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THE TIME SECOND-ORDER CHARACTERISTIC FEM FOR

NONLINEAR MULTICOMPONENT AEROSOL DYNAMIC

EQUATIONS IN ENVIRONMENT

KAI FU, DONG LIANG∗, WENQIA WANG, AND MING CUI

Abstract. An efficient time second-order characteristic finite element method for solving the
nonlinear multi-component aerosol dynamic equations is developed. While a highly accurate
characteristic method is used to treat the advection multi-component condensation/evaporation
process, a time high-order extrapolation along the characteristics is applied to approximate the
nonlinear multi-component coagulation terms. The scheme is of second order accuracy in time
for the multi-component problems. We study the theoretical analysis and obtain the time second-
order error estimate of the scheme. Numerical experiments are further given to confirm the
theoretical results. The dynamic behaviours of multi-component aerosol distributions are also
simulated for the multi-component aerosol problems of aerosol water, black carbon and sulfate
components with different tri-modal log-normal initial distributions.

Key words. Multi-component aerosol dynamic equations, condensation/evaporation, nonlinear
coagulation, characteristic method, characteristic extrapolation, error estimate.

1. Introduction

Global climate change and warming in atmosphere have been widely recognized.
As one of most important constituents, aerosols are minutes particles suspended in
atmosphere, which play an important role in climate change, atmospheric chem-
istry, and air pollution issues including visibility reduction and adverse human
health effects. The research on the multi-component aerosol dynamics is of great
importance, which can provide a better understanding of the distribution of aerosol
particles in atmospheric environment and can further help to predict and protect
the atmospheric environment. Modeling the composition and size distributions of
atmospheric aerosols is very important as they determine the optical properties of
particles, and moreover, the aerosol composition influences the ability of particles
to act as cloud condensation nuclei or ice nuclei.

The evolution of the size distribution of aerosols is governed by the nonlinear
aerosol dynamic equation, which describes the impacts of several processes such as
condensation, coagulation, emission, and deposition, etc. Some numerical meth-
ods were developed, including sectional method [3, 7], moment method [5, 12],
modal method [1, 16], stochastic approach [4], finite element method [13], etc. The
sectional method is simple but usually leads to numerical diffusion when treating
condensation/evaporation [7]. The modal method has high efficiency but has less
physical representation of aerosol distributions and less accuracy. The moment
method is not suitable for the simulation of multi-modal distributions. The draw-
back of the stochastic method is that it can not get a satisfied accuracy. Recently,

Received by the editors March 6, 14, and in revised form, November 11, 2014.
2000 Mathematics Subject Classification. 65M10, 65M15, 65N10, 65N15.
∗Corresponding author.
This research was supported by the National Engineering and Science Research Council of

Canada and by the National Natural Science Foundation of China under grants 11271232 and
11201265.

211



212 K. FU, D. LIANG, W. WANG, AND M. CUI

[8] proposed a splitting wavelet method for solving the spatial aerosol dynamic
equations on time, particle size and vertical coordinates. Due to the condensa-
tion advection and the nonlinear coagulation, modelling accurately and efficiently
the sharp distributions of aerosols still is a challenge work in computation of the
multi-component aerosol dynamic equations.

The multi-component aerosol dynamic equations are described as follows. Let
qi(m, t) be the mass concentration distribution for species i of aerosol particles
having total particle mass in the range m to m + dm at time t. Nc is the total
number of chemical species. The change rate of the total mass of a particle of mass
m caused by condensation/evaporation is denoted by

I(m, t) =

Nc
∑

i=1

Ii(m, t),(1)

where Ii = dmi

dt , mi is the mass of species i in a particle of total mass m. The
normalized condensation/evaporation rate of species i is

(2) Hi(m, t) =
1

m

dmi

dt
,

and the total condensation/evaporation rate is

(3) H(m, t) =

Nc
∑

i=1

1

m

dmi

dt
=

Nc
∑

i=1

Hi(m, t).

The multi-component aerosol general dynamic equations are ([11, 14, 15])

∂qi(m, t)

∂t
= Hi(m, t)

Nc
∑

j=1

qj(m, t)−
∂(mqiH)

∂m
(4)

+

∫ m−Mmin

Mmin

β(m,m−m′)qi(m, t)

∑Nc

j=1 qj(m−m′, t)

m−m′
dm′

−qi(m, t)
∫ Mmax

Mmin

β(m,m′)

∑Nc

j=1 qj(m
′, t)

m′
dm′, t ∈ (0, T ],m ∈ Ω,

qi(Mmin, t) = 0, t ∈ [0, T ],(5)

qi(m, 0) = q0i (m), m ∈ Ω, i = 1, 2, · · · , Nc,(6)

where t > 0 is the time, and T > 0 is the time period; the finite mass interval
Ω = [Mmin,Mmax] where Mmin > 0 is the minimal mass and Mmax > 0 is a finite
maximal mass. β(m,m′) is the coagulation kernel function. Eq. (4) forms a system
of Nc nonlinear integral-differential equations on time and particle mass.

In this paper, we develop and analyze a time second-order characteristic finite
element method (FEM) for solving the multi-component aerosol dynamic equations
by taking the advantage of characteristic technique, which can solve the problems
accurately and efficiently. In our method, we first transfer the time derivative term
and the advection-condensation term into the global derivative term along the char-
acteristics and then approximate it by the difference operator along the characteris-
tic curve, where more accurate solution can be obtained. For treating the nonlinear
coagulation term, by using two previous time level values, we propose to use a time
second-order extrapolation, i.e. a combination of previous two level values of coagu-
lation terms along the characteristics. The developed characteristic FEM scheme is
of second-order accuracy in time and can provide efficiently high accuracy solutions
when using large time step sizes. The study of the method has been examined for
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the aerosol dynamics equations (single component) that describes aerosol number
distribution on time and particle volume [9]. In this paper, we will further extend
the characteristic FEM scheme to solving the multi-component aerosol general dy-
namic equations governing multi-component aerosol mass distributions on time and
particle mass. We analyze theoretically the developed characteristic FEM scheme
to the nonlinear multicomponent aerosol dynamic systems based on the theory of
variation method and the technique of prior estimate. We prove the error estimate
of second order in time for the scheme. Numerical experiments are carried out for
two-component and three-component aerosol dynamic problems with one modal
and tri-modal log-normal initial distributions. Numerical results show that our
method is of second order accuracy in time. The scheme improves the accuracy of
the classic characteristic finite element method which is of first order in time. The
dynamic behaviours of multi-component aerosol distributions are also simulated by
the scheme for the multi-component aerosol problems of aerosol water, black carbon
and sulfate components with different tri-modal log-normal initial distributions.

The paper is structured as follows. The second-order characteristic FEM for
nonlinear multi-component aerosol dynamic equations is proposed in Section 2. The
theoretical analysis of error estimate is done in Section 3. Numerical experiments
are given in Section 4 and conclusion is addressed in Section 5.

2. The time second order characteristic FEM scheme

Consider the linear change rate of the mass due to the condensation/evaporatoin
process [6]

Ii = αim, i = 1, 2, · · · , Nc; I =

Nc
∑

i=1

Ii.(7)

Letting α =
∑Nc

i=1 αi, we have that

Hi = αi, i = 1, 2, · · · , Nc; H =

Nc
∑

i=1

Hi = α.(8)

The multi-component aerosol dynamic equations become

∂qi(m, t)

∂t
= Hi

Nc
∑

j=1

qj(m, t)−Hqi(m, t)−Hm
∂(qi(m, t))

∂m
(9)

+

∫ m−Mmin

Mmin

β(m′,m−m′)qi(m
′, t)

∑Nc

j=1 qj(m−m′, t)

m−m′
dm′

−qi(m, t)
∫ Mmax

Mmin

β(m,m′)

∑Nc

j=1 qj(m
′, t)

m′
dm′,

qi(Mmin, t) = 0, t ∈ [0, T ],(10)

qi(m, 0) = q0i (m), m ∈ [Mmin,Mmax], i = 1, 2, · · · , Nc.(11)
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Let the following notation for the nonlinear coagulation terms,

Φi

(

m, t, qi(m, t),

Nc
∑

j=1

qj(m, t)
)

(12)

=

∫ m−Mmin

Mmin

β(m′,m−m′)qi(m
′, t)

∑Nc

j=1 qj(m−m′, t)

m−m′
dm′

−qi(m, t)
∫ Mmax

Mmin

β(m,m′)

∑Nc

j=1 qj(m
′, t)

m′
dm′.

The equations (9) can be written in a short form as

∂qi(m, t)

∂t
+Hm

∂(qi(m, t))

∂m
+Hqi(m, t)−Hi

Nc
∑

j=1

qj(m, t)(13)

= Φi

(

m, t, qi(m, t),

Nc
∑

j=1

qj(m, t)
)

,

qi(Mmin, t) = 0, t ∈ [0, T ],(14)

qi(m, 0) = q0i (m), m ∈ [Mmin,Mmax], i = 1, 2, · · · , Nc.(15)

Take time step ∆t = T/K, where K > 0 is a positive integer, and the time
level tk = k∆t, k = 1, 2, · · · ,K. Let Ωh be the quasi-uniform mesh of the mass
interval Ω = [Mmin,Mmax] with steps {hi}, i = 1, 2, · · · , Nh and let h = max{hi}.
We denote the usual space of square integrated functions on Ω by L2(Ω) with inner
product (·, ·) and norm ‖ · ‖. Let Hs(Ω) be the corresponding standard Sobolev
space with norm ‖ · ‖s, and define the space H1

0 (Ω) = {ψ ∈ H1(Ω) : ψ(Mmin) = 0}.
Define a standard finite element space by Wh ⊂ H1

0 (Ω) with index l > 0 and
associated with Ωh.

In the following, we will construct the time second-order characteristic scheme
for approximating the solutions of the multi-component aerosol dynamic equations
at time tk+1. The characteristic curveX starting any mass pointm at time t = tk+1

is defined by:

dX(τ ; tk+1,m)

dτ
= HX(τ ; tk+1,m),(16)

X(tk+1; tk+1,m) = m,(17)

where τ is the characteristic direction associated with the differential operator

∂qi
∂t

+Hm
∂qi
∂m

.

The global derivative operator along the characteristics is given as

φ(m)
∂

∂τ
=

∂

∂t
+Hm

∂

∂m
,(18)

where

φ(m) =

[

m2(1 − e−H∆t)

∆t2
+ 1

]

1
2

.(19)
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Then we get the weak form of (13): find qi : [0, T ] → H1
0 (Ω), such that

(

φ(m)
∂qi
∂τ

, ψ

)

+ (Hqi, ψ)− (Hi

Nc
∑

j=1

qj , ψ)(20)

= (Φi

(

m, t, qi(m, t),

Nc
∑

j=1

qj(m, t)
)

, ψ), ∀ψ ∈ H1
0 (Ω).

Let m̄ and ¯̄m be the intersection points of the characteristic curve (16) (17) at time
level t = tk and t = tk+1, respectively,

m̄ = me−H∆t, ¯̄m = me−2H∆t.(21)

Then φ(m)∂qi
∂τ

can be approximated by the characteristic difference operator as :

φ(m)
∂qi
∂τ

≈ φ(m)
qi(m, t

k+1)− qi(m̄, t
k)

[(m− m̄)2 + (∆t)2]
1
2

=
qi(m, t

k+1)− qi(m̄, t
k)

∆t
.(22)

Further, by the technique of the time second-order extrapolation along the charac-
teristics, we approximate the nonlinear coagulation terms by

Φi(m, t
k+ 1

2 , qi(m, t
k+ 1

2 ),

Nc
∑

j=1

qj(m, t
k+ 1

2 ))(23)

≈ 3

2
Φi(m̄, t

k, qki (m̄),

Nc
∑

j=1

qkj (m̄)) − 1

2
Φi( ¯̄m, t

k−1qk−1
i ( ¯̄m),

Nc
∑

j=1

qk−1
j ( ¯̄m)).

The time second-order characteristic finite element scheme for (13) is proposed
as: find qi,h ∈ Wh, such that
(

qk+1
i,h (m)− qki,h(m̄)

∆t
, ψh

)

+

(

H
qk+1
i,h (m) + qki,h(m̄)

2
, ψh

)

−



Hi

Nc
∑

j=1

qk+1
j,h (m) + qkj,h(m̄)

2
, ψh





(24)

=





3

2
Φi

(

m̄, qi,h(m̄, t
k),

Nc
∑

j=1

qj,h(m̄, t
k)
)

− 1

2
Φi

(

¯̄m, qi( ¯̄m, t
k−1),

Nc
∑

j=1

qj,h( ¯̄m, t
k−1)

)

, ψh



 ,

ψh ∈ Wh, i = 1, 2, · · · , Nc,

subject to the initial values qi,h(m, 0) = Qhq
0
i , where the operator Qh is the ap-

proximation project operator to Wh.
Since a combination of previous two level values of the coagulation terms is used,

the derived scheme (24) is a linearized scheme. It is clear that the system (24) has
the existence and uniqueness of the solution.

3. Error estimate

For a non-negative integer s, we define a function space Zs by

Zs = {f ∈ Cj((0, t];Hs−j(Ω)), j = 0, 1, · · · , s, |||f |||s < +∞}(25)

where

|||f |||s = max{‖f‖Cj((0,T ];Hs−j(Ω)), 0 ≤ j ≤ s}.(26)



216 K. FU, D. LIANG, W. WANG, AND M. CUI

From the standard interpolating theory [2] , we have the following lemma.

Lemma 3.1. For the finite element space Wh with index l > 0, there exists an
interpolation operator πh : L∞(Ω) →Wh satisfying

‖ψ − πhψ‖r ≤ Chl+1−r‖ψ‖l+1, ∀ψ ∈ H1
0 (Ω) ∩H l+1(Ω), r = 0, 1

with a positive constant C independent of h.

Theorem 3.1. Let {qi,h} be the solution of the numerical scheme (24) over Wh

with index l > 0 and according to the initial values q0i,h = πhq
0
i . Let {qi} be the

solution of (13) which satisfies qi ∈ C0(H l+1) ∩ H1(H l) ∩ Z3, 1 ≤ i ≤ Nc. Then
there exists a positive constant M > 0 independent of h and ∆t such that

max
0≤k≤K

(

Nc
∑

i=1

‖qki − qki,h‖20

)

1
2

≤M
(

(∆t)2 + hl
)

.

Proof. Let ei,h = qi,h − πhqi, eh =
∑Nc

i=1 ei,h, and ηi = qi − πhqi, q =
∑Nc

i=1 qi,

η =
∑Nc

i=1 ηi. Using these notations, from (13) and (24), we have the error equations
as follows:

(

ek+1
i,h (m)− eki,h(m̄)

∆t
, ψ

)

+

(

H
ek+1
i,h (m)

2
, ψ

)

(27)

= −
(

H
eki,h(m̄)

2
, ψ

)

+

(

Hi

ek+1
h (m)

2
, ψ

)

+

(

Hi

ekh(m̄)

2
, ψ

)

−
(

qk+1
i (m)− qki (m̄)

∆t
−
(

∂qi
∂t

+Hm
∂qi
∂m

)

(tk+
1
2 ,m∗), ψ

)

−
(

H
qk+1
i (m) + qki (m̄)

2
−Hq

k+ 1
2

i (m∗), ψ

)

+

(

Hi

qk+1(m) + qk(m̄)

2
−Hiq

k+ 1
2 (m∗), ψ

)

+

(

ηk+1
i (m)− ηki (m̄)

∆t
, ψ

)

+

(

H
ηk+1
i (m) + ηki (m̄)

2
, ψ

)

−
(

Hi

ηk+1(m) + ηk(m̄)

2
, ψ

)

+

(

3

2
Φk

i (m̄, q
k
i,h(m̄), qkh(m̄))− 1

2
Φk−1

i ( ¯̄m, qk−1
i,h ( ¯̄m), qk−1

h ( ¯̄m))

−Φ
k+ 1

2

i (m∗, q
k+ 1

2

i (m∗), qk+
1
2 (m∗)), ψ

)

= I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8 + I9 + I10,

where (tk+
1
2 ,m∗) is the middle point between (tk+1,m) and (tk, m̄) along the char-

acteristic curve, m∗ = m+m̄
2 .

Choose ψ = ek+1
i,h in (27), and the zero extension is used that qki (m̄) = 0 and

πhq
k
i (m̄) = 0 when m̄ ≤Mmin, 1 ≤ i ≤ Nc. Firstly, noting that

‖eki,h(m̄)‖20 =

∫ Mmax

Mmin

(eki,h(me
−H∆t))2dm

≤ (1 + C1∆t)

∫ Mmax

Mmin

(eki,h(y))
2dy ≤ (1 + C1∆t)‖eki,h‖20,
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we have that

I1 ≤ (1 + C1∆t)‖eki,h‖20 + C‖ek+1
i,h ‖20.(28)

Similarly, we have the estimations of I2 and I3

I2 =

(

Hi

ek+1
h (m)

2
, ek+1

i,h (m)

)

=

(

Hi

∑NC

j=1 e
k+1
j,h (m)

2
, ek+1

i,h (m)

)

(29)

≤ C

NC
∑

j=1

‖ek+1
j,h ‖20 + C‖ek+1

i,h ‖20,

I3 ≤ (1 + C1∆t)

Nc
∑

j=1

‖ekj,h‖20 + C‖ek+1
i,h ‖20.(30)

For the term of I4, let ∆l = ((∆t)2 + (m − me−H∆t)2)
1
2 , and by using Taylor’s

expansion along the characteristic line at the point (tk+
1
2 ,m∗), we have that

qk+1
i (m) = q

k+ 1
2

i (m∗) +
∆l

2

(

∂qi
∂τ

)k+ 1
2

(m∗)(31)

+

(

∆l
2

)2

2!

(

∂2qi
∂τ2

)k+ 1
2

(m∗) +

(

∆l
2

)3

3!

(

∂3qi
∂τ3

)

(t′,m′),

qki (m̄) = q
k+ 1

2

i (m∗)− ∆l

2

(

∂qi
∂τ

)k+ 1
2

(m∗)(32)

+

(

∆l
2

)2

2!

(

∂2qi
∂τ2

)k+ 1
2

(m∗)−
(

∆l
2

)3

3!

(

∂3qi
∂τ3

)

(t′′,m′′),

which leads to

qk+1
i (m)− qki (m̄) = ∆l

(

∂qi
∂τ

)k+ 1
2

(m∗) + C((∆t)3).(33)

Thus

I4 ≤ C(∆t)4 + C‖ek+1
i,h ‖20.(34)

By the following Taylor’s expansion of qk+1
i (m) and qki (m̄) at the point (tk+

1
2 ,m∗)

qk+1
i (m) = q

k+ 1
2

i (m∗) + (m−m∗)

(

∂qi
∂m

)k+ 1
2

(m∗)(35)

+
∆t

2

(

∂qi
∂t

)k+ 1
2

(m∗) +

(

1

4
(∆t)2 + (m−m∗)2

)

∂2qi
∂τ2

(t′,m′),

qki (m̄) = q
k+ 1

2

i (m∗) + (m̄−m∗)

(

∂qi
∂m

)k+ 1
2

(m∗)(36)

−∆t

2

(

∂qi
∂t

)k+ 1
2

(m∗) +

(

1

4
(∆t)2 + (m̄−m∗)2

)

∂2qi
∂τ2

(t′,m′),

we obtain

I5 ≤ C(∆t)4 + ‖ek+1
i,h ‖20.(37)
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Similarly, we can get the estimate of the I6,

I6 =

(

Hi

qk+1(m) + qk(m̄)

2
−Hiq

k+ 1
2 (m∗), ek+1

i,h

)

(38)

=



Hi

Nc
∑

j=1

(

qk+1
j (m) + qkj (m̄)

2
− q

k+ 1
2

j (m∗)

)

, ek+1
i,h





≤ C(∆t)4 + C‖ek+1
i,h ‖20.

For the term of I7, it holds that

I7 =

(

ηk+1
i (m)− ηki (m̄)

∆t
, ek+1

i,h

)

(39)

=

(

(ηk+1
i (m)− ηki (m)) + (ηki (m)− ηki (m̄))

∆t
, ek+1

i,h

)

=

(

ηk+1
i (m)− ηki (m)

∆t
, ek+1

i,h

)

+

(

ηki (m)− ηki (m̄)

∆t
, ek+1

i,h

)

= I7,1 + I7,2.

We have that

I7,1 =

(

ηk+1
i (m)− ηki (m)

∆t
, ek+1

i,h

)

=
1

∆t

∫

Ω

[

∫ tk+1

tk

∂ηi
∂t

dt

]

ek+1
i,h dm

≤ C‖ek+1
i,h ‖20 + C

1

∆t
‖ ∂η
∂t

‖2L2(tk,tk+1;L2),

and

I7,2 =

(

ηki (m)− ηki (m̄)

∆t
, ek+1

i,h

)

≤ Ch2l + C‖ek+1
i,h ‖20,

and thus

I7 ≤ Ch2l + C‖ek+1
i,h ‖20 + C 1

∆t
‖ ∂η

∂t
‖2
L2(tk,tk+1;L2) .(40)

Similarly as (28), we have the estimations of I8 and I9

I8 =

(

H
ηk+1
i (m) + ηki (m̄)

2
, ek+1

i,h (m)

)

≤ C(h2l+2 + ‖ek+1
i,h ‖20).(41)

I9 = −
(

Hi

∑Nc

j=1(η
k+1
j (m) + ηkj (m̄))

2
, ek+1

i,h

)

(42)

≤ C(h2l+2 + ‖ek+1
i,h ‖20).
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For the coagulation term of I10, we have that

I10 =

(

3

2
Φk

i (m̄, q
k
i,h(m̄), qkh(m̄))− 1

2
Φk−1

i ( ¯̄m, qk−1
i,h ( ¯̄m), qk−1

h ( ¯̄m))(43)

−Φ
k+ 1

2

i (m∗, q
k+ 1

2

i (m∗), qk+
1
2 (m∗)), ek+1

i,h

)

=

(

3

2
Φk

i (m̄, q
k
i,h(m̄), qkh(m̄))− 3

2
Φk

i (m̄, q
k
i (m̄), qk(m̄)), ek+1

i,h

)

+

(

1

2
Φk−1

i ( ¯̄m, qk−1
i ( ¯̄m), qk−1( ¯̄m))

−1

2
Φk−1

i (m̄, qk−1
i,h ( ¯̄m), qk−1

h ( ¯̄m)), ek+1
i,h

)

+

(

3

2
Φk

i (m̄, q
k
i (m̄), qk(m̄))− 1

2
Φk−1

i ( ¯̄m, qk−1
i ( ¯̄m), qk−1( ¯̄m))

−Φ
k+ 1

2

i (m∗, q
k+ 1

2

i (m∗), qk+
1
2 (m∗)), ek+1

i,h

)

= I10,1 + I10,2 + I10,3.

We make an induction hypothesis that there exists a positive constant C∗ > 0 such
that

sup
0≤k≤K

‖qki,h‖0 ≤ C∗, 1 ≤ i ≤ Nc,(44)

which will be proved later.
We start from considering the first part of Φi in I10,1

(

∫ m̄−Mmin

Mmin

β(m′, m̄−m′)qki,h(m
′)
qkh(m̄−m′)

m̄−m′
dm′(45)

−
∫ m̄−Mmin

Mmin

β(m′, m̄−m′)qki (m
′)
qk(m̄−m′)

m̄−m′
dm′, ek+1

i,h

)

=

∫

Ω

[

∫ m̄−Mmin

Mmin

β(m′, m̄−m′)(qki,h(m
′)− qki (m̄))

qkh(m̄−m′)

m̄−m′
dm′

]

ek+1
i,h dm

+

∫

Ω

[

∫ m̄−Mmin

Mmin

β(m′, m̄−m′)qki (m
′)

(qkh(m̄−m′)− qk(m̄−m′))

m̄−m′
dm′

]

ek+1
i,h dm

= L1,1 + L1,2.

Noting that the positive coagulation term equals zero whenever the upper integra-
tion limit is smaller than the smaller limit in [13]. Let Ω′ = {m ∈ Ω; 2Mmin ≤ m̄ ≤
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Mmax}, and using the Holder inequality, we obtain that

L1,1 ≤ Cβmax

∫

Ω′

(

∫ m̄−Mmin

Mmin

(qki,h(m
′)− qki (m

′))2dm′

)
1
2

(46)

(

∫ m̄−Mmin

Mmin

(qkh(m̄−m′)2dm′

)
1
2

ek+1
i,h dm,

L1,2 ≤ Cβmax

∫

Ω′

(

∫ m̄−Mmin

Mmin

(qki (m
′))2dm′

)
1
2

(47)







∫ m̄−Mmin

Mmin





Nc
∑

j=1

(qkj,h(m̄−m′)− qkj (m̄−m′))





2

dm′







1
2

ek+1
i,h dm,

where Mmin ≤ m̄−m ≤Mmax−Mmin. Letting z = m̄−m′, noting that qi(z) = 0
and qi,h(z) = 0, 1 ≤ i ≤ Nc, when z ≤Mmin, then it holds

∫ m̄−Mmin

Mmin

(qki,h(m̄−m)− qki (m̄−m))2dm(48)

≤
∫

Ω

(qki,h(z)− qki (z))
2dz,

and by the induction hypothesis (44), we have that

L1,1 ≤ C(‖eki,h(m̄)‖0 + ‖ηki (m̄)‖0)‖ek+1
i,h ‖0,(49)

L1,2 ≤ C





Nc
∑

j=1

(‖ekj,h(m̄)‖0 + ‖ηkj (m̄)‖0)



 ‖ek+1
i,h ‖0.

Further, estimating the second part of Φi in I10,1, we get that

(

∫ Mmax

Mmin

qki,h(m̄)β(m̄,m′)
qkh(m

′)

m′
dm′(50)

−
∫ Mmax

Mmin

qki (m̄)β(m̄,m′)
qk(m′)

m′
dm′, ek+1

i,h

)

=

∫

Ω

(

∫ Mmax

Mmin

qki,h(m̄)β(m̄,m′)

∑Nc

j=1(q
k
j,h(m

′)− qkj (m
′))

m′
dm′

+

∫ Mmax

Mmin

(qki,h(m̄)− qki (m̄))β(m̄,m′)

∑Nc

j=1 q
k
j (m

′)

m′
dm′

)

ek+1
i,h dm

≤ C





Nc
∑

j=1

(‖ekj,h‖0 + ‖ηkj,h‖0) + ‖eki,h(m̄)‖0 + ‖ηki (m̄)‖0



 ‖ek+1
i,h ‖0.
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Thus, we have that

I10,1 ≤ C





Nc
∑

j=1

(‖ekj,h‖0 + ‖ηj‖0) + ‖eki,h(m̄)‖0 + ‖ηk(m̄)‖0



 ‖ek+1
i,h ‖0(51)

≤ C(1 + C1∆t)





Nc
∑

j=1

(‖ekj,h‖0 + ‖ηkj ‖)



 ‖ek+1
i,h ‖0.

Similarly, we have the estimate to I10,2

I10,2 ≤ C(1 + C1∆t)





Nc
∑

j=1

(‖ek−1
j,h ‖0 + ‖ηk−1

j ‖)



 ‖ek+1
i,h ‖0.(52)

For the term of I10,3, noting that

∥

∥

∥

∥

∂2

∂τ2
Φi(m, qi(m, t), q(m, t))

∥

∥

∥

∥

L2((tk−1,tk+1],L2)

≤ C max
t∈(tk−1,tk+1]

Nc
∑

j=1

|||qj(m, t)|||2,

and by Taylor’s expansion to Φi(m, qi(m, t), q(m, t)) along the characteristic curve

at the point (m∗, tk+
1
2 ), we can get

I10,3 =

(

3

2
Φk

i (m̄, q
k
i (m̄), qk(m̄))− 1

2
Φk−1

i ( ¯̄m, qk−1
i ( ¯̄m), qk−1( ¯̄m))(53)

−Φ
k+ 1

2

i (m∗, q
k+ 1

2

i (m∗), qk+
1
2 (m∗)), ek+1

i,h

)

≤ C

(

(∆t)4
∥

∥

∥

∥

∂2

∂τ2
Φi(m, qi(m, t), q(m, t))

∥

∥

∥

∥

L2((tk−1,tk+1],L2)

+ ‖ek+1
i,h ‖20

)

≤ C((∆t)4 + ‖ek+1
i,h ‖20).

Therefor, the estimation of I10 is obtained as
(54)

I10 ≤ C(1+∆t)





Nc
∑

j=1

‖ekj,h‖2 +
Nc
∑

j=1

‖ek−1
j,h ‖20 + h2l+2



+C
(

(∆t)4 + ‖ek+1
i,h ‖20

)

.

Noting that

‖eki,h(m̄)‖20 ≤ (1 + C1∆t)‖eki,h‖20.(55)

we have the estimate for the left-hand side term in (27)

(

ek+1
i,h (m)− eki,h(m̄)

∆t
, ek+1

i,h

)

(56)

≥ 1

2∆t
(‖ek+1

i,h (m)‖20 − ‖eki,h(m̄)‖20 + ‖ek+1
i,h (m)− eki,h(m̄)‖20)

≥ 1

2∆t
(‖ek+1

i,h ‖20 − ‖eki,h‖20)−
C0

2
‖eki,h‖20.
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From the estimations of I1 -I10, and (56), we can get

1

2∆t
(‖ek+1

i,h ‖20 − ‖eki,h‖20) +
H

2
‖ek+1

i,h ‖20(57)

≤ C

Nc
∑

j=1

‖ek+1
j,h ‖20 + C(1 + C1∆t)

Nc
∑

j=1

‖ekj,h‖20

+C(1 + C1∆t)

Nc
∑

j=1

‖ek−1
j,h ‖20 + C(∆t)4 + C(1 + C1∆t)h

2l+2 + Ch2l,

for 1 ≤ i ≤ Nc. Multiplying the above equations by 2∆t and summing them from
i = 1 to Nc, we can get that

(

Nc
∑

i=1

‖ek+1
i,h ‖20 −

Nc
∑

i=1

‖eki,h‖20

)

+∆tH

Nc
∑

i=1

‖ek+1
i,h ‖20(58)

≤ 2∆tC

{

Nc
∑

i=1

‖ek+1
i,h ‖20 + (1 + C1∆t)

Nc
∑

i=1

‖eki,h‖20

+(1 + C1∆t)

Nc
∑

i=1

‖ek−1
i,h ‖20 + (∆t)4 + (1 + C1∆t)h

2l+2 + h2l

}

.

Thus, applying the Gronwall’s lemma, we finally get that
(

Nc
∑

i=1

‖eni,h‖20

)

1
2

≤ C{(∆t)2 + hl}, ∀n = 1, 2, · · · ,K.(59)

Now, we prove the induction hypothesis (44). First, we have that

‖q0i,h‖0 = ‖πhq0i ‖0 ≤ ‖q0i − πhq
0
i ‖0 + ‖q0i ‖0(60)

≤ Chl+1‖q0i ‖l+1 + ‖q0i ‖ ≤ C∗.

If the induction hypothesis (44) is false, there exists an integer k∗ such that

‖qki,h‖0 ≤ C∗, for 0 ≤ k ≤ k∗ − 1; ‖qk∗

i,h‖ > C∗.(61)

From the result of (59), we can know that

‖πhqk
∗

i − qk
∗

i,h‖0 = ‖ek∗

i,h‖0 ≤ C{(∆t)2 + hl},(62)

when h and ∆t are small enough, we can conclude that

‖qk∗

i,h‖0 ≤ ‖qk∗

i − πhq
k∗

i ‖0 + ‖πhqk
∗

i − qk
∗

i,h‖0 + ‖qk∗

i ‖0(63)

≤ Chl+1 + C{(∆t)2 + h2}+ ‖qk∗

i ‖0 ≤ C∗,

which is contradict to (61). This proves the induction hypothesis (44). The proof
of the theorem completes.

4. Numerical experiments

In this section, we present numerical experiments of solving the multi-component
aerosol dynamic equation by our time second-order characteristic FEM scheme.
We first consider a condensation-evaporation problem of two-component aerosols,
which examines the accuracy of our method. A more general condensation problem
of three-component aerosols is then simulated, which shows the dynamic behaviour
of the multi-component aerosols. Finally, the three-component aerosols of aerosol
water, black carbon and sulfate are computed with a tri-modal log-normal initial
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distribution and the different tri-modal log-normal initial distributions of three-
component aerosols. The results show our method second order accuracy in time,
which improves first order results of the classical characteristic FEM scheme.

Let qi,h(T ) and q
A
i (T ) be the numerical solution and the analytical solution of

i’the component at time T in the numerical tests, respectively. The errors are
measured in the relative discrete L2 norm and the relative discrete L∞ norm:

E∞ =
max1≤i≤Nc

‖qi,h(T )− qAi (T )‖∞
max1≤i≤Nc

‖qAi (T )‖∞
(64)

E2 =
(
∑Nc

i=1 ‖qi,h(T )− qAi (T )‖20)
1
2

(
∑Nc

i=1 ‖qAi (T )‖20)
1
2

.(65)

Example 1. Consider the multi-component aerosol dynamic equation (13) with
the following initial distribution of q0i

q0i (m) = c
m

m̂c

exp

(

−γ
(

m

m̂c

)2
)

, i = 1, 2,(66)

where γ = 0.1, m̂c = 3.2 × 10−13 g is a characteristic value of m, and c = 10.
Two different cases are performed, one with condensation only, and the other with
evaporation/condensation, and both with Hi(m, t) = αi constant.

The numerical results of the condensation only problem are shown in Fig. 1.
Particle mass was converted to particle diameter for the purpose of plotting the
distribution, the particle density ρ = 1 g cm−3. The normalized condensation
rates for the two different species are α1 = 7 × 10−2 hour −1 and α2 = 5 × 10−2

hour −1, respectively. We can see from the figures that under the impact of the
condensation process, there are increases in the mass of both species in the aerosol
particles, which then cause the distributions of two species and total mass shift
towards the bigger particle domain.
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Figure 1. Numerical solutions of the mass distribution of species
1 and 2 at time T = 10 hours (left) and numerical solutions of the
total mass distribution at time T = 10 h and T = 20 h (right)
for the only condensation problem. α1 = 7 × 10−2 hour −1, α2 =
5× 10−2 hour−1, Mmin = 5.236× 10−16g, Mmax = 5.236× 10−10g.

The errors and ratios in time step of the results at time T = 5 hours are shown
in Table 1. As the problem has no exact solution available, we use the reference
analytical solution obtained by fine mesh in calculation of errors E∞ and E2 norm.
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From the table, it is clearly shown that our method has second-order accuracy in
time.

Table 1. Errors and ratios in time step of our scheme for the
two-component aerosol condensation problem.

∆t (hour) 1
15

1
16

1
17

1
18

E∞ 6.3910e-6 5.6082e-6 4.9137e-6 4.2933e-6
Ratio - 2.0246 2.1809 2.3613
E2 4.1161e-6 3.6141e-6 3.1682e-6 2.7696e-6

Ratio - 2.0153 2.1718 2.3526
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Figure 2. Numerical solutions of the mass distribution of species
1 and 2 at time T = 10 hour (left) and numerical solutions of
the total mass distribution at time T = 10 hour and T = 20
hour (right) for the condensation and evaporation problem. α1 =
7×10−2 hour −1, α2 = −2×10−2 hour −1,Mmin = 5.236×10−16g,
Mmax = 5.236× 10−10g.

The second case considers a combination problem of the condensation of species
1 and the evaporation of species 2. The normalized condensation rate of species 1
is α1 = 7× 10−2 hour −1 while the evaporation rate of species 2 is α2 = −2× 10−2

hour −1. Numerical results are showed in Fig. 2 at time T = 10 hour. We can
see that due to the evaporation of the species 2, though the position of the peak of
the total mass still moves towards to a large size value, but much slower than the
previous case in Fig. 1.

Example 2. Consider the multi-component aerosol system (13) including three
components in the condensation process. The initial distribution of each species
is as same as (66) and with same parameters except for m̂c = 2.8 × 10−13 in this
example. The normalized condensation rates of the three species are α1 = 9× 10−2

hour −1, α2 = 7× 10−9 hour −1 and α3 = 5× 10−9 hour −1, respectively.
Fig. 3 shows the predicted mass distributions of species 1, 2 and 3 at time T = 10

hours and the numerical solutions of the total mass distribution at time T = 10
hours and T = 20 hours. As shown in the figure, with one more species included
in the aerosol particles, the size distribution of the total mass shifts much faster
undergoing the condensation process. Meanwhile, bigger condensation rate leads
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Figure 3. Numerical solutions of the mass distributions of species
1, 2 and 3 at time T = 10 (right) and numerical solutions of the
total mass distribution at time T = 10 and T = 20 (left), for the
condensation problem. α1 = 9×10−9 hour −1, α2 = 7×10−9 hour
−1, α3 = 5 × 10−9 hour −1, Mmin = 5.236 × 10−16g, Mmax =
5.236× 10−10g.

to larger mass proportion as time increases.

Example 3. Now, consider the multi-component aerosol general dynamic problem
with a tri-modal log-normal initial distribution for each species, where each modal
represents the nucleation mode, accumulation mode and coarse mode, respectively.
The initial distribution is given as

q0i (m) =

3
∑

j=1

Mc,j√
2π lnσm,j

exp

(

− ln2(m/mg,j)

ln2 σm,j

)

, i = 1, 2, 3,(67)

where σm,j is the geometric mass standard deviation, and mg,j is the geometric
mean mass. The values of the parameters are listed in Table 2. The concerned
domain is Ω = [5.236× 10−22, 5.236× 10−7].

Table 2. Tri-modal log-normal parameters.

Nucleation mode Accumulation mode Coarse mode
Mc,j (g) 7.22× 101 1.2× 102 8.22× 101

mg,j (g) 1.15× 10−18 3.7× 10−16 4.8× 10−13

σm,j 1.7 2.03 2.15

Take the condensation rates of the three species α1 = 9 × 10−2 hour −1, α2 =
7×10−9 hour −1 and α3 = 3×10−9 hour −1, respectively. Table 3 presents the com-
parison of the errors and ratios in time step of the predicted results by our method
and the standard characteristics FEM scheme (S-C-FEM). The results in the ta-
ble clearly show that for the complex multi-component aerosol dynamics problem
with different multi-modal distributions, our method can obtain excellent solutions.
Our method is of second-order accuracy in time step, while the S-C-FEM is only
of first-order accuracy in time step. The mass distributions of three species and
the numerical solutions of the total mass distribution are presented in Fig. 4. The
geometric mean mass for all the three modes of the distributions of three species
increase in the condensation process.
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Table 3. Comparison of errors and ratios in time step at T = 5
hour for the three-component aerosol condensation problem with
Tri-modal initial distribution by our method and the classical char-
acteristic FEM scheme (S-C-FEM).

∆t (hour) T
4

T
8

T
16

T
32

T
48

Our method E∞ 7.2623e-4 1.8012e-4 4.5590e-5 1.1647e-5 5.1129e-6
Ratio - 2.0115 1.9821 1.9688 2.0304
E2 6.6488e-4 1.6511e-4 4.0835e-5 1.0017e-5 4.3450e-6

Ratio - 2.0096 2.0155 2.0273 2.0601

S-C-FEM E∞ 1.6111e-2 8.2048e-3 3.9650e-3 1.7671e-3 1.0225e-3
Ratio - 0.9735 1.0491 1.1659 1.3493
E2 1.4741e-2 7.5070e-3 3.6289e-3 1.6178e-3 9.3620e-4

Ratio - 0.9736 1.0487 1.1655 1.3490
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Figure 4. Numerical solutions of the mass distributions of species
1, 2 and 3 at time T = 10 (left) and numerical solutions of the
total mass distribution at time T = 5 and T = 20 (right), for the
condensation problem. α1 = 9×10−9 hour −1, α2 = 7×10−9 hour
−1, α3 = 3 × 10−9 hour −1, Mmin = 5.236 × 10−22g, Mmax =
5.236× 10−7g.

Example 4. Finally, we simulate the multi-component aerosol general dynamic
problem of aerosol water, black carbon and sulfate components with different tri-
modal log-normal initial distributions. The three initial distributions are shown in
Fig. 5 (left).

We solve the general problem on the Ω = [5.236 × 10−22, 5.236 × 10−7]g and
time interval [0, T ] = [0, 5] hours. The predicted mass concentration distributions
of the of aerosol water, black carbon and sulfate components are shown in Fig. 5.
The initial concentration distribution and the numerical result of the aerosol total
mass are given in Fig. 6. We can see that the peaks of the distributions of aerosol
water, black carbon and sulfate components change a lot during the simulation.
For example, at time T = 0, the mass distribution of aerosol water has the highest
peak value of 31.74 in the coarse mode, while at time T = 5, the highest peak value
is 176.12 located in the accumulation mode. Due to the highest condensation rate
among the three species, the concentration of aerosol water is the smallest at time
T = 0 hour, but becomes the largest at time T = 5 hours. For the distribution
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Figure 5. Initial distributions of the mass concentrations of
aerosol water, black carbon and sulfate components (left) and
the numerical solutions at time T = 5 hours (right) for the
multi-component condensation problem. The condensation rates
of the aerosol water (aw), black carbon (bc) and sulfate (sul) are
αaw = 1.6×10−8 hour −1, αbc = 7×10−9 hour −1, αsul = 3×10−9

hour −1, Mmin = 5.236× 10−22g, Mmax = 5.236× 10−7g.
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Figure 6. Initial distribution and numerical solution of the total
mass concentration at time T = 5 hour for the problem.

of the total mass, we can see that the peak values keep almost unchange. Table 4
gives Comparison of errors and ratios in time step by our method and the S-C-FEM
scheme. It is obvious that our method has second-order accuracy in time step but
the S-C-FEM only has first-order accuracy in time step.

5. Conclusion

In this work, an efficient time second-order characteristic finite element method
was developed for solving the nonlinear multi-component aerosol dynamic equations
on time and particle size. We proposed to use the highly accurate characteristic
method to treat the advection-condensation/evaporation process and apply the
high-order extrapolation along the characteristics to approximate the nonlinear
coagulation terms. Theoretical analysis was given that the developed scheme was
proved to be of second-order accuracy in time step. Numerical experiments on
different multi-component aerosol dynamic problems were taken.
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Table 4. Comparison of errors and ratios in time at T = 5 hours
for the three-component aerosol condensation problem of aerosol
water, black carbon and sulfate components with different Tri-
modal initial distributions by our method and the S-C-FEM
scheme.

∆t (hour) T
4

T
8

T
16

T
32

T
48

Our method E∞ 3.6334e-3 9.0022e-4 2.2148e-4 5.1539e-5 2.0771e-5
Ratio - 2.0130 2.0231 2.1035 2.2413
E2 3.4203e-3 8.4677e-4 2.0940e-4 5.0473e-5 2.1132e-5

Ratio - 2.0141 2.0157 2.0527 2.1473

S-C-FEM E∞ 5.8231e-2 2.9768e-2 1.4421e-2 6.4375e-3 3.7271e-3
Ratio - 0.9680 1.0456 1.1636 1.3478
E2 5.4755e-2 2.7991e-2 1.3559e-2 6.0513e-3 3.5031e-3

Ratio - 0.9680 1.0457 1.1639 1.3481
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