Let u and U be the solutions of (1) and (3), respectively, and let

Ũ be the reconstruction of U by (7)-(8). Then, for t ∈ Jn, 1 ≤ n ≤ N , there holds

(23) |(u− U)′|L∞(0, t) ≤ max
1≤m≤n

km|Ũ ′′|L∞(Jm) + 2

∫ t

0

|R̃(s)| ds.

The following result is a direct consequence of Theorems 2.1, 2.3 and (22).

Corollary 2.4. Let u and U be the solutions of (1) and (3), respectively, and let

Ũ be the reconstruction of U by (7)-(8). Then, for t ∈ Jn, 1 ≤ n ≤ N , there hold
the following lower and upper bounds:

max
1≤m≤n

km|Ũ ′′|L∞(Jm)

≤ |(u− U)′|L∞(0, t) + max
0≤τ≤t

∣∣(u− Ũ)′(τ)
∣∣

≤ max
1≤m≤n

km|Ũ ′′|L∞(Jm) + 4

∫ t

0

|R̃(s)| ds,

where the a-posteriori quantity R̃ is given by (14).

From (11), the a-posteriori error estimate given in Theorem 2.3 can be expressed
as

|(u− U)′|L∞(0, t) ≤ max
1≤m≤n

|U̇m−1
+ − U̇m−1

− |+ 2

∫ t

0

|R̃(s)| ds,

which is quite similar to the a-posteriori error estimate corresponding to the finite
element method in space (cf. [24]).

In what follows, we shall establish several stability estimates for the linear time
stepping finite element method. To simplify the presentation, write

f̄m := k−1
m

∫

Jm

f(t) dt, JU̇ Km−1 := U̇m
− − U̇m−1

− , 1 ≤ m ≤ N.
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First of all, it follows from (10) that

(24) Ũ ′′|Jm
+

1

2
A(Um + Um−1) = f̄m, 1 ≤ m ≤ N.

Theorem 2.5. Let U be the solution of (3), and let Ũ be the reconstruction of
U by (7)-(8). If u0 ∈ D(A2), v0 ∈ D(A3/2) and f ∈ L2(0, T ;D(A3/2)), then the
following stability estimates hold for 1 ≤ m ≤ N :

|U ′|L∞(Jm) ≤ C
(
|A1/2u0|2 + |v0|2 +

m∑

l=1

kl|f̄ l|2
)1/2

,

|Ũ ′′|L∞(Jm) ≤ C
(
|Au0|2 + |A1/2v0|2 + |f̄m|2 +

m∑

l=1

kl|A1/2f̄ l|2

+
m∑

l=1

l∑

p=1

klkp|A1/2f̄p|2
)1/2

,

|AU ′|L∞(Jm) ≤ C
(
|A3/2u0|2 + |Av0|2 +

m∑

l=1

kl|Af̄ l|2
)1/2

,(25)

|AŨ ′′|L∞(Jm) ≤ C
(
|A2u0|2 + |A3/2v0|2 + |Af̄m|2 +

m∑

l=1

kl|A3/2f̄ l|2

+

m∑

l=1

l∑

p=1

klkp|A3/2f̄p|2
)1/2

,(26)

where C is a positive constant independent of the time step size, which may take
different values in different appearances.

Proof. Testing the scheme (24) with 2kmU̇m
− and using (11), we have

(27) 2〈U̇m
− − U̇m−1

− , U̇m
− 〉+ 〈AUm, Um〉 − 〈AUm−1, Um−1〉 = 2km〈f̄m, U̇m

− 〉.

Summing this equation with respect to m implies

〈U̇m
− , U̇m

− 〉+
m−1∑

l=0

〈
JU̇Kl, JU̇Kl

〉
+ 〈AUm, Um〉

= 〈Au0, u0〉+ 〈v0, v0〉+
m∑

l=1

2kl〈f̄ l, U̇ l
−〉

≤ 〈Au0, u0〉+ 〈v0, v0〉+
m∑

l=1

2kl
∣∣〈f̄ l, U̇ l

−〉
∣∣,(28)

from which we get

〈U̇m
− , U̇m

− 〉 ≤ 〈Au0, u0〉+ 〈v0, v0〉+
m∑

l=1

2kl〈f̄ l, f̄ l〉1/2〈U̇ l
−, U̇

l
−〉1/2.

Applying the discrete Gronwall lemma (cf. [18]) to the above inequality, we further
have

(29) |U ′|L∞(Jm) = |U̇m
− | ≤ C

(
|A1/2u0|2 + |v0|2 +

m∑

l=1

kl|f̄ l|2
)1/2

.
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Next, we apply A to the scheme (24) to get

AŨ ′′|Jm
+

1

2
A2(Um + Um−1) = Af̄m, 1 ≤ m ≤ N,

and using the similar argument for deriving (27)-(28) we know

〈A1/2U̇m
− , A1/2U̇m

− 〉+
m−1∑

l=0

〈
AJU̇Kl, JU̇Kl

〉
+ 〈AUm, AUm〉

= 〈Au0, Au0〉+ 〈Av0, v0〉+
m∑

l=1

2kl〈A1/2f̄ l, A1/2U̇ l
−〉

≤ 〈Au0, Au0〉+ 〈Av0, v0〉+
m∑

l=1

2kl
∣∣〈A1/2f̄ l, A1/2U̇ l

−〉
∣∣,

from which we deduce

〈A1/2U̇m
− , A1/2U̇m

− 〉 ≤ C
(
〈Au0, Au0〉+ 〈Av0, v0〉+

m∑

l=1

kl〈A1/2f̄ l, A1/2f̄ l〉
)
,

and hence

〈AUm, AUm〉 ≤ C
(
〈Au0, Au0〉+ 〈Av0, v0〉+

m∑

l=1

kl〈A1/2f̄ l, A1/2f̄ l〉

+

m∑

l=1

l∑

p=1

klkp〈A1/2f̄p, A1/2f̄p〉
)
.

This combined with the scheme (24) and the triangle inequality gives

|Ũ ′′|L∞(Jm) =
∣∣Ũ ′′|Jm

∣∣ ≤|f̄m|+ 1

2
|AUm|+ 1

2
|AUm−1|(30)

≤C
(
|Au0|2 + |A1/2v0|2 + |f̄m|2

+

m∑

l=1

kl|A1/2f̄ l|2 +
m∑

l=1

l∑

p=1

klkp|A1/2f̄p|2
)1/2

.

Applying A2 and A3 to the scheme (24) and arguing as in the derivation of (29)
and (30), we can obtain (25)-(26) accordingly. �

Remark 2.6. Suppose that u0 ∈ D(A2), v0 ∈ D(A3/2), and f lies in L2(0, T ;D(A3/2))
and admits one time derivative. Then we can check from (19) and Theorem 2.5

that the magnitude of the quantity
∫ t

0 |R̃(s)| ds is of order 1 with respect to the
time step km. Hence, noting that U is a piecewise polynomial of degree 1, we get
the optimal order (1 order) a posteriori error estimates for the time derivative of
the error u− U (cf. Theorem 2.3 and Corollary 2.4).

3. Nodal error estimates

In this section, we intend to apply the duality method (cf. [11, 12]) to derive a
posteriori error estimates at the time nodes.

For n ∈ {1, . . . , N}, let g be the solution of the following backward homogeneous
problem

(31)





g′′(t) +Ag(t) = 0, 0 < t < tn,
g(tn) = µ,
g′(tn) = ν.
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It is straightforward that
∫ tn

t

〈g′′ +Ag, g′〉dt = 0,

which together with the integration by parts implies

(32) ‖g(t)‖2 + |g′(t)|2 = ‖µ‖2 + |ν|2, t ∈ [0, tn].

Now, choosing µ = 0, ν = ẽ′(tn) in (31) we arrive at

|ėn−|2 = |ẽ′(tn)|2 =

∫ tn

0

〈ẽ′, g′〉′ dt =
∫ tn

0

(
〈ẽ′′, g′〉+ 〈ẽ′, g′′〉

)
dt

=

∫ tn

0

(
〈ẽ′′, g′〉 − 〈ẽ′, Ag〉

)
dt =

∫ tn

0

(
〈ẽ′′, g′〉+ 〈ẽ, Ag′〉

)
dt

=

∫ tn

0

〈ẽ′′ +Aẽ, g′〉dt = −
∫ tn

0

〈R̃, g′〉dt

≤ max
t∈[0, tn]

|g′(t)|
∫ tn

0

|R̃| dt ≤ |ẽ′(tn)|
∫ tn

0

|R̃| dt,(33)

where we have used (7), (8), (15) and (32). As a direct consequence of (33) we get

|ėn−| ≤
∫ tn

0

|R̃| dt.

To sum up, we have

Theorem 3.1. Let u and U be the solutions of (1) and (3), respectively. Then,
for 1 ≤ n ≤ N , there holds

|u′(tn)− U̇n
−| ≤

∫ tn

0

|R̃| dt,(34)

where the a-posteriori quantity R̃ is given by (14).

Remark 3.2. Suppose that u0 ∈ D(A2), v0 ∈ D(A3/2), and f lies in L2(0, T ;D(A3/2))
and admits one time derivative. Then we have from (19) and Theorem 2.5 that the

order of
∫ tn
0

|R̃| dt with respect to the time step is one. Hence, (34) gives us sharp
a posteriori error estimates at the nodes.

4. An adaptive algorithm

Based on the a-posteriori error estimates given in Theorem 2.3, it is possible for
us to construct an adaptive time stepping strategy related to the method (3). Let ǫ
be the total error tolerance allowed for the a-posteriori error estimate in (23), i.e.,

(35) η := max
1≤m≤N

km|Ũ ′′|L∞(Jm) + 2

∫ T

0

|R̃(s)| ds ≤ ǫ.

To ensure (35) holds, a natural way is to adjust the time step size km such that the
following conditions are satisfied:

km|Ũ ′′|L∞(Jm) ≤
1

2
ǫ, 2

T

km

∫ tm

tm−1

|R̃(s)| ds ≤ 1

2
ǫ,

which motivates us to use the following time-stepping strategy

(36) Θ := 2max

{
km|Ũ ′′|L∞(Jm), 2

T

km

∫ tm

tm−1

|R̃(s)| ds
}

≤ ǫ.
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Table 1. Example 1: order of Etd, Et and E1.

N Etd Order Et Order E1 Order
16 5.5817e–1 3.7219e–1 1.7002
32 2.7794e–1 1.0059 1.8787e–1 9.8631e–1 8.5476e–1 9.9213e–1
64 1.3859e–1 1.0040 9.4383e–2 9.9313e–1 4.2843e–1 9.9644e–1
128 6.9189e–2 1.0022 4.7308e–2 9.9644e–1 2.1444e–1 9.9853e–1
256 3.4565e–2 1.0012 2.3682e–2 9.9828e–1 1.0727e–1 9.9925e–1
512 1.7276e–2 1.0006 1.1849e–2 9.9907e–1 5.3650e–2 9.9963e–1
1024 8.6364e–3 1.0003 5.9264e–3 9.9951e–1 2.6829e–2 9.9982e–1
2048 4.3175e–3 1.0002 2.9635e–3 9.9984e–1 1.3415e–2 9.9991e–1
4096 2.1587e–3 1.0000 1.4819e–3 9.9984e–1 6.7078e–3 9.9995e–1

We mention that in the derivation of the above time stepping rule, the well known
error equidistribution strategy are borrowed as used in [6,16]. Now, using (36) and
following some ideas implied in the Runge-Kutta-Felberg method (cf. [21]), we can
devise the following adaptive algorithm to control the time step size at each time
step m.

Algorithm 4.1. (Time step size control)

(1) Given an error tolerance ǫ and a parameter δ ∈ (0, 1). Also assume

that we have maximum and minimum for the time step size, denoted

kmax and kmin. These terms may be specified by the user, or they

may be set to default values in a given software package.

(2) At the node tm−1, begin with an initial step size, km.

(3) Compute U̇m
− using (3) with the step size km. And then get U, U ′

and Θ at this time step.

(4) If δǫ ≤ Θ ≤ ǫ, then U ′(t) is an acceptable approximation of u′(t),
t ∈ (tm−1, tm−1+km]. The step size km is acceptable, and it is

used to advance to the next grid point, km+1 = km.

(5) If Θ < δǫ, the step size is more than adequate, and we try to

increase it. We double the step size as long as the larger step

size is still smaller than kmax. That is, we set km+1 = 2km.

(6) If Θ > ǫ, then we decrease the step size. Replace km = 1
2km

provided that the smaller step size satisfies km ≥ kmin. Return

to Step (3), where new values of U̇m
− and U, U ′, Θ are computed for

this smaller step size.

Remark 4.2. If the time step km (m = 1, 2, . . .) determined by the above algorithm
all lie in (kmin, kmax), then we easily have from (23), (36) and the definition of η
(cf. (35)) that

|(u − U)′|L∞(0, T ) ≤ η ≤ ǫ.

5. Numerical Experiments

5.1. Efficiency of the estimators. In this subsection, we want to demonstrate
the performance of the a-posteriori error estimators in Sections 2 and 3, in terms
of some efficiency indices.
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Table 2. Example 1: order of Ed and E1 + E2.

N Ed Order E1 + E2 Order
16 1.0609 3.2251
32 5.4718e–1 9.5523e–1 1.6554 9.6215e–1
64 2.7770e–1 9.7846e–1 8.3851e–1 9.8131e–1
128 1.3987e–1 9.8945e–1 4.2193e–1 9.9083e–1
256 7.0189e–2 9.9478e–1 2.1164e–1 9.9541e–1
512 3.5158e–2 9.9740e–1 1.0599e–1 9.9771e–1
1024 1.7595e–2 9.9871e–1 5.3035e–2 9.9886e–1
2048 8.8012e–3 9.9935e–1 2.6528e–2 9.9943e–1
4096 4.4016e–3 9.9968e–1 1.3267e–2 9.9971e–1

Table 3. Example 1: order of E2 and E3.

N E2 Order Ed Ed+Etd E3 Order
16 1.5249 1.0609 1.6191 4.9253
32 8.0067e–1 9.2943e–1 5.4718e–1 8.2512e–1 2.5102 9.7243e–1
64 4.1008e–1 9.6532e–1 2.7770e–1 4.1629e–1 1.2669 9.8645e–1
128 2.0749e–1 9.8282e–1 1.3987e–1 2.0906e–1 6.3636e–1 9.9343e–1
256 1.0436e–1 9.9145e–1 7.0189e–2 1.0475e–1 3.1891e–1 9.9670e–1
512 5.2336e–2 9.9574e–1 3.5158e–2 5.2433e–2 1.5964e–1 9.9835e–1
1024 2.6207e–2 9.9787e–1 1.7595e–2 2.6231e–2 7.9864e–2 9.9918e–1
2048 1.3113e–2 9.9894e–1 8.8012e–3 1.3119e–2 3.9943e–2 9.9959e–1
4096 6.5590e–3 9.9947e–1 4.4016e–3 6.5603e–3 1.9975e–2 9.9980e–1

Example 1. As in [1], we consider an ordinary differential equation given by





u′′(t) + 2u(t) = 2et(cos t− sin t), 0 < t < 2,
u(0) = 1,
u′(0) = 1,

which has the exact solution u(t) = et cos t and ‖ · ‖ =
√
2| · |.

In our numerical computation, we make a uniform partition for the domain [0, 2],
so that km = 2/N, 1 ≤ m ≤ N. Here N is a given natural number. For simplicity,
write

E1 := 2

∫ 2

0

|R̃(s)| ds, E2 := max
1≤m≤N

km|Ũ ′′|L∞(Jm), E3 := 2E1 + E2,

Ed :=
∣∣(u− U)′

∣∣
L∞(0, 2)

, Et := max
0≤τ≤2

‖(u− Ũ)(τ)‖,

Etd := max
0≤τ≤2

|(u− Ũ)′(τ)|, Esd := |u′(2)− U̇N
− |.

In Tables 1-4 we give the values of a posteriori error estimators E1, E2 and E3 as well
as their orders. These numerical results confirm the theoretical results of Theorems
2.1, 2.3, Corollary 2.4 and Theorem 3.1, respectively.

Next, we study the efficiency of the lower and upper estimators in Corollary 2.4,
using the indices as given in [1]. With respect to the reference error Ed+Etd the
lower effectivity index Effld and the upper effectivity index Effud are defined as

Effld :=
E2

Ed+Etd
, Effud :=

E3
Ed+Etd

,
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Table 4. Example 1: order of Esd.

N Esd Order E1/2 Order
16 5.5824e–1 8.5011e–1
32 2.7797e–1 1.0060 4.2738e–1 9.9213e–1
64 1.3861e–1 1.0039 2.1422e–1 9.9644e–1
128 6.9196e–2 1.0022 1.0722e–1 9.9853e–1
256 3.4570e–2 1.0012 5.3637e–2 9.9925e–1
512 1.7278e–2 1.0006 2.6825e–2 9.9963e–1
1024 8.6370e–3 1.0003 1.3414e–2 9.9982e–1
2048 4.3181e–3 1.0002 6.7076e–3 9.9991e–1
4096 2.1589e–3 1.0001 3.3539e–3 9.9995e–1

Table 5. Example 1: effectivity indices of lower and upper estimators.

N Effld Effud
16 9.4183e–1 3.0420
32 9.7037e–1 3.0422
64 9.8507e–1 3.0434
128 9.9251e–1 3.0439
256 9.9628e–1 3.0444
512 9.9815e–1 3.0446
1024 9.9908e–1 3.0447
2048 9.9957e–1 3.0448
4096 9.9979e–1 3.0447
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Figure 1. Log-log graphs of the effectivity indices of lower and
upper estimators (the base of the logarithms is 2).

respectively. We compute these indices in Table 5 and graphically demonstrate
them in log-log scale in Figure 1. It is observed that Effld≈ 1, Effud≈ 3.

5.2. Efficiency of the adaptive algorithm.

Example 2. In order to test the effectiveness of our adaptive algorithm (Algorithm
4.1), we first consider the ODE case (cf. (1)) with A = 2, T = 10, and the right
term f is taken such that the exact solution of (1) is

(37) u(t) = α(t) := e−800(sin(πt/2)−1)2 sin(4πt).
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Figure 2. Example 2: solution curve (top) and derivative curve
(bottom) with ǫ = 1, kmin = 2 ∗ 10−3.
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Figure 3. Example 2: (a) the error of (u − U)′(t) and (b) the
time stepsize trajectory, with ǫ = 10−1, kmin = 10−4.
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Table 6. Example 2: adaptive numerical results with different ǫ
and kmin.

ǫ kmin η |(u− U)′|L∞(0, T ) N N∗

1 2e–3 5.9936 5.4037e–1 1013 1045
1 1e–3 3.0014 2.7031e–1 1860 1895
1 2e–4 6.1008e–1 5.4086e–2 8553 8600

1e–1 1e–4 3.0162e–1 2.7033e–2 18175 18231
1e–1 5e–5 1.5140e–1 1.3518e–2 34994 35052
1e–1 3e–5 9.1402e–2 8.1124e–3 57183 57243
1e–2 1e–5 3.0189e–2 2.7035e–3 180730 180806
1e–2 3e–6 9.1552e–3 8.1131e–4 570458 570538

Table 7. Example 2: numerical results with uniform partitions.

N∗ η |(u− U)′|L∞(0, T )

1045 2.8677e+1 2.5809
1895 1.5813e+1 1.4261
8600 3.4823 3.1436e–1
18231 1.6443 1.4830e–1
35052 8.5795e–1 7.7130e–2
57243 5.2535e–1 4.7229e–2
180806 1.6632e–1 1.4953e–2
570538 5.2708e–2 4.7385e–3

Table 8. Example 3: adaptive numerical results with different ǫ
and kmin, kmax = 1, Case (A).

ǫ kmin η |(u− U)′|L∞(0, T ) N N∗

1 1e–3 2.0652 1.9882e–1 1830 1864
1 2e–4 4.2311e–1 4.0006e–2 8483 8530

1e–1 1e–4 2.0740e–1 1.9867e–2 17724 17779
1e–1 5e–5 1.0422e–1 9.9400e–3 34474 34531
1e–2 1e–5 2.1623e–2 1.9925e–3 176333 176401
1e–2 4e–6 8.4844e–3 8.0505e–4 428114 428188

We set kmax = 1 and δ = 1/32 in the computation. In Figure 2 we give the
numerical solutions for u and u′. The error of (u − U)′(t) is depicted in Figure
3(a) and the time stepsize trajectory is shown in Figure 3(b). In Table 6 we have
reported the numerical results when running the adaptive algorithm for different
values of ǫ and kmin, where (N∗−1) is the total number of the time iterative step in
the adaptive computation. Moreover, we adopt the uniform partitions to compute
with the same iteration number (N∗ − 1), and the numerical results are shown in
Table 7, from which we know the adaptive algorithm is very efficient.
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Figure 4. Example 3: (a) the error of |(u − U)′(t)| and (b) the
time stepsize trajectory, with ǫ = 1, kmin = 10−3, kmax = 1, case
(A).

Example 3. Next, we discuss numerical results in the 1-dim PDE case. The
problem under investigation is

(38)






∂2u

∂t2
− 2

∂2u

∂x2
= f(x, t), 0 < x < 1, 0 < t < T,

u(0, t) = u(1, t) = 0, 0 < t ≤ T,

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = v0(x), 0 ≤ x ≤ 1.

Choose the solution of (38) by

Case (A) u(x, t) = α(t) ∗ sin(πx), T = 10,

Case (B) u(x, t) = β(t) ∗ sin(πx), T = 1,

where α(t) is given in (37) and β(t) = 0.1 ∗ (1 − e−10000∗(t−1/2)2), which is used
in [6] for numerical experiments.

We apply Algorithm 4.1 to solve these problems. We choose δ = 1/32 in com-
putation. For the spatial discretization, we use linear finite element on a uniform
partition with the mesh size equal to 1/20000. The error of |(u − U)′(t)| and the
time step size at each time step are displayed in Figures 4-5. The adaptive numer-
ical results with different ǫ and kmin are shown in Tables 8-9, and the numerical
results with uniform partitions are shown in Tables 10-11, from which we may find
that Algorithm 4.1 is also very efficient in this PDE case.
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Figure 5. Same as Figure 4, except for Case (B) with ǫ =
10−1, kmin = 5 ∗ 10−5, kmax = 10−1.

Table 9. Example 3: adaptive numerical results with different ǫ
and kmin, kmax = 10−1, Case (B).

ǫ kmin η |(u− U)′|L∞(0, T ) N N∗

1e–1 1e–4 4.0947e–1 1.4149e–1 732 743
1e–1 5e–5 2.0522e–1 7.0745e–2 1399 1411
1e–1 1e–5 4.1451e–2 1.4150e–2 6323 6338
1e–2 1e–5 4.1056e–2 1.4149e–2 7144 7160
1e–2 5e–6 2.0549e–2 7.0746e–3 13804 13821
1e–2 2e–6 8.2486e–3 2.8299e–3 32855 32873
1e–3 2e–6 8.2086e–3 2.8298e–3 36743 36760
1e–3 2e–7 8.2608e–4 2.8299e–4 328825 328845

Example 4. Now, let us discuss the cantilever beam case. The problem under
investigation is

(39)






∂2u

∂t2
+

∂4u

∂x4
= f(x, t), 0 < x < 1, 0 < t < T,

u(0, t) = 0,
∂u

∂x
(0, t) = 0, 0 < t ≤ T,

∂2u

∂x2
(1, t) = 0,

∂3u

∂x3
(1, t) = 0, 0 < t ≤ T,

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = v0(x), 0 ≤ x ≤ 1.
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Table 10. Example 3: numerical results with uniform partitions,
Case (A).

N∗ η |(u− U)′|L∞(0, T )

1864 1.1046e+1 1.0750
8530 2.4126 2.3534e–1
17779 1.1584 1.1292e–1
34531 5.9831e–1 5.8142e–2
176401 1.1711e–1 1.1382e–2
428188 4.8245e–2 4.6890e–3

Table 11. Example 3: numerical results with uniform partitions,
Case (B).

N∗ η |(u − U)′|L∞(0, T )

743 5.4930 1.8726
1411 2.8976 9.9845e–1
6338 6.4555e–1 2.2326e–1
7160 5.7145e–1 1.9763e–1
13821 2.9625e–1 1.0238e–1
32873 1.2480e–1 4.3043e–2
36760 1.1160e–1 3.8491e–2
328845 1.2475e–2 4.3027e–3

Table 12. Example 4: adaptive numerical results with different ǫ
and kmin, kmax = 10−1.

ǫ kmin η |(u− U)′|L∞(0, T ) N N∗

1e–1 1e–4 7.26e–2 2.47e–2 668 693
1e–1 5e–5 3.65e–2 1.24e–2 1267 1294
1e–2 1e–5 7.29e–3 2.47e–3 6540 6571
1e–2 5e–6 3.69e–3 1.24e–3 12556 12589

Choose the exact solution of (39) by

u(x, t) = β(t) ∗ 0.01(x6 − 20x3 + 45x2), T = 1,

where β(t) is given as in Example 3.
We apply Algorithm 4.1 with δ = 1/32 to solve this problems. We carry out the

spatial discretization using Hermitian beam element on a uniform partition with
the mesh size equal to 1/200. The error of |(u − U)′(t)| and the time step size
at each time step are displayed in Figure 6. The adaptive numerical results with
different ǫ and kmin are shown in Table 12, and the numerical results with uniform
partitions are shown in Table 13, from which we may find that Algorithm 4.1 is
also efficient in this cantilever beam case.
Example 5. In this example, we discuss the 2-dim PDE case. The problem is
governed by
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Figure 6. Example 4: (a) the error of |(u − U)′(t)| and (b) the
time stepsize trajectory, with ǫ = 10−1, kmin = 10−4, kmax = 10−1.

Table 13. Example 4: numerical results with uniform partitions.

N∗ η |(u− U)′|L∞(0, T )

693 1.05 3.55e–1
1294 5.62e–1 1.90e–1
6571 1.10e–1 3.76e–2
12589 5.75e–2 1.96e–2

(40)





∂2

∂t2
u(x, y, t)−∆u(x, y, t) = f(x, y, t) in Ω× (0, T ),

u(x, y, t) = ub(x, y, t) on ∂Ω× (0, T ],

u(x, y, 0) = u0(x, y) on Ω× {0},
∂

∂t
u(x, y, 0) = v0(x, y) on Ω× {0}.

We set Ω = (−3/2, 3/2) × (−3/2, 3/2) and T = 1. The exact solution of this
problem is prescribed as

u(x, y, t) = β(t) ∗ e−((x−t+0.5)2+(y−t+0.5)2)/0.04,

where β(t) is given as in Example 3.
We use the continuous P1-element to carry out spatial discretization. And then

apply Algorithm 4.1 (δ = 1/8) to compute the discrete problem in time. Notice
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Figure 7. Example 5: initial function u0 & mesh.

Table 14. Example 5: adaptive numerical results with different
ǫ, kmin, and kmax.

ǫ kmax kmin η |(u− U)′|L∞(0, T ) N N∗

5 1e–2 1e–3 1.76 4.71e–1 156 165
5 1e–2 1e–4 5.11e–1 4.97e–2 566 581
1 1e–3 5e–5 1.10e–1 2.33e–2 1989 2000
0.5 5e–4 1e–5 3.52e–2 5.14e–3 6162 6177

Table 15. Example 5: numerical results with uniform partitions.

N∗ η |(u− U)′|L∞(0, T )

165 8.14 2.66
581 2.50 8.16e–1
2000 7.24e–1 2.38e–1
6177 2.34e–1 7.70e–2

that the graph of the function u = u(x, y, t) looks like a “Hill” moving from point
(−1/2,−1/2) straightly to point (1/2, 1/2) and drops exponentially around t = 0.5.
To reduce the computational cost, thinking of the decay property of the exact
function, we make a coarse partition in the whole spatial domain with the mesh
size equal to 1/6, and then do the mesh refinement in the domain (−1, 1)× (−1, 1)
to get a refined mesh with the size equal to 1/48, as shown in Figure 7.

The error of |(u−U)′(t)| and the time step size are displayed in Figure 8, and the
numerical solution with ǫ = 1, kmin = 5 ∗ 10−5, kmax = 10−3 at different time are
shown in Figure 9. The adaptive numerical results with different ǫ ,kmin and kmax

are shown in Table 14, and the numerical results with uniform partitions in time
step are shown in Table 15, from which we may see the effectiveness of Algorithm
4.1 in this 2-dim PDE case.

In the last part of this section, we summarize some key observations from the
above numerical results:
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Figure 8. Example 5: (a) the error of |(u − U)′(t)| and (b) the
time stepsize trajectory, with ǫ = 1, kmin = 5 ∗ 10−5, kmax = 10−3.

• The a-posteriori error estimators given in Section 2 are reliable and efficient.
Algorithm 4.1 is efficient for solving evolution problems under discussion.
This can be demonstrated by comparing the numerical errors obtained
through the uniform partition and adaptive partition, see, e.g. Tables 7
and 6, Tables 10 and 8, Tables 11 and 9, Tables 13 and 12, Tables 15 and
14.

• The choice of kmin is essential in keeping high efficiency of Algorithm 4.1.
If it is chosen too large, the total error may exceed the prescribed error
tolerance; and if too small, the algorithm may result in over-refinement.
In practical computation, this parameter can be chosen quite easily by
numerical experience. However, it is a very valuable issue to develop some
rules for feasibly choosing kmin with theoretical justification.
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