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ASYMPTOTICALLY EXACT LOCAL DISCONTINUOUS

GALERKIN ERROR ESTIMATES FOR THE LINEARIZED

KORTEWEG-DE VRIES EQUATION IN ONE SPACE

DIMENSION

MAHBOUB BACCOUCH

Abstract. We present and analyze a posteriori error estimates for the local discontinuous
Galerkin (LDG) method for the linearized Korteweg-de Vries (KdV) equation in one space di-
mension. These estimates are computationally simple and are obtained by solving a local steady
problem with no boundary condition on each element. We extend the work of Hufford and Xing
[J. Comput. Appl. Math., 255 (2014), pp. 441-455] to prove new superconvergence results towards
particular projections of the exact solutions for the two auxiliary variables in the LDG method
that approximate the first and second derivatives of the solution. The order of convergence is
proved to be k + 3/2, when polynomials of total degree not exceeding k are used. These results
allow us to prove that the significant parts of the spatial discretization errors for the LDG solution
and its spatial derivatives (up to second order) are proportional to (k + 1)-degree Radau poly-
nomials. We use these results to construct asymptotically exact a posteriori error estimates and
prove that, for smooth solutions, these a posteriori LDG error estimates for the solution and its
spatial derivatives, at a fixed time t, converge to the true errors at O(hk+3/2) rate in the L2-norm.
Finally, we prove that the global effectivity indices, for the solution and its spatial derivatives,
converge to unity at O(h1/2) rate. Numerical results are presented to validate the theory.

Key words. Local discontinuous Galerkin method; KdV; superconvergence; Radau points; a
posteriori error estimates.

1. Introduction

The famous nonlinear Korteweg-de Vries (KdV) equation

ut + αux + γuux + βuxxx = 0,

with constants α, β, and γ, is derived by Korteweg and de Vries in 1895. It
describes the propagation of waves in a variety of nonlinear dispersive media. The
KdV equation is a generic equation for the study of weakly nonlinear long waves
and arises in many physical situations, such as surface water waves and plasma
waves. It has been shown that the KdV equation describes a large class of solitons
observed in various situations: acoustic waves on a crystal lattice, plasma waves,
hydrodynamics internal or surface waves, elastic surface waves, and waves in optical
fibers (see e.g., [27]).

In this paper we develop and analyze an implicit residual-based a posteriori error
estimates of the spatial errors for the semi-discrete local discontinuous Galerkin
(LDG) method applied to the linearized KdV equation

(1.1a) ut + αux + βuxxx = 0, x ∈ [a, b], t ∈ [0, T ],

subject to the initial and periodic boundary conditions

(1.1b) u(x, 0) = u0(x), x ∈ [a, b],

(1.1c) u(a, t) = u(b, t), ux(a, t) = ux(b, t), uxx(a, t) = uxx(b, t), t ∈ [0, T ].
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We would like to emphasize that the assumption of periodic boundary conditions
is for simplicity only and is not essential. In our analysis we select u0(x) such that
the exact solution u(x, t) is a smooth function on [a, b]× [0, T ].

The LDG method we discuss in this paper is an extension of the discontinuous
Galerkin (DG) method aimed at solving partial differential equations containing
higher than first-order spatial derivatives. The DG method is a class of finite ele-
ment methods, using discontinuous, piecewise polynomials as the numerical solution
and the test functions. It was first developed by Reed and Hill [31] for solving hy-
perbolic conservation laws containing only first-order spatial derivatives in 1973.
Consult [25] and the references cited therein for a detailed discussion of the his-
tory of DG method and a list of important citations on the DG method and its
applications. The LDG method for solving convection-diffusion problems was first
introduced by Cockburn and Shu in [26]. They further studied the stability and
error estimates for the LDG method. Castillo et al. [19] presented the first a priori
error analysis for the LDG method for a model elliptic problem. They considered
arbitrary meshes with hanging nodes and elements of various shapes and studied
general numerical fluxes. They showed that, for smooth solutions, the L2 errors in
∇u and in u are of order k and k + 1/2, respectively, when polynomials of total
degree not exceeding k are used. Cockburn et al. [24] presented a superconver-
gence result for the LDG method for a model elliptic problem on Cartesian grids.
They identified a special numerical flux for which the L2-norms of the gradient and
the potential are of orders k + 1/2 and k + 1, respectively, when tensor product
polynomials of degree at most k are used.

Yan and Shu [35] developed the first LDG method for solving KdV type equations
in one and two space dimensions. They proved L2 stability and a cell entropy
inequality for the square entropy for a class of nonlinear KdV equations in both
one and multiple space dimensions. They also proved an optimal error estimate for
the linear cases in the one-dimensional case. In [33], Xu and Shu proved L2 error
estimates for the semi-discrete LDG methods for the fully nonlinear KdV equation
with smooth solution. The order of convergence is proved to be k + 1/2, when
k-degree piecewise polynomials with k ≥ 1 are used. Later, Xu and Shu [34] proved
optimal L2 error estimates of the semi-discrete LDG methods for solving linear
higher-order wave equations including the linearized KdV equation. More recently,
Hufford and Xing [30] studied the superconvergence property of the LDG method
for solving the linearized KdV equation. They selected a special projection of the
initial condition and proved that the LDG solution is O(hk+3/2) super close to a
particular projection of the exact solution, when the upwind flux is used for the
convection term and the alternating flux is used for the dispersive term.

A posteriori error estimates lie in the heart of every adaptive finite element algo-
rithm for differential equations. They are used to assess the quality of numerical
solutions and guide the adaptive enrichment process where elements having high
errors are enriched by h-refinement and/or p-refinement while elements with small
errors are h- and/or p-coarsened. Furthermore, error estimates are used to stop the
adaptive refinement process. For an introduction to the subject of a posteriori error
estimation see the monograph of Ainsworth and Oden [6]. Several a posteriori DG
error estimates are known for hyperbolic [22, 23, 28] and diffusive [29, 32] problems.
Adjerid and Baccouch [3, 12, 10] investigated the global convergence of the implicit
residual-based a posteriori error estimates of Adjerid et al. [5]. They proved that
these a posteriori error estimates converge to the true spatial error in the L2-norm
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under mesh refinement. Later, Adjerid and Baccouch [1, 2, 17] investigated DG
methods on structured and unstructured triangular meshes with several finite el-
ement spaces to discover new superconvergence properties and compute accurate
error estimates. In [11, 15], the author analyzed the superconvergence properties
of the LDG formulation applied to transient convection-diffusion problems in one
space dimension. We proved that the leading error term on each element for the so-
lution is proportional to a (k+1)-degree right Radau polynomial while the leading
error term for the solution’s derivative is proportional to a (k+1)-degree left Radau
polynomial. We further used these results to construct a posteriori error estimates
and proved that these LDG error estimates are asymptotically exact under mesh re-
finement. In [8, 16], we presented new superconvergence results for the LDG method
applied to the second-order scalar wave equation in one space dimension. Later,
in [9], we investigated the global convergence of the a posteriori error estimates
developed in [8]. We used the superconvergence results [16] and proved that, for
smooth solutions, these a posteriori error estimates at a fixed time converge to the
true spatial errors in the L2-norm under mesh refinement. In [13, 14], we developed
and analyzed a new superconvergent LDG method for approximating solutions to
the fourth-order Euler-Bernoulli beam equation in one space dimension. We further
constructed new a posteriori error estimates and proved that these error estimates
converge to the true spatial errors in the L2-norm under mesh refinement. Recently,
Adjerid and Baccouch [18, 4] showed that LDG solutions are superconvergent at
Radau points for two-dimensional convection-diffusion problems. They used these
results to construct asymptotically correct a posteriori error estimates. More re-
cently, the author [7] analyzed a superconvergent LDG method for the second-order
wave equation on Cartesian grids. He further constructed efficient and accurate a
posteriori error estimates.

In this paper, we apply the superconvergence results of Hufford and Xing [30] to
prove that the (k+3/2)-th order superconvergence rate holds not only for the solu-
tion itself but also for the auxiliary variables in the LDG method approximating the
various order derivatives of the solution. Our proofs are valid for arbitrary regular
meshes and for P k polynomials with arbitrary k ≥ 1. Our new superconvergence
results are needed to prove that the true errors can be divided into significant
and less significant parts. The significant parts of the discretization errors for the
LDG solution and its spatial derivatives are proportional to (k + 1)-degree Radau
polynomials. Superconvergence results are used to construct asymptotically exact
a posteriori error estimates by solving a local steady problem on each element.
We further prove that these error estimates converge to the true spatial errors at
O(hk+3/2) rate. Finally, we prove that the global effectivity indices in the L2-norm
converge to unity at O(h1/2) rate. Our computational results indicate that the
observed numerical convergence rates are higher than the theoretical rates. In our
analysis time integration is assumed to be exact and thus we are only estimating
the spatial errors of the semi-discrete LDG method.

This paper is organized as follows: In section 2 we present the LDG scheme for
solving the linearized KdV equation and we introduce some notation and definitions.
We also present few preliminary results which will be used in our error analysis.
In section 3, we prove our main superconvergence results. In section 4, we develop
our a posteriori error estimation procedure and prove that these error estimates
converge to the true errors under mesh refinement in L2-norm. In section 5, we
present a numerical example to validate our theoretical results. We conclude and
discuss our results in section 6.
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2. The LDG method and preliminary results

2.1. The semi-discrete LDG scheme. In order to construct the LDG method,
we first introduce two auxiliary variables q = ux and p = qx and rewrite our model
problem (1.1a) as a first-order system in space

ut + αux + βpx = 0, p− qx = 0, q − ux = 0.(2.1)

We divide the computational domain I = [a, b] intoN subintervals Ii = [xi−1, xi], i =
1, . . . , N , where a = x0 < x1 < · · · < xN = b. We denote the length of Ii by
hi = xi − xi−1. We also denote h = max

1≤i≤N
hi and hmin = min

1≤i≤N
hi as the length of

the largest and smallest subinterval, respectively. Here, we consider regular meshes,
that is h ≤ Khmin, where K ≥ 1 is a constant (independent of h) during mesh
refinement.
Throughout this paper, v

∣

∣

i
denotes the value of the function v = v(x, t) at x = xi.

We also define v−
∣

∣

i
and v+

∣

∣

i
to be the left limit and the right limit of the function

v at the discontinuity point xi, i.e.,

v−
∣

∣

i
= v−(xi, t) = lim

s→0−
v(xi + s, t), v+

∣

∣

i
= v+(xi, t) = lim

s→0+
v(xi + s, t).

Let us multiply the three equations in (2.1) by test functions v, w, and z, respec-
tively, integrate over an arbitrary subinterval Ii, and use integration by parts to
write

∫

Ii

utvdx−

∫

Ii

(αu + βp)vxdx+ αuv
∣

∣

i
− αuv

∣

∣

i−1
+ βpv

∣

∣

i
− βpv

∣

∣

i−1
= 0,(2.2a)

∫

Ii

pwdx+

∫

Ii

qwxdx− qw
∣

∣

i
+ qw

∣

∣

i−1
= 0,(2.2b)

∫

Ii

qzdx+

∫

Ii

uzxdx− uz
∣

∣

i
+ uz

∣

∣

i−1
= 0.(2.2c)

We define the piecewise-polynomial space V k
h as the space of polynomials of degree

at most k in Ii, i.e.,

V k
h = {v : v|Ii ∈ P k(Ii), i = 1, . . . , N},

where P k(Ii) is the space of polynomials of degree at most k on Ii. Next, we
approximate the exact solutions u(., t), q(., t), and p(., t) by piecewise polynomials
uh(., t) ∈ V k

h , qh(., t) ∈ V k
h , and ph(., t) ∈ V k

h , respectively, whose restriction to Ii
are in P k(Ii). Here uh, qh, and ph are not necessarily continuous at the endpoints
of Ii since polynomials in the space V k

h are allowed to have discontinuities across
element boundaries.
The semi-discrete LDG method consists of finding uh, qh, ph such that ∀ i =
1, . . . , N and ∀ v, w, z ∈ V k

h ,
∫

Ii

(uh)tvdx−

∫

Ii

(αuh + βph)vxdx+ αũhv
−
∣

∣

i
− αũhv

+
∣

∣

i−1

+βp̂hv
−
∣

∣

i
− βp̂hv

+
∣

∣

i−1
= 0,(2.3a)

∫

Ii

phwdx +

∫

Ii

qhwxdx− q̂hw
−
∣

∣

i
+ q̂hw

+
∣

∣

i−1
= 0,(2.3b)

∫

Ii

qhzdx+

∫

Ii

uhzxdx− ûhz
−
∣

∣

i
+ ûhz

+
∣

∣

i−1
= 0,(2.3c)

where the tilde and hatted terms, ũh, ûh, q̂h, and p̂h are the so-called numerical
fluxes, which are yet to be determined. These numerical fluxes are nothing but
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discrete approximations to the traces of u, q and p on the boundary of the ele-
ments. They must be designed to guarantee stability and local solvability of all the
auxiliary variables introduced to approximate the derivatives of the solution. The
local solvability of all the auxiliary variables is why the method is called a ”local”
discontinuous Galerkin method in [26].
The initial condition uh(x, 0) ∈ V k

h is obtained using a special projection of the
exact initial condition. This particular projection will be defined later.
In order to complete the definition of the semi-discrete LDG method we need to
select the numerical fluxes ũh, ûh, q̂h, and p̂h on the boundaries of Ii. We begin
by defining the numerical flux ũh associated with the convection term. We pick the
classical upwind flux which depends on the sign of α. If α > 0 then ũh should be
picked as u−h and if α < 0 then ũh should be picked as u+h . Similarly, q̂h should

be picked as q+h if β > 0 and q−h if β < 0. For the numerical fluxes ûh, p̂h, it
was shown in [30, 34, 35] that it is possible to obtain optimal error estimates and
superconvergence results if these numerical fluxes are chosen as alternating fluxes
i.e., either (ûh = u−h , p̂h = p+h ) or (ûh = u+h , p̂h = p−h ). Without loss of generality,
we assume α ≥ 0 and β > 0. Therefore, we can take the following numerical fluxes:

(2.3d) ũh = u−h , ûh = u−h , q̂h = q+h , p̂h = p+h .

The fluxes (2.3d) guarantee stability and convergence; see [34]. We note that this
choice is not unique. For instance the choice ũh = u−h , ûh = u+h , q̂h = q+h , p̂h = p−h ,
is also fine.

2.2. Initial conditions for the LDG scheme. In order to prove superconver-
gence results, we need to use a suitable projection of the initial condition for the
numerical scheme uh(x, 0). We first need to define some projections, which are
commonly used in the analysis of DG methods: For k ≥ 1, we define two special
projections P±

h into V k
h as follows: For any smooth function u, P±

h u ∈ V k
h and the

restrictions of P+
h u and P−

h u to Ii are the unique polynomials in the finite element

space V k
h satisfying, for each i = 1, · · · , N ,
∫

Ii

(P−
h u− u)vdx = 0, ∀ v ∈ P k−1(Ii), and (P−

h u)
−
∣

∣

i
= u

∣

∣

i
,(2.4)

∫

Ii

(P+
h u− u)vdx = 0, ∀ v ∈ P k−1(Ii), and (P+

h u)
+
∣

∣

i−1
= u

∣

∣

i−1
.(2.5)

These special projections are used in the error estimates of the DG and LDG
methods to derive optimal L2 error bounds in the literature, e.g., in [20]. They are
mainly used to eliminate the jump terms at the element boundaries in the error
estimates in order to prove the optimal L2 error estimates.
Recently, Hufford and Xing [30] studied the superconvergence property for the LDG
method for solving (1.1). They selected a special projection of the initial condition
uh(x, 0) = P 1

hu(x, 0) ∈ V k
h and proved that the LDG solution is O(hk+3/2) super

close to P−
h u. The operator P 1

h is designed to better control the error of the initial
condition. It is defined as follows: for any function u we let q = ux and p = qx,
and suppose qh, ph ∈ V k

h are the unique solutions (with given P 1
hu) to

∫

Ii

phwdx +

∫

Ii

qhwxdx− q+h w
−
∣

∣

i
+ q+h w

+
∣

∣

i−1
= 0, ∀ w ∈ V k

h ,(2.6a)

∫

Ii

qhzdx+

∫

Ii

P 1
hu zxdx− (P 1

hu)
−z−

∣

∣

i
+ (P 1

hu)
−z+

∣

∣

i−1
= 0, ∀ z ∈ V k

h ,(2.6b)
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then we require

(P−
h u− P 1

hu)
−
∣

∣

i
= (P+

h q − qh)
+
∣

∣

i
− (P+

h p− ph)
+
∣

∣

i
,(2.7a)

∫

Ii

(P−
h u− P 1

hu)vdx =

∫

Ii

(

(P+
h q − qh)− (P+

h p− ph)
)

vdx, ∀ v ∈ P k−1(Ii).(2.7b)

Proof for the existence and uniqueness of P 1
hu is provided in [30], more precisely in

its Lemma 2.1.

Lemma 2.1. The operator P 1
h exists and is unique. Moreover, we have the follow-

ing estimate

(2.8)
∥

∥(P−
h u− P 1

hu)(., 0)
∥

∥+
∥

∥(P+
h q − qh)(., 0)

∥

∥+
∥

∥(P+
h p− ph)(., 0)

∥

∥ ≤ C hk+3/2,

where C = C(α, β, λ, ‖u‖k+3,I) is a constant and λ = h/hmin is a constant during
mesh refinements.

In our mathematical error analysis we will approximate the initial condition on
each interval Ii as

(2.9) uh(x, 0) = P 1
hu(x, 0), x ∈ Ii, i = 1, · · · , N.

As discussed in [30], this operator is only needed for technical purposes in the proof
of the error estimates. In our numerical experiments we used the special projection
P 1
h , the projection P

−
h , and the standard L2 projection and observed similar results.

2.3. Notations and preliminary results. We define the L2 inner product of
u = u(x, t) and v = v(x, t) on Ii = [xi−1, xi] as (u(., t), v(., t))i =

∫

Ii
u(x, t)v(x, t)dx.

Denote ‖u(., t)‖0,Ii = ((u(., t), u(., t))i)
1/2

to be the standard L2-norm of u on

Ii. Let Hs(Ii), where s = 1, 2, . . ., denote the standard Sobolev space of square
integrable functions on Ii with all derivatives ∂jxu, j = 1, 2, . . . , s being square
integrable on Ii and equipped with the norm

‖u(., t)‖s,Ii =





s
∑

j=0

∥

∥∂jxu(., t)
∥

∥

2

0,Ii





1/2

.

We also define the norms on the whole computational domain I as follows:

‖u(., t)‖0,I =

(

N
∑

i=1

‖u(., t)‖
2
0,Ii

)1/2

, ‖u(., t)‖s,I =

(

N
∑

i=1

‖u(., t)‖
2
s,Ii

)1/2

.

For convenience, we use ‖u‖ and ‖u‖i to denote ‖u‖0,I and ‖u‖0,Ii , respectively.

Also, in the remainder of this paper, we will omit the notation (., t) used in norms
unless needed for clarity. Thus, we use ‖u‖ instead of ‖u(., t)‖ etc. We note that if
u ∈ Hs(I), s = 1, 2, . . ., the norms ‖u(., t)‖s,I on the whole computational domain

is the standard Sobolev norm
(

∑s
j=0

∥

∥∂jxu(., t)
∥

∥

2

0,I

)1/2

.

In our analysis we need the Legendre and Radau polynomials. Let us denote by
L̃k the Legendre polynomial of degree k on [−1, 1]. We define the (k + 1)-degree

right Radau polynomial on [−1, 1] as R̃+
k+1(ξ) = L̃k+1(ξ) − L̃k(ξ), −1 ≤ ξ ≤ 1,

which has k + 1 real distinct roots, −1 < ξ+0 < · · · < ξ+k = 1. We also define the

(k + 1)-degree left Radau polynomial as R̃−
k+1(ξ) = L̃k+1(ξ) + L̃k(ξ), −1 ≤ ξ ≤ 1,

which has k + 1 real distinct roots, −1 = ξ−0 < · · · < ξ−k < 1.
Mapping the physical element Ii = [xi−1, xi] into a reference element [−1, 1] by

the standard affine mapping x(ξ, hi) =
xi+xi−1

2 + hi

2 ξ, we obtain the shifted Radau



168 M.BACCOUCH

polynomials R±
k+1,i(x) = R̃±

k+1

(

2x−xi−xi−1

hi

)

on Ii. Next, we define the monic left

and right Radau polynomials, ψ±
k+1,i(x), on Ii as ψ

±
k+1,i(x) =

k
∏

j=0

(x − x±i,j), where

x±i,j are the roots of R̃±
k+1,i(ξ) shifted to Ii, i.e.,

x±i,j =
xi + xi−1

2
+
hi
2
ξ±j , j = 0, 1, . . . , k.(2.10)

Next, we recall some results from [11] (more precisely in its Lemma 2.1) which will
be needed in our a posteriori error analysis.

Lemma 2.2. The (k+1)-degree monic Radau polynomials on Ii, ψ
±
k+1,i(x), satisfy

(2.11a)

∫

Ii

ψ+
k+1,i

′
ψ+
k+1,idx = −2c2kh

2k+2
i ,

∫

Ii

ψ−
k+1,i

′
ψ−
k+1,idx = 2c2kh

2k+2
i ,

(2.11b)

∫

Ii

ψ−
k+1,i

′
ψ+
k+1,idx = −2c2kh

2k+2
i ,

∥

∥

∥ψ+
k+1,i

∥

∥

∥

2

i
=
∥

∥

∥ψ−
k+1,i

∥

∥

∥

2

i
= dkh

2k+3
i ,

where

(2.11c) ck =
[(k + 1)!]2

(2k + 2)!
, dk =

2(2k + 2)

(2k + 1)(2k + 3)
c2k.

Throughout this paper, eu = u− uh, eq = q− qh, and ep = p− ph, respectively,
denote the errors between the exact solutions of (2.1) and the numerical solutions
defined in (2.3). Let the projection errors be defined as εu = u − P−

h u, εq =

q − P+
h q, εp = p − P+

h p, and the errors between the numerical solutions and the

projection of the exact solutions be defined as ēu = P−
h u−uh, ēq = P+

h q−qh, ēp =

P+
h p− ph. We note that the true errors can be split as

(2.12) eu = εu + ēu, eq = εq + ēq, ep = εp + ēp.

We also note that, by the definitions of the projections P±
h , the following hold

ε−u
∣

∣

i
= ε+q

∣

∣

i−1
= ε+p

∣

∣

i
= 0,

(2.13)

∫

Ii

εuvxdx =

∫

Ii

εqvxdx =

∫

Ii

εpvxdx = 0, ∀ v ∈ P k(Ii),

where we used the fact that v ∈ P k(Ii) and thus vx ∈ P k−1(Ii).
We subtract (2.3) from (2.2) with v, w, z ∈ V k

h and we use the numerical fluxes
(2.3d) to obtain the LDG orthogonality conditions for eu, eq, and ep on Ii

∫

Ii

(eu)tvdx−

∫

Ii

(αeu + βep)vxdx+ αe−u v
−
∣

∣

i
− αe−u v

+
∣

∣

i−1

+βe+p v
−
∣

∣

i
− βe+p v

+
∣

∣

i−1
= 0,(2.14a)

∫

Ii

epwdx +

∫

Ii

eqwxdx− e+q w
−
∣

∣

i
+ e+q w

+
∣

∣

i−1
= 0,(2.14b)

∫

Ii

eqzdx+

∫

Ii

euzxdx− e−u z
−
∣

∣

i
+ e−u z

+
∣

∣

i−1
= 0,(2.14c)
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which, after splitting the true errors as in (2.12) and applying (2.13), yields the
following error equations

∫

Ii

(eu)tvdx−

∫

Ii

(αēu + βēp)vxdx+ αē−u v
−
∣

∣

i
− αē−u v

+
∣

∣

i−1

+βē+p v
−
∣

∣

i
− βē+p v

+
∣

∣

i−1
= 0,(2.15a)

∫

Ii

epwdx +

∫

Ii

ēqwxdx− ē+q w
−
∣

∣

i
+ ē+q w

+
∣

∣

i−1
= 0,(2.15b)

∫

Ii

eqzdx+

∫

Ii

ēuzxdx− ē−u z
−
∣

∣

i
+ ē−u z

+
∣

∣

i−1
= 0.(2.15c)

Integrating by parts, the equations in (2.15) are equivalent to
∫

Ii

(eu)tvdx +

∫

Ii

(α(ēu)x + β(ēp)x)vdx + α
(

ē+u − ē−u
)

v+
∣

∣

i−1

+β
(

ē+p − ē−p
)

v−
∣

∣

i
= 0,(2.16a)

∫

Ii

epwdx −

∫

Ii

(ēq)xwdx +
(

ē−q w
− − ē+q

)

w−
∣

∣

i
= 0,(2.16b)

∫

Ii

eqzdx−

∫

Ii

(ēu)xzdx−
(

ē+u − ē−u
)

z+
∣

∣

i−1
= 0.(2.16c)

Since ēu, ēq, ēp ∈ V k
h are piecewise polynomials, we define ēu, ēq, and ēp on each

element Ii, as

ēu = αi +
x− xi
hi

ci, ēq = βi +
x− xi−1

hi
di, ēp = γi +

x− xi−1

hi
gi,(2.17a)

where ci(., t), di(., t), gi(., t) ∈ P k−1(Ii) and

αi = ē−u
∣

∣

i
, βi = ē+q

∣

∣

i−1
, γi = ē+p

∣

∣

i−1
.(2.17b)

Throughout this paper, c(., t) ∈ V k−1
h , d(., t) ∈ V k−1

h , g(., t) ∈ V k−1
h , φ1(x) ∈ V 1

h ,
φ2(x) ∈ V 1

h , φ3(x) ∈ V 1
h , and φ4(x) ∈ V 1

h denote piecewise polynomials which are
defined as follows:

(2.18a) c(x, t) = ci(x, t), d = di(x, t), g(x, t) = gi(x, t), on Ii,

(2.18b)

φ1(x) = x− xi−1, φ2(x) = x− xi, φ3(x) =
x− xi−1

hi
, φ4(x) =

x− xi
hi

, on Ii.

Clearly, we have

(2.18c) max
x∈I

|φ1(x)| = max
x∈I

|φ2(x)| = h, max
x∈I

|φ3(x)| = max
x∈I

|φ4(x)| = 1.

In our analysis, we need the following well-known projection results [21]: For any
smooth functions u, q = ux, and p = uxx, there exist positive constants C1 − C3

depend on the exact smooth solution u and its derivatives, but independent of the
mesh size h, such that
(2.19)

‖∂st εu‖ ≤ C1h
k+1, ‖∂st εq‖ ≤ C2h

k+1, ‖∂st εp‖ ≤ C3h
k+1, s = 0, 1, 2, . . . .

Here C1 = C̃1(‖∂
s
t u‖k+1,I), C2 = C̃2(‖∂

s
t u‖k+2,I), C3 = C̃3(‖∂

s
t u‖k+3,I), where

C̃1 − C̃3 are positive constants independent of h.
From now on, the notation C, C0, C1, C

±, etc. will be used to denote positive
constants that are independent of the discretization parameters, but which may
depend upon the exact smooth solution of the partial differential equation (1.1a)
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and its derivatives. Furthermore, all the constants will be generic, i.e., they may
represent different constant quantities in different occurrences.
In the next lemma we recall the following results from [11] (more precisely in its
Lemma 2.1) which will be needed in our analysis.

Lemma 2.3. If f(x) ∈ C1 on Ii, then

(2.20a)

∫

Ii

x− xi−1

hi
f(x)

d

dx

(

x− xi
hi

f(x)

)

dx =
1

2hi

∫

Ii

f2(x)dx.

(2.20b)

∫

Ii

x− xi
hi

f(x)
d

dx

(

x− xi−1

hi
f(x)

)

dx = −
1

2hi

∫

Ii

f2(x)dx.

In the next theorem, we recall some results from [30] which will be needed in our
error analysis.

Theorem 2.1. Let k ≥ 1 and (u, q = ux, p = qx) and (uh, qh, ph) respectively,
are solutions of (2.1) and (2.3) subject to uh(x, 0) = P 1

hu0(x), then there exists a
constant C independent of h such that

‖eu‖ ≤ C hk+1.(2.21a)

‖(eu)t‖ ≤ C hk+1.(2.21b)

‖eq‖ ≤ C hk+1.(2.21c)

‖ep‖ ≤ C hk+1.(2.21d)

‖ēu‖ ≤ C hk+3/2.(2.21e)

Proof. Cf. Hufford and Xing [30]. More precisely, the estimates (2.21a)-(2.21d) can
be found in its Lemma 2.2. The superconvergence result (2.21e) can be found in
its Proposition 3.1. �

In order to prove that the (k+3/2)-th order superconvergence rate holds also for
the two auxiliary variables in the LDG method, we state and prove the following
additional results.

Theorem 2.2. Under the same conditions as in Theorem 2.1, there exists a con-
stant C > 0 such that

‖(ēq)t(., 0)‖ ≤ C hk+1.(2.22a)

‖(ēp)t(., 0)‖ ≤ C hk+1.(2.22b)

‖(ēu)t(., 0)‖ ≤ C hk+3/2.(2.22c)

Proof. On the one hand, taking the first time derivative of (2.2b) and (2.2c) we
obtain

∫

Ii

ptwdx +

∫

Ii

qtwxdx− q+t w
−
∣

∣

i
+ q+t w

+
∣

∣

i−1
= 0, ∀ w ∈ V k

h ,(2.23a)

∫

Ii

qtzdx+

∫

Ii

utzxdx− u−t z
−
∣

∣

i
+ u−t z

+
∣

∣

i−1
= 0, ∀ z ∈ V k

h .(2.23b)

Similarly, taking the first time derivative of (2.6a) and (2.6b) yields
∫

Ii

(ph)twdx +

∫

Ii

(qh)twxdx− (qh)
+
t w

−
∣

∣

i
+ (qh)

+
t w

+
∣

∣

i−1
= 0,(2.24a)

∫

Ii

(qh)tzdx+

∫

Ii

(P 1
hu)tzxdx− (P 1

hu)
−
t z

−
∣

∣

i
+ (P 1

hu)
−
t z

+
∣

∣

i−1
= 0.(2.24b)
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Subtracting (2.24) from (2.23), we obtain
∫

Ii

(ep)twdx+

∫

Ii

(eq)twxdx− (eq)
+
t w

−
∣

∣

i
+ (eq)

+
t w

+
∣

∣

i−1
= 0,(2.25a)

∫

Ii

(eq)tzdx+

∫

Ii

(u− P 1
hu)tzxdx− (u− P 1

hu)
−
t z

−
∣

∣

i
+ (u − P 1

hu)
−
t z

+
∣

∣

i−1
= 0,(2.25b)

which, after splitting the errors as u−P 1
hu = u−P−

h u+P
−
h u−P

1
hu = εu+P

−
h u−P

1
hu,

eq = εq + ēq, ep = εp + ēp and using the properties (2.13), is equivalent to
∫

Ii

(ep)twdx +

∫

Ii

(ēq)twxdx− (ēq)
+
t w

−
∣

∣

i
+ (ēq)

+
t w

+
∣

∣

i−1
= 0,(2.26)

∫

Ii

(eq)tzdx+

∫

Ii

(P−
h u− P 1

hu)tzxdx− (P−
h u− P 1

hu)
−
t z

−
∣

∣

i
+ (P−

h u− P 1
hu)

−
t z

+
∣

∣

i−1
= 0.

On the other hand, taking the first time derivative of (2.7) and using the properties
(2.13) yields

(P−
h u− P 1

hu)
−
t

∣

∣

i
= (ēq − ēp)

+
t

∣

∣

i
,

∫

Ii

(P−
h u− P 1

hu)tvdx =

∫

Ii

(ēq − ēp)tvdx, ∀ v ∈ P k−1(Ii).

Combining these conditions with (2.26) we get
∫

Ii

(ep)twdx+

∫

Ii

(ēq)twxdx− (ēq)
+
t w

−
∣

∣

i
+ (ēq)

+
t w

+
∣

∣

i−1
= 0,(2.27a)

∫

Ii

(eq)tzdx+

∫

Ii

(ēq − ēp)t zxdx− (ēq − ēp)
+
t z

−
∣

∣

i
+ (ēq − ēp)

+
t z

+
∣

∣

i−1
= 0.(2.27b)

Now, taking w = (ēq)t and z = (ēq − ēp)t in (2.27), we get
∫

Ii

(ep)t(ēq)tdx+
1

2

(

(ēq)
+
t − (ēq)

−
t

)2 ∣
∣

i
−

1

2
((ēq)

+
t )

2
∣

∣

i
+

1

2
((ēq)

+
t )

2
∣

∣

i−1
= 0,

∫

Ii

(eq)t(ēq − ēp)tdx+
1

2

(

(ēq − ēp)
+
t − (ēq − ēp)

−
t

)2 ∣
∣

i
−

1

2
((ēq − ēp)

+
t )

2
∣

∣

i

+
1

2
((ēq − ēp)

+
t )

2
∣

∣

i−1
= 0.

Adding these two equations, using (2.12), summing over all elements, and using the
periodic boundary conditions, we obtain, at t = 0,

‖(ēq)t(., 0)‖
2
+

∫

I

((εq)t + (εp)t) (ēq)tdx−

∫

I

(εq)t(ēp)tdx+
1

2

N
∑

i=1

(

(ēq)
+
t − (ēq)

−
t

)2 ∣
∣

i
+

1

2

N
∑

i=1

(

(ēq − ēp)
+
t − (ēq − ēp)

−
t

)2 ∣
∣

i
= 0.

Thus, at t = 0, the following holds

‖(ēq)t(., 0)‖
2 ≤ −

∫

I

((εq)t + (εp)t) (ēq)tdx+

∫

I

(εq)t(ēp)tdx.(2.28)

On the other hand, letting w = (ēq + ēp)t and z = −(ēp)t in (2.27) leads to
∫

Ii

(ep)t(ēq + ēp)tdx+

∫

Ii

(ēq)t(ēq + ēp)xtdx− (ēq)
+
t (ēq + ēp)

−
t

∣

∣

i
+ (ēq)

+
t (ēq + ēp)

+
t

∣

∣

i−1
= 0,

−

∫

Ii

(eq)t(ēp)tdx−

∫

Ii

(ēq − ēp)t (ēp)xtdx+ (ēq − ēp)
+
t (ēp)

−
t

∣

∣

i
− (ēq − ēp)

+
t (ēp)

+
t

∣

∣

i−1
= 0.
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Adding these two equations and using (2.12), we obtain
∫

Ii

((ēp)t)
2dx+

∫

Ii

((εp)t − (εq)t) (ēp)tdx+

∫

Ii

(εp)t(ēq)tdx+

∫

Ii

(ēq)t(ēq)xtdx

+

∫

Ii

(ēp)t(ēp)xtdx− (ēq)
+
t (ēq)

−
t

∣

∣

i
− (ēp)

+
t (ēp)

−
t

∣

∣

i
+ ((ēq)

+
t )

2
∣

∣

i−1
+ ((ēp)

+
t )

2
∣

∣

i−1
= 0,

which is equivalent to
∫

Ii

((ēp)t)
2dx+

∫

Ii

((εp)t − (εq)t) (ēp)tdx+

∫

Ii

(εp)t(ēq)tdx

+
1

2

(

(ēq)
+
t − (ēq)

−
t

)2 ∣
∣

i
−

1

2
((ēq)

+
t )

2
∣

∣

i
+

1

2
((ēq)

+
t )

2
∣

∣

i−1
+

1

2

(

(ēp)
+
t − (ēp)

−
t

)2 ∣
∣

i

−
1

2
((ēp)

+
t )

2
∣

∣

i
+

1

2
((ēp)

+
t )

2
∣

∣

i−1
= 0.

Summing over all elements and using the periodic boundary conditions, we get, at
t = 0,

‖(ēp)t(., 0)‖
2 +

1

2

N
∑

i=1

[

(

(ēq)
+
t − (ēq)

−
t

)2
+
(

(ēp)
+
t − (ēp)

−
t

)2
]

∣

∣

∣

∣

i

=

∫

I

((εq)t − (εp)t) (ēp)tdx−

∫

I

(εp)t(ēq)tdx.

Hence, at t = 0, the following holds

‖(ēp)t(., 0)‖
2
≤

∫

I

((εq)t − (εp)t) (ēp)tdx−

∫

I

(εp)t(ēq)tdx.(2.29)

Now, adding (2.28) and (2.29) yields

‖(ēq)t(., 0)‖
2
+ ‖(ēp)t(., 0)‖

2
≤ −

∫

I

((εq)t + 2(εp)t) (ēq)tdx+

∫

I

(2(εq)t − (εp)t) (ēp)tdx.

Applying Cauchy-Schwarz inequality and using the projection results (2.19) yields

‖(ēq)t(., 0)‖
2 + ‖(ēp)t(., 0)‖

2 ≤

(

‖(εq)t(., 0)‖+ 2 ‖(εp)t(., 0)‖

)

‖(ēq)t(., 0)‖+

(

2 ‖(εq)t(., 0)‖+ ‖(εp)t(., 0)‖

)

‖(ēp)t(., 0)‖

≤ C1h
k+1

(

‖(ēq)t(., 0)‖+ ‖(ēp)t(., 0)‖

)

.

Using the inequalities ab ≤ a2 + 1
4b

2 and (a+ b)2 ≤ 2(a2 + b2), we obtain

‖(ēq)t(., 0)‖
2
+ ‖(ēp)t(., 0)‖

2
≤ C2

1h
2k+2 +

1

2

(

‖(ēq)t(., 0)‖
2
+ ‖(ēp)t(., 0)‖

2

)

.

As a consequence, we obtain

‖(ēq)t(., 0)‖
2
+ ‖(ēp)t(., 0)‖

2
≤ Ch2k+2,

which completes the proofs of (2.22a) and (2.22b).
Finally, we will prove (2.22c). Since uh(x, 0) = P 1

hu(x, 0), (2.7) can be written as

ē−u
∣

∣

i
= ē+q

∣

∣

i
− ē+p

∣

∣

i
,

∫

Ii

ēuvdx =

∫

Ii

(ēq − ēp) vdx, ∀ v ∈ P k−1(Ii).
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Substituting these equations into (2.15a), we obtain, at t = 0
∫

Ii

(eu)tvdx− (α− β)

(∫

Ii

ēuvxdx− ē−u v
−
∣

∣

i
+ ē−u v

+
∣

∣

i−1

)

−β

(∫

Ii

ēqvxdx− ē+q v
−
∣

∣

i
+ ē+q v

+
∣

∣

i−1

)

= 0.(2.30)

We note that it follows from (2.15b) and (2.15c) that, at time t = 0,
∫

Ii

epvdx +

∫

Ii

ēqvxdx− ē+q v
−
∣

∣

i
+ ē+q v

+
∣

∣

i−1
= 0, ∀ v ∈ P k(Ii)(2.31a)

∫

Ii

eqvdx+

∫

Ii

ēuvxdx− ē−u v
−
∣

∣

i
+ ē−u v

+
∣

∣

i−1
= 0, ∀ v ∈ P k(Ii).(2.31b)

Combining (2.30) and (2.31), we get, at t = 0
∫

Ii

(eu)tvdx+ β

∫

Ii

eqvdx+ (α− β)

∫

Ii

epvdx = 0.(2.32)

Taking v = (ēu)t(x, 0), summing the above equality over all elements, and using
the fact that eu = ēu + εu, we obtain, at time t = 0,

‖(ēu)t(., 0)‖
2
= Θ+ Λ,(2.33)

where

Θ = −

∫

I

((εu)t + βεq + (α− β)εp) (ēu)tdx, Λ = −

∫

I

(βēq + (α − β)ēp) (ēu)tdx.

On the one hand, applying Cauchy-Schwarz inequality and the inequalities ab ≤
1
2a

2 + 1
2b

2 and (a+ b)2 ≤ 2(a2 + b2), we get

Λ ≤

(

β ‖ēq(., 0)‖+ |α− β| ‖ēp(., 0)‖

)

‖(ēu)t(., 0)‖

≤
1

2

(

β ‖ēq(., 0)‖+ |α− β| ‖ēp(., 0)‖

)2

+
1

2
‖(ēu)t(., 0)‖

2

≤ β2 ‖ēq(., 0)‖
2
+ (α− β)2 ‖ēp(., 0)‖

2
+

1

2
‖(ēu)t(., 0)‖

2
,

which, after using the estimate (2.8), yields

Λ ≤ C1h
2k+3 +

1

2
‖(ēu)t(., 0)‖

2
.(2.34)

On the other hand, substituting the definition of ēu given in (2.17) into Θ and using
the fact that (εu)t, εq, and εp are orthogonal to any piecewise constant functions
(this is by the property of the projections P±

h (2.13)), we get, at t = 0,

Θ = −

N
∑

i=1

∫

Ii

((εu)t + βεq + (α− β)εp)
x− xi
hi

(ci)tdx,

which, after applying Cauchy-Schwarz inequality, using (2.18), and the projection
result (2.19), yields

Θ ≤

(

max
x∈I

|φ4(x)|

)(

‖(εu)t(., 0)‖+ β ‖εq(., 0)‖+ |α− β| ‖εp(., 0)‖

)

‖ct(., 0)‖

≤ C2h
k+1 ‖ct(., 0)‖ .(2.35)
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In order to estimate ‖ct(., 0)‖, we take the first time derivative of (2.16c), we sub-
stitute the definition of ēu given in (2.17), and we choose the test function as

z = x−xi−1

hi

(ci)t(x, 0) to obtain, at t = 0,
∫

Ii

(eq)t
x− xi−1

hi
(ci)tdx−

∫

Ii

(

x− xi
hi

(ci)t

)

x

x− xi−1

hi
(ci)tdx = 0,

which, after using (2.20a), is equivalent to
∫

Ii

(eq)t
x− xi−1

hi
(ci)tdx−

1

2hi

∫

Ii

(ci)
2
tdx = 0.

Hence, we obtain
∫

Ii

(ci)
2
tdx = 2

∫

Ii

(eq)t(x− xi−1)(ci)tdx.

Summing over all element, applying Cauchy-Schwarz inequality, and using (2.18),
we obtain

‖ct(., 0)‖
2

≤ 2

(

max
x∈I

|φ1(x)|

)

‖(eq)t(., 0)‖ ‖ct(., 0)‖ ≤ 2h ‖(eq)t(., 0)‖ ‖ct(., 0)‖ .

Applying the estimates (2.22a), we get

‖ct(., 0)‖ ≤ C3h
k+2.(2.36)

Combining (2.33), (2.34), (2.35), and (2.36), we obtain

‖(ēu)t(., 0)‖
2
≤ C4h

2k+3 +
1

2
‖(ēu)t(., 0)‖

2
,

which completes the proof of (2.22c) �

3. Superconvergence error analysis

Before we proof the main superconvergence results, we state and prove the fol-
lowing results which will be needed in our analysis.

Lemma 3.1. Suppose that the conditions in Theorem 2.1 are satisfied. If c, d
and g are the functions defined in (2.18a) then there exists a positive constant C
independent of h such that, ∀ t ∈ [0, T ],

‖c‖ ≤ Chk+2, ‖d‖ ≤ Chk+2, ‖g‖ ≤ Chk+2.(3.1)

Proof. Adding (2.16a) and (2.16c) with z = αv, where v ∈ P k(Ii), we obtain
∫

Ii

((eu)t + αeq) vdx+ β

∫

Ii

(ēp)xvdx− βē−p v
−
∣

∣

i
+ βē+p v

−
∣

∣

i
= 0.(3.2)

Substituting (2.17) into (3.2), (2.16b), and (2.16c), choosing the test functions as

v = x−xi

hi

gi, w = x−xi

hi

di, z = x−xi−1

hi

ci, and using (2.20a) and (2.20b), we obtain
∫

Ii

((eu)t + αeq)
x− xi
hi

gidx−
β

2hi

∫

Ii

g2i dx = 0,

∫

Ii

ep
x− xi
hi

didx+
1

2hi

∫

Ii

d2i dx = 0,

∫

Ii

eq
x− xi−1

hi
cidx−

1

2hi

∫

Ii

c2i dx = 0,

since v−
∣

∣

i
= w−

∣

∣

i
= z+

∣

∣

i−1
= 0. Thus,

∫

Ii

g2i dx =
2

β

∫

Ii

((eu)t + αeq) (x− xi)gidx,

∫

Ii

d2i dx = −2

∫

Ii

ep(x− xi)gidx,

∫

Ii

c2i dx = 2

∫

Ii

eq(x − xi−1)cidx.



LOCAL DG FOR THE 1D LINEARIZED KORTEWEG-DE VRIES EQUATION 175

Summing over all element, applying Cauchy-Schwarz inequality, and using (2.18),
we obtain

‖g‖
2

≤
2

β

(

max
x∈I

|φ2(x)|

)

‖(eu)t + αeq‖ ‖g‖ ≤
2

β
h (‖(eu)t‖+ α ‖eq‖) ‖g‖ ,

‖d‖2 ≤ 2

(

max
x∈I

|φ2(x)|

)

‖ep‖ ‖d‖ ≤ 2h ‖ep‖ ‖d‖ ,

‖c‖
2

≤ 2

(

max
x∈I

|φ1(x)|

)

‖eq‖ ‖c‖ ≤ 2h ‖eq‖ ‖c‖ .

We complete the proof of the lemma by applying the estimates (2.21b), (2.21c),
and (2.21d). �

Now, we are ready to prove that qh and ph are O(hk+3/2) super close to P+
h q

and P+
h p, respectively.

Theorem 3.1. Under the same conditions as in Theorem 2.1, there exists a con-
stant C > 0 such that, ∀ t ∈ [0, T ],

‖(ēu)t‖ ≤ Chk+3/2.(3.3a)

‖ēq‖ ≤ Chk+3/2.(3.3b)

‖ēp‖ ≤ Chk+3/2.(3.3c)

Proof. Taking the first time derivation of (2.15a), (2.16b), (2.16c), and then choos-
ing the test functions as v = (ēu)t, w = β(ēq)t, and z = −β(ēp)t we get

∫

Ii

(eu)tt(ēu)tdx − α

∫

Ii

(ēu)t(ēu)xtdx+ α((ēu)
−
t )

2
∣

∣

i
− α(ēu)

−
t (ēu)

+
t

∣

∣

i−1

−β

∫

Ii

(ēp)t(ēu)xtdx+ β(ēu)
−
t (ēp)

+
t

∣

∣

i
− β(ēu)

+
t (ēp)

+
t

∣

∣

i−1
= 0,

β

∫

Ii

(ep)t(ēq)tdx− β

∫

Ii

(ēq)xt(ēq)tdx+ β((ēq)
−
t )

2
∣

∣

i
− β(ēq)

+
t (ēq)

−
t

∣

∣

i
= 0,

−β

∫

Ii

(eq)t(ēp)tdx+ β

∫

Ii

(ēu)xt(ēp)tdx+ β(ēu)
+
t (ēp)

+
t

∣

∣

i−1
− β(ēu)

−
t (ēp)

+
t

∣

∣

i−1
= 0.

Adding these three equations, splitting the errors as in (2.12), and using the
fact that

∫

Ii
(ēu)t(ēu)xtdx = 1

2 ((ēu)
−
t )

2
∣

∣

i
− 1

2 ((ēu)
+
t )

2
∣

∣

i−1
and

∫

Ii
(ēq)xt(ēq)tdx =

1
2 ((ēq)

−
t )

2
∣

∣

i
− 1

2 ((ēq)
+
t )

2
∣

∣

i−1
, we get

1

2

d

dt

∫

Ii

(ēu)
2
t dx+

∫

Ii

(εu)tt(ēu)tdx+ β

∫

Ii

(εp)t(ēq)tdx− β

∫

Ii

(εq)t(ēp)tdx

+
α

2
((ēu)

−
t )

2
∣

∣

i
+
α

2
((ēu)

+
t )

2
∣

∣

i−1
− α(ēu)

−
t (ēu)

+
t

∣

∣

i−1
+
β

2
((ēq)

−
t )

2
∣

∣

i
+
β

2
((ēq)

+
t )

2
∣

∣

i−1

−β(ēq)
+
t (ēq)

−
t

∣

∣

i
+ β(ēu)

−
t (ēp)

+
t

∣

∣

i
− β(ēu)

−
t (ēp)

+
t

∣

∣

i−1
= 0,

which is equivalent to

1

2

d

dt

∫

Ii

(ēu)
2
t dx+

∫

Ii

(εu)tt(ēu)tdx+ β

∫

Ii

(εp)t(ēq)tdx− β

∫

Ii

(εq)t(ēp)tdx

+
α

2

(

(ēu)
+
t − (ēu)

−
t

)2 ∣
∣

i−1
+
α

2
((ēu)

−
t )

2
∣

∣

i
−
α

2
((ēu)

−
t )

2
∣

∣

i−1
+
β

2

(

(ēq)
+
t − (ēq)

−
t

)2 ∣
∣

i

+
β

2
((ēq)

+
t )

2
∣

∣

i−1
−
β

2
((ēq)

+
t )

2
∣

∣

i
+ β(ēu)

−
t (ēp)

+
t

∣

∣

i
− β(ēu)

−
t (ēp)

+
t

∣

∣

i−1
= 0.
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Summing the above equation over i and using the periodic boundary condition, we
arrive at

1

2

d

dt
‖(ēu)t‖

2
+

∫

I

(εu)tt(ēu)tdx+ β

∫

I

(εp)t(ēq)tdx− β

∫

I

(εq)t(ēp)tdx

+
α

2

N
∑

i=1

(

(ēu)
+
t − (ēu)

−
t

)2 ∣
∣

i−1
+
β

2

N
∑

i=1

(

(ēq)
+
t − (ēq)

−
t

)2 ∣
∣

i
= 0.

Thus, the following holds

1

2

d

dt
‖(ēu)t‖

2
≤ −

∫

I

(εu)tt(ēu)tdx − β

∫

I

(εp)t(ēq)tdx+ β

∫

I

(εq)t(ēp)tdx.

Integrating the above inequality with respect to time and using integration by parts
with respect to time, we get

‖(ēu)t‖
2 ≤ ‖(ēu)t(., 0)‖

2 − 2

∫

I

(

(εu)ttēu + β(εp)tēq − β(εq)tēp

)

(x, 0)dx+

2

∫ t

0

(∫

I

(εu)tttēudx+ β

∫

I

(εp)ttēqdx− β

∫

I

(εq)ttēpdx

)

dt.(3.4)

Using the bound for initial error (2.22c), substituting the definitions of ēu, ēq and ēp
given in (2.17) into the right-hand side of (3.4), and using the fact that (εu)tt, (εu)ttt,
(εq)t, (εq)tt, (εp)t, and (εp)tt are orthogonal to any piecewise constant functions (due
to the properties given in (2.13)), we get

‖(ēu)t‖
2
≤ C0h

2k+3

−2

N
∑

i=1

∫

Ii

(

(εu)tt
x− xi
hi

ci + β(εp)t
x− xi−1

hi
di − β(εq)t

x− xi−1

hi
gi

)

(x, 0)dx

+2

∫ t

0

(

N
∑

i=1

∫

Ii

(

(εu)ttt
x− xi
hi

ci + β(εp)tt
x− xi−1

hi
di − β(εq)tt

x− xi−1

hi
gi

)

dx

)

dt,

which, after applying Cauchy-Schwarz inequality, leads to

‖(ēu)t‖
2
≤ C0h

2k+3 + 2max
x∈I

|φ4(x)| ‖(εu)tt(., 0)‖ ‖c(., 0)‖

+2βmax
x∈I

|φ3(x)|

(

‖(εp)t(., 0)‖ ‖d(., 0)‖ + ‖(εq)t(., 0)‖ ‖g(., 0)‖

)

+

∫ t

0

(

2max
x∈I

|φ4(x)| ‖(εu)ttt‖ ‖c‖+ 2βmax
x∈I

|φ3(x)|

(

‖(εp)tt‖ ‖d‖+ ‖(εq)tt‖ ‖g‖

))

dt.

Using (2.18) and the projection results (2.19), we arrive at

‖(ēu)t‖
2 ≤ C0h

2k+3

+C1h
k+1 (‖c(., 0)‖+ ‖d(., 0)‖+ ‖g(., 0)‖) + C2h

k+1

∫ t

0

(‖c‖+ ‖d‖+ ‖g‖) dt

≤ C0h
2k+3 + C1h

k+1 (‖c(., 0)‖+ ‖d(., 0)‖+ ‖g(., 0)‖) + C2Th
k+1 (‖c‖+ ‖d‖+ ‖g‖) .

Combining this with the estimates in (3.1), we obtain

‖(ēu)t‖
2

≤ Ch2k+3, ∀ t ∈ [0, T ],

which completes the proof of (3.3a).
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Next, we will prove (3.3b). Taking the test functions in (2.15a) and (2.16b) as
v = −ēp and w = (ēu)t, respectively, and then taking the first time derivative of
(2.15c) and letting z = ēq, we obtain

−

∫

Ii

(eu)tēpdx+ α

∫

Ii

ēu(ēp)xdx− αē−u ē
−
p

∣

∣

i
+ αē−u ē

+
p

∣

∣

i−1
+ β

∫

Ii

ēp(ēp)xdx

−βē+p ē
−
p

∣

∣

i
+ β(ē+p )

2
∣

∣

i−1
= 0,

∫

Ii

ep(ēu)tdx−

∫

Ii

(ēq)x(ēu)tdx+ ē−q (ēu)
−
t

∣

∣

i
− ē+q (ēu)

−
t

∣

∣

i
= 0,

∫

Ii

(eq)tēqdx+

∫

Ii

(ēu)t(ēq)xdx − (ēu)
−
t ē

−
q

∣

∣

i
+ (ēu)

−
t ē

+
q

∣

∣

i−1
= 0.

Adding these three equations, applying (2.12), and using the fact that
∫

Ii
ēp(ēp)xdx =

1
2 (ē

−
p )

2
∣

∣

i
− 1

2 (ē
+
p )

2
∣

∣

i−1
, we get

1

2

d

dt

∫

Ii

ē2qdx+

∫

Ii

(εq)tēqdx−

∫

Ii

(εu)tēpdx+

∫

Ii

εp(ēu)tdx+ α

∫

Ii

ēu(ēp)xdx

−αē−u ē
−
p

∣

∣

i
+ αē−u ē

+
p

∣

∣

i−1
+
β

2
(ē−p )

2
∣

∣

i
+
β

2
(ē+p )

2
∣

∣

i−1
− βē+p ē

−
p

∣

∣

i

−(ēu)
−
t ē

+
q

∣

∣

i
+ (ēu)

−
t ē

+
q

∣

∣

i−1
= 0,

or equivalently,

1

2

d

dt

∫

Ii

ē2qdx+

∫

Ii

(εq)tēqdx−

∫

Ii

(εu)tēpdx+

∫

Ii

εp(ēu)tdx+ α

∫

Ii

ēu(ēp)xdx

−αē−u ē
−
p

∣

∣

i
+ αē−u ē

+
p

∣

∣

i−1
+
β

2

(

ē+p − ē−p
)2 ∣
∣

i
+
β

2
(ē+p )

2
∣

∣

i−1
−
β

2
(ē+p )

2
∣

∣

i

−(ēu)
−
t ē

+
q

∣

∣

i
+ (ēu)

−
t ē

+
q

∣

∣

i−1
= 0.(3.5)

On the other hand, letting w = αēq and z = −αēp in (2.15b) and (2.15c), respec-
tively, yields

α

∫

Ii

epēqdx+ α

∫

Ii

ēq(ēq)xdx− αē+q ē
−
q

∣

∣

i
+ α(ē+q )

2
∣

∣

i−1
= 0,(3.6a)

−α

∫

Ii

eqēpdx− α

∫

Ii

ēu(ēp)xdx+ αē−u ē
−
p

∣

∣

i
− αē−u ē

+
p

∣

∣

i−1
= 0.(3.6b)

Adding the two equations in (3.6) and using (2.12), we get

α

∫

Ii

εpēqdx− α

∫

Ii

εqēpdx− α

∫

Ii

ēu(ēp)xdx+
α

2

(

ē+q − ē−q
)2 ∣
∣

i

+
α

2
(ē+q )

2
∣

∣

i−1
−
α

2
(ē+q )

2
∣

∣

i
+ αē−u ē

−
p

∣

∣

i
− αē−u ē

+
p

∣

∣

i−1
= 0.(3.7)

Now, adding (3.5) and (3.7) gives

1

2

d

dt

∫

Ii

ē2qdx+

∫

Ii

εp(ēu)tdx+

∫

Ii

((εq)t + αεp) ēqdx−

∫

Ii

((εu)t + αεq) ēpdx

+
β

2

(

ē+p − ē−p
)2 ∣
∣

i
+
α

2

(

ē+q − ē−q
)2 ∣
∣

i
+
β

2
(ē+p )

2
∣

∣

i−1
−
β

2
(ē+p )

2
∣

∣

i

+
α

2
(ē+q )

2
∣

∣

i−1
−
α

2
(ē+q )

2
∣

∣

i
− (ēu)

−
t ē

+
q

∣

∣

i
+ (ēu)

−
t ē

+
q

∣

∣

i−1
= 0,
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which, after summing over all elements and applying the periodic boundary condi-
tions, yields

1

2

d

dt
‖ēq‖

2
+

∫

I

εp(ēu)tdx+

∫

I

((εq)t + αεp) ēqdx−

∫

I

((εu)t + αεq) ēpdx

+
β

2

N
∑

i=1

(

ē+p − ē−p
)2 ∣
∣

i
+
α

2

N
∑

i=1

(

ē+q − ē−q
)2 ∣
∣

i
= 0.

This is clearly implies

1

2

d

dt
‖ēq‖

2 ≤ −

∫

I

εp(ēu)tdx−

∫

I

((εq)t + αεp) ēqdx+

∫

I

((εu)t + αεq) ēpdx,

which, after integrating over the interval [0, t], gives

‖ēq‖
2 ≤ ‖ēq(., 0)‖

2 − 2

∫ t

0

(∫

I

εp(ēu)tdx

)

dt− 2

∫ t

0

(∫

I

((εq)t + αεp) ēqdx

)

dt

+2

∫ t

0

(∫

I

((εu)t + αεq) ēpdx

)

dt.

Using the estimate (2.8) and a simple integration by parts with respect to time, we
get

‖ēq‖
2

≤ C0h
2k+3 − 2

∫

I

εp(x, 0)ēu(x, 0)dx+ 2

∫ t

0

(∫

I

(εp)tēudx

)

dt

−2

∫ t

0

(∫

I

((εq)t + αεp) ēqdx

)

dt+ 2

∫ t

0

(∫

I

((εu)t + αεq) ēpdx

)

dt.(3.8)

Substituting the definitions of ēu, ēq and ēp given in (2.17) into the the right-hand
side of (3.8) and using the fact that (εu)t, εq, (εq)t, and εp are orthogonal to any
piecewise constant functions, which are due to the property (2.13), we get

‖ēq‖
2

≤ C0h
2k+3 − 2

N
∑

i=1

∫

Ii

εp(x, 0)
x− xi
hi

ci(x, 0)dx+ 2

∫ t

0

(

N
∑

i=1

∫

Ii

(εp)t
x− xi
hi

cidx

)

dt

−2

∫ t

0

(

N
∑

i=1

∫

Ii

((εq)t + αεp)
x− xi−1

hi
didx

)

dt

+2

∫ t

0

(

N
∑

i=1

∫

Ii

((εu)t + αεq)
x− xi−1

hi
gidx

)

dt,

which, after applying Cauchy-Schwarz inequality, leads to

‖ēq‖
2

≤ C0h
2k+3 + 2max

x∈I
|φ4(x)|

(

‖εp(., 0)‖ ‖c(., 0)‖+

∫ t

0

‖(εp)t‖ ‖c‖ dt

)

+

2max
x∈I

|φ3(x)|

[∫ t

0

(‖(εq)t‖+ α ‖εp‖) ‖d‖ dt+

∫ t

0

(‖(εu)t‖+ α ‖εq‖) ‖g‖ dt

]

.

Using (2.18), the projection results (2.19), and the estimates in (3.1), we conclude
that ∀ t ∈ [0, T ],

‖ēq‖
2

≤ C0h
2k+3 + C1h

k+1 ‖c(., 0)‖+ C2h
k+1

∫ t

0

(‖c‖+ ‖d‖+ ‖g‖) dt

≤ C3h
2k+3 + C2h

k+1

∫ t

0

(

C4h
k+2 + C5h

k+2 + C6h
k+2
)

dt

≤ C3h
2k+3 + C2h

k+1T
(

C4h
k+2 + C5h

k+2 + C6h
k+2
)

dt ≤ Ch2k+3,
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which completes the proof of (3.3b).
Finally, we will prove the estimate (3.3c). Since the proof is long, we will first derive
three important inequalities which will be needed in our proof.

Inequality 1: Taking w = βēq ∈ P k(Ii) in (2.16b) we get

β

∫

Ii

epēqdx− β

∫

Ii

(ēq)xēqdx+ β(ē−q )
2
∣

∣

i
− βē+q ē

−
q

∣

∣

i
= 0.

Since
∫

Ii
(ēq)xēqdx = 1

2 (ē
−
q )

2
∣

∣

i
− 1

2 (ē
+
q )

2
∣

∣

i−1
, we have therefore the error equation

β

∫

Ii

epēqdx+
β

2

(

ē+q − ē−q
)2 ∣
∣

i
+
β

2
(ē+q )

2
∣

∣

i−1
−
β

2
(ē+q )

2
∣

∣

i
= 0.

Summing the above equation over i and using the periodic boundary condition, we
arrive at

β

∫

I

epēqdx +
β

2

N
∑

i=1

(

ē+q − ē−q
)2 ∣
∣

i
= 0.

Using ep = ēp + εp, applying Cauchy-Schwarz inequality, and using the estimate
(3.3b), we obtain

β

2

N
∑

i=1

(

ē+q − ē−q
)2 ∣
∣

i
= −β

∫

I

ēpēqdx− β

∫

I

εpēqdx ≤ β ‖ēq‖ ‖ēp‖ − β

∫

I

εpēqdx

≤ C1h
k+3/2 ‖ēp‖ − β

∫

I

εpēqdx.(3.9)

Inequality 2: Adding (2.16a) and (2.16c) with z = αv, where v ∈ P k(Ii), we
obtain

∫

Ii

((eu)t + αeq) vdx+ β

∫

Ii

(ēp)xvdx− βē−p v
−
∣

∣

i
+ βē+p v

−
∣

∣

i
= 0.

Taking the test function as v = ēp and using the fact that
∫

Ii
ēp(ēp)xdx = 1

2 (ē
−
p )

2
∣

∣

i
−

1
2 (ē

+
p )

2
∣

∣

i−1
, we get

∫

Ii

((eu)t + αeq) ēpdx−
β

2

(

ē+p − ē−p
)2 ∣
∣

i
+
β

2
(ē+p )

2
∣

∣

i
−
β

2
(ē+p )

2
∣

∣

i−1
= 0,

which, after summing over all elements and applying the periodic boundary condi-
tions, yields

β

2

N
∑

i=1

(

ē+p − ē−p
)2 ∣
∣

i
=

∫

I

((eu)t + αeq) ēpdx.

Using (2.12), applying Cauchy-Schwarz inequality, and using the estimates (3.3a)
and (3.3b), we obtain

β

2

N
∑

i=1

(

ē+p − ē−p
)2 ∣
∣

i
≤

(

‖(ēu)t‖+ α ‖ēq‖

)

‖ēp‖+

∫

I

((εu)t + αεq) ēpdx

≤ C2h
k+3/2 ‖ēp‖+

∫

I

((εu)t + αεq) ēpdx.(3.10)
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Inequality 3: We take v = −ēq in (2.16a), w = βēp in (2.16b), and z = −αēq in
(2.16c) to obtain

−

∫

Ii

(eu)tēqdx− α

∫

Ii

(ēu)xēqdx− αē+u ē
+
q

∣

∣

i−1
+ αē−u ē

+
q

∣

∣

i−1

−β

∫

Ii

(ēp)xēqdx+ βē−p ē
−
q

∣

∣

i
− βē+p ē

−
q

∣

∣

i
= 0,

β

∫

Ii

epēpdx− β

∫

Ii

(ēq)xēpdx+ βē−q ē
−
p

∣

∣

i
− βē+q ē

−
p

∣

∣

i
= 0,

−α

∫

Ii

eqēqdx + α

∫

Ii

(ēu)xēqdx+ αē+u ē
+
q

∣

∣

i−1
− αē−u ē

+
q

∣

∣

i−1
= 0.

Adding these three equations and integrating
∫

Ii
(ēp)xēqdx by parts, we get

β

∫

Ii

epēpdx−

∫

Ii

((eu)t + αeq)ēqdx− βē+p ē
−
q

∣

∣

i
+ βē+p ē

+
q

∣

∣

i−1
+ βē−q ē

−
p

∣

∣

i
− βē+q ē

−
p

∣

∣

i
= 0,

or equivalently,

β

∫

Ii

ē2pdx− α

∫

Ii

ē2qdx−

∫

Ii

(ēu)tēqdx−

∫

Ii

((εu)t + αεq)ēqdx+ β

∫

Ii

εpēpdx +

β
(

ē+q − ē−q
) (

ē+p − ē−p
) ∣

∣

i
− βē+p ē

+
q

∣

∣

i
+ βē+p ē

+
q

∣

∣

i−1
= 0.

Summing over all elements and using the periodic boundary conditions, we get

β ‖ēp‖
2
+ β

N
∑

i=1

(

ē+q − ē−q
) (

ē+p − ē−p
) ∣

∣

i
= α ‖ēq‖

2
+

∫

I

(ēu)tēqdx

+

∫

I

((εu)t + αεq)ēqdx− β

∫

I

εpēpdx,

which, after using the inequality − 1
2a

2 − 1
2b

2 ≤ ab with a =
(

ē+q − ē−q
) ∣

∣

i
and

b =
(

ē+p − ē−p
) ∣

∣

i
, yields

β ‖ēp‖
2 −

β

2

N
∑

i=1

(

(ē+q − ē−q )
2 + (ē+p − ē−p )

2
)∣

∣

i
≤ α ‖ēq‖

2 +

∫

I

(ēu)tēqdx

+

∫

I

((εu)t + αεq)ēqdx− β

∫

I

εpēpdx.

Applying Cauchy-Schwarz inequality and using the estimates (3.3a) and (3.3b), we
obtain

β ‖ēp‖
2
−
β

2

N
∑

i=1

(

(ē+q − ē−q )
2 + (ē+p − ē−p )

2
)∣

∣

i
≤ α ‖ēq‖

2
+ ‖(ēu)t‖ ‖ēq‖

+

∫

I

((εu)t + αεq)ēqdx− β

∫

I

εpēpdx

≤ C3h
2k+3 +

∫

I

((εu)t + αεq)ēqdx− β

∫

I

εpēpdx.(3.11)

Now we combine (3.9), (3.10), and (3.11) to obtain

β ‖ēp‖
2
≤ C3h

2k+3 + C4h
k+3/2 ‖ēp‖+

∫

I

((εu)t + αεq − βεp) (ēq + ēp) dx.(3.12)



LOCAL DG FOR THE 1D LINEARIZED KORTEWEG-DE VRIES EQUATION 181

Substituting (2.17) into the last term of the right-hand side of (3.12) and using the
fact that (εu)t, εq, and εp are orthogonal to any piecewise constant functions, which
are due to the properties in (2.13), we get

β ‖ēp‖
2
≤ C3h

2k+3 + C4h
k+3/2 ‖ēp‖+

N
∑

i=1

∫

Ii

((εu)t + αεq − βεp)
x− xi−1

hi
(di + gi) dx.

Applying Cauchy-Schwarz inequality, using (2.18), (3.1), and the projection results
(2.19), we obtain

β ‖ēp‖
2

≤ C3h
2k+3 + C4h

k+3/2 ‖ēp‖

+

(

max
x∈I

|φ3(x)|

)(

‖(εu)t‖+ α ‖εq‖+ β ‖εp‖

)(

‖d‖+ ‖g‖

)

≤ C4h
k+3/2 ‖ēp‖+ C5h

2k+3.

Dividing by β and using the inequality ab ≤ 1
2a

2 + 1
2b

2 with a = C4

β h
k+3/2 and

b = ‖ēp‖ yields

‖ēp‖
2 ≤

C2
4

2β2
h2k+3 +

1

2
‖ēp‖

2 +
C5

β
h2k+3.

Thus,

‖ēp‖
2 ≤

C2
4

β2
h2k+3 +

2C5

β
h2k+3,

which completes the proof of (3.3c). �

Before we state the superconvergence results at Radau points, we recall some
results from [11] which will be needed in our error analysis. We first define four
interpolation operators π± and π̂±. The projection π+ is defined as follows: For any
function u, π+u

∣

∣

Ii
∈ P k(Ii) and interpolates u at the roots of the (k+1)-degree right

Radau polynomial shifted to Ii, x
+
i,j , j = 0, 1, . . . , k, defined in (2.10). Similarly,

π−u
∣

∣

Ii
∈ P k(Ii) and interpolates u at x−i,j , j = 0, 1, . . . , k. Next, the interpolation

operators π̂± are such that π̂±u
∣

∣

Ii
∈ P k+1(Ii) and are defined as follows: π̂+u

∣

∣

Ii

interpolates u at x+i,j , j = 0, 1, · · · , k, and at an additional point x̄1 in Ii with

x̄1 6= x+i,j , j = 0, 1, · · · , k. Similarly, π̂−u
∣

∣

Ii
interpolates u at x−i,j , j = 0, 1, · · · , k,

and at an additional point x̄2 in Ii with x̄2 6= x−i,j , j = 0, 1, · · · , k.

In the next lemma, we recall some properties of the operators P±
h and π± needed

in our analysis [11]. In particular, we show that the interpolation errors can be
divided into significant parts and less significant parts.

Lemma 3.2. Let u, q = ux, p = uxx ∈ Hk+2, and P±
h and π± as defined above. If

(3.13) ψ−
k+1,i(x) =

k
∏

j=0

(x − x−i,j), ψ+
k+1,i(x) =

k
∏

j=0

(x− x+i,j),

then the interpolation errors can be split as:

(3.14a) u− π+u = φ1 + γ1, φ1(x, t) = α1(t)ψ
+
k+1,i(x), γ1 = u− π̂+u, on Ii,

(3.14b) q − π−q = φ2 + γ2, φ2(x, t) = α2(t)ψ
−
k+1,i(x), γ2 = q − π̂−q, on Ii,

(3.14c) p− π−p = φ3 + γ3, φ3(x, t) = α3(t)ψ
−
k+1,i(x), γ3 = p− π̂−p, on Ii,
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where α1(t), α2(t), and α3(t) are the coefficients of xk+1 in the (k + 1)-degree
polynomials π̂+u, π̂−q, and π̂−p, respectively, and
(3.14d)

‖φ1‖s,Ii ≤ Chk+1−s
i ‖u‖k+1,Ii

, 0 ≤ s ≤ k, ‖γ1‖s,Ii ≤ Chk+2−s
i ‖u‖k+2,Ii

, 0 ≤ s ≤ k+1.

(3.14e)

‖φ2‖s,Ii ≤ Chk+1−s
i ‖q‖k+1,Ii

, 0 ≤ s ≤ k, ‖γ2‖s,Ii ≤ Chk+2−s
i ‖q‖k+2,Ii

, 0 ≤ s ≤ k+1.

(3.14f)

‖φ3‖s,Ii ≤ Chk+1−s
i ‖p‖k+1,Ii

, 0 ≤ s ≤ k, ‖γ3‖s,Ii ≤ Chk+2−s
i ‖p‖k+2,Ii

, 0 ≤ s ≤ k+1.

Moreover,
∥

∥π+u− P−
h u
∥

∥

i
≤ Chk+2

i ‖u‖k+2,Ii
,(3.15a)

∥

∥π−q − P+
h q
∥

∥

i
≤ Chk+2

i ‖q‖k+2,Ii
,(3.15b)

∥

∥π−p− P+
h p
∥

∥

i
≤ Chk+2

i ‖p‖k+2,Ii
.(3.15c)

Proof. The proofs of (3.14a), (3.14b), (3.14d), (3.14e), (3.15a), and (3.15b) can be
found in [11]. The proofs of the other results are similar and are omitted. �

Now we are ready to prove our main superconvergence results. In particular, we
show that the significant parts of the discretization error eu is proportional to the
(k+1)-degree right Radau polynomial and the significant parts of the discretization
errors eq and ep are proportional to (k + 1)-degree left Radau polynomials.

Theorem 3.2. Under the assumptions of theorem 3.1, there exists a positive con-
stant C such that ∀ t ∈ [0, T ],

∥

∥uh − π+u
∥

∥ ≤ Chk+3/2,
∥

∥qh − π−q
∥

∥ ≤ Chk+3/2,
∥

∥ph − π−p
∥

∥ ≤ Chk+3/2,(3.16)

and on Ii,

eu = α1ψ
+
k+1,i + ω1, eq = α2ψ

−
k+1,i + ω2, ep = α3ψ

−
k+1,i + ω3,(3.17a)

where

(3.17b) ω1 = γ1 + π+u− uh, ω2 = γ2 + π−q − qh, ω3 = γ3 + π−p− ph,

and

(3.18)

N
∑

i=1

‖∂sxωj‖
2
i ≤ C h2(k−s)+3, j = 1, 2, 3, s = 0, 1.

Finally,

(3.19) ‖eu‖
2
1,I ≤ Ch2k, ‖eq‖

2
1,I ≤ Ch2k, ‖ep‖

2
1,I ≤ Ch2k.

Proof. Adding and subtracting P−
h u, P

+
h q, and P

+
h p to uh − π+u, qh − π−q, and

ph − π−p, respectively, we write

uh − π+u = −ēu + P−
h u− π+u, qh − π−q = −ēq + P+

h q − π−q,

ph − π−p = −ēp + P+
h p− π−p.

Taking the L2-norm and applying the triangle inequality, we get
∥

∥uh − π+u
∥

∥ ≤ ‖ēu‖+
∥

∥P−
h u− π+u

∥

∥ ,
∥

∥qh − π−q
∥

∥ ≤ ‖ēq‖+
∥

∥P+
h q − π−q

∥

∥ ,
∥

∥ph − π−p
∥

∥ ≤ ‖ēp‖+
∥

∥P+
h p− π−p

∥

∥ .

Using the estimates (2.21e), (3.3b), (3.3c), and (3.15a) we establish (3.16).
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Adding and subtracting π+u, π−q, and π−p to eu, eq, and ep, respectively, we get

eu = u− π+u+ π+u− uh, eq = q − π−q + π−q − qh, ep = p− π−p+ π−p− ph.

Furthermore, one can split the interpolation errors u− π+u, q − π−q, and p− π−p
on Ii as in (3.14a)-(3.14c) to obtain

eu = φ1 + γ1 + π+u− uh = φ1 + ω1, where ω1 = γ1 + π+u− uh,(3.20a)

eq = φ2 + γ2 + π−q − qh = φ2 + ω2, where ω2 = γ2 + π−q − qh,(3.20b)

ep = φ3 + γ3 + π−p− ph = φ3 + ω3, where ω3 = γ3 + π−p− ph.(3.20c)

Next, we use Cauchy-Schwarz inequality and the inequality |ab| ≤ 1
2 (a

2 + b2) to
write

‖ω1‖
2
i =

(

γ1 + π+u− uh, γ1 + π+u− uh
)

i
= ‖γ1‖

2
i + 2

(

γ1, π
+u− uh

)

i
+
∥

∥π+u− uh
∥

∥

2

i

≤ 2
(

‖γ1‖
2
i +

∥

∥π+u− uh
∥

∥

2

i

)

,

‖ω2‖
2
i =

(

γ2 + π−q − qh, γ2 + π−q − qh
)

i
= ‖γ2‖

2
i + 2

(

γ2, π
−q − qh

)

i
+
∥

∥π−q − qh
∥

∥

2

i

≤ 2
(

‖γ2‖
2
i +

∥

∥π−q − qh
∥

∥

2

i

)

‖ω3‖
2
i =

(

γ3 + π−p− ph, γ3 + π−p− ph
)

i
= ‖γ3‖

2
i + 2

(

γ3, π
−p− ph

)

i
+
∥

∥π−p− ph
∥

∥

2

i

≤ 2
(

‖γ3‖
2
i +

∥

∥π−p− ph
∥

∥

2

i

)

.

Summing over all elements and applying (3.14d)-(3.14d) and (3.16) yields

N
∑

i=1

‖ωj‖
2
i ≤ C1h

2k+4 + C2h
2k+3 ≤ Ch2k+3, j = 1, 2, 3,

which completes the proof of (3.18) for s = 0.
In order to prove the estimates (3.18) for s = 1, we use Cauchy-Schwarz inequality
and the inequality |ab| ≤ 1

2 (a
2 + b2) to get

‖(ω1)x‖
2
i =

((

γ1 + π+u− uh
)

x
,
(

γ1 + π+u− uh
)

x

)

i
≤ 2

[

‖(γ1)x‖
2
i +

∥

∥(π+u− uh)x
∥

∥

2

i

]

,

‖(ω2)x‖
2
i =

((

γ2 + π−q − qh
)

x
,
(

γ2 + π−q − qh
)

x

)

i
≤ 2

[

‖(γ2)x‖
2
i +

∥

∥(π−q − qh)x
∥

∥

2

i

]

,

‖(ω3)x‖
2
i =

((

γ3 + π−p− ph
)

x
,
(

γ3 + π−p− ph
)

x

)

i
≤ 2

[

‖(γ3)x‖
2
i +

∥

∥(π−p− ph)x
∥

∥

2

i

]

.

Using the inverse inequalities ‖(π+u− uh)x‖i ≤ Ch−1 ‖π+u− uh‖i, ‖(π
−q − qh)x‖i ≤

Ch−1 ‖π−q − qh‖i, and ‖(π−p− ph)x‖i ≤ Ch−1 ‖π−p− ph‖i, we obtain the esti-
mates

‖(ω1)x‖
2
i ≤ C

[

‖(γ1)x‖
2
i + h−2

∥

∥π+u− uh
∥

∥

2

i

]

,

‖(ω2)x‖
2
i ≤ C

[

‖(γ2)x‖
2
i + h−2

∥

∥π−q − qh
∥

∥

2

i

]

,

‖(ω3)x‖
2
i ≤ C

[

‖(γ3)x‖
2
i + h−2

∥

∥π−p− ph
∥

∥

2

i

]

.

Summing over all elements and applying the standard error estimates (3.14d)-
(3.14f) and the estimate (3.16) we establish (3.18) for s = 1.
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In order to show (3.19), we note that

‖eu‖
2
1,I = ‖eu‖

2
+

N
∑

i=1

‖(eu)x‖
2
i , ‖eq‖

2
1,I = ‖eq‖

2
+

N
∑

i=1

‖(eq)x‖
2
i ,

‖ep‖
2
1,I = ‖ep‖

2
+

N
∑

i=1

‖(ep)x‖
2
i .(3.21)

Differentiating (3.20) with respect to x, taking the L2-norm, and using Cauchy-
Schwarz inequality and the inequality |ab| ≤ 1

2 (a
2 + b2) leads to

‖(eu)x‖
2
i = ((φ1)x + (ω1)x, (φ1)x + (ω1)x)i ≤ 2

[

‖(φ1)x‖
2
i + ‖(ω1)x‖

2
i

]

,

‖(eq)x‖
2
i = ((φ2)x + (ω2)x, (φ2)x + (ω2)x)i ≤ 2

[

‖(φ2)x‖
2
i + ‖(ω2)x‖

2
i

]

,

‖(ep)x‖
2
i = ((φ3)x + (ω3)x, (φ3)x + (ω3)x)i ≤ 2

[

‖(φ3)x‖
2
i + ‖(ω3)x‖

2
i

]

.

Summing over all elements and applying (3.14d)-(3.14f), and (3.18) we obtain

N
∑

i=1

‖(eu)x‖
2
i ≤ Ch2k,

N
∑

i=1

‖(eq)x‖
2
i ≤ Ch2k,

N
∑

i=1

‖(ep)x‖
2
i ≤ Ch2k.(3.22)

Finally, substituting (2.21a), (2.21c), (2.21d), and (3.22) into (3.21) establishes
(3.19). �

4. A posteriori error estimation

In this section, we present a technique to compute asymptotically correct a
posteriori estimates of the LDG errors. These estimates are computed by solving
a local steady problem with no boundary conditions on each element. We further
prove that the LDG discretization error estimates converge to the true spatial errors
in the L2-norm as h→ 0.
We first present the weak finite element formulations to compute a posteriori error
estimates for the linearized KdV equation (1.1). Multiplying the three equations
in (2.1) by test functions v, w, and z, respectively, integrating over an arbitrary
element Ii, and replacing u by uh + eu, q by qh + eq, and p by ph + ep we get

∫

Ii

(α(eu)x + β(ep)x) vdx =

∫

Ii

(Rh,1 − (eu)t) vdx, x ∈ [a, b], t ∈ [0, T ],(4.1a)

−

∫

Ii

(eq)xwdx =

∫

Ii

(Rh,2 − ep)wdx, x ∈ [a, b], t ∈ [0, T ],(4.1b)

−

∫

Ii

(eu)xzdx =

∫

Ii

(Rh,3 − eq) zdx, x ∈ [a, b], t ∈ [0, T ],(4.1c)

where

(4.1d) Rh,1 = −(uh)t−α(uh)x−β(ph)x, Rh,2 = (qh)x−ph, Rh,3 = (uh)x−qh.
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Substituting (3.17) into the left-hand sides of (4.1a)-(4.1c) and choosing v = z =
ψ+
k+1,i(x), w = ψ−

k+1,i(x), we obtain
∫

Ii

(

αα1ψ
+
k+1,i

′
+ βα3ψ

−
k+1,i

′
)

ψ+
k+1,idx =

∫

Ii

(Rh,1 − (eu)t − α(ω1)x − β(ω3)x)ψ
+
k+1,idx,

−α2

∫

Ii

ψ−
k+1,i

′
ψ−
k+1,idx =

∫

Ii

(Rh,2 − ep + (ω2)x)ψ
−
k+1,idx,

−α1

∫

Ii

ψ+
k+1,i

′
ψ+
k+1,idx =

∫

Ii

(Rh,3 − eq + (ω1)x)ψ
+
k+1,idx.(4.2)

Using the properties in (2.11) and solving for αi, i = 1− 3, we obtain

α1(t) =
1

2c2kh
2k+2
i

∫

Ii

(Rh,3 − eq + (ω1)x)ψ
+
k+1,idx,(4.3a)

α2(t) = −
1

2c2kh
2k+2
i

∫

Ii

(Rh,2 − ep + (ω2)x)ψ
−
k+1,idx,(4.3b)

α3(t) = −
1

2βc2kh
2k+2
i

∫

Ii

(Rh,1 + αRh,3 − (eu)t − αeq − β(ω3)x)ψ
+
k+1,idx.(4.3c)

Our error estimate procedure consists of approximating the true errors on each
element Ii by the leading terms as eu ≈ Eu, eq ≈ Eq, and ep ≈ Ep, where

Eu = a1(t)ψ
+
k+1,i(x), Eq = a2(t)ψ

−
k+1,i(x), Ep = a3(t)ψ

−
k+1,i(x), x ∈ Ii,(4.4)

where the coefficients of the leading terms of the errors, ai, i = 1− 3, are obtained
from the coefficients αi, i = 1−3 defined in (4.3) by neglecting the terms ωi, eq, ep,
and the time change (eu)t, i.e.,

a1(t) =
1

2c2kh
2k+2
i

∫

Ii

Rh,3ψ
+
k+1,idx, a2(t) = −

1

2c2kh
2k+2
i

∫

Ii

Rh,2ψ
−
k+1,idx,

a3(t) = −
1

2βc2kh
2k+2
i

∫

Ii

(Rh,1 + αRh,3)ψ
+
k+1,idx.(4.5)

An accepted efficiency measure of a posteriori error estimates is the effectivity
index. In this paper, we use the global effectivity indices

θu(t) =
‖Eu‖

‖eu‖
, θq(t) =

‖Eq‖

‖eq‖
, θp(t) =

‖Ep‖

‖ep‖
.

Ideally, the global effectivity indices should stay close to one and should converge
to one under mesh refinement.
Next, we will show that the error estimates Eu, Eq, and Ep converge to the exact
errors eu, eq, and ep, respectively, in the L2-norm as h → 0. Furthermore we will
prove the convergence to unity of the global effectivity indices θu(t), θq(t), and θp(t)
under mesh refinement.
Before stating our main result we state and prove the following preliminary results.

Theorem 4.1. Suppose that (u, q, p) and (uh, qh, ph), respectively, are solutions
of (2.1) and (2.3). If αj , j = 1− 3 and aj, j = 1− 3 are given by (4.3) and (4.5),
respectively, then there exists a positive constant C independent of h such that, at
any fixed time t ∈ [0, T ],

N
∑

i=1

(a1 − α1)
2
∥

∥

∥ψ+
k+1,i

∥

∥

∥

2

i
≤ Ch2k+3,

N
∑

i=1

(a2 − α2)
2
∥

∥

∥ψ−
k+1,i

∥

∥

∥

2

i
≤ Ch2k+3,
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(4.6)
N
∑

i=1

(a3 − α3)
2
∥

∥

∥
ψ+
k+1,i

∥

∥

∥

2

i
≤ Ch2k+3.

Proof. Subtracting (4.3) from (4.5) we obtain

a1 − α1 =
1

2c2kh
2k+2
i

∫

Ii

(eq − (ω1)x)ψ
+
k+1,idx,(4.7a)

a2 − α2 = −
1

2c2kh
2k+2
i

∫

Ii

(ep − (ω2)x)ψ
−
k+1,idx,(4.7b)

a3 − α3 = −
1

2βc2kh
2k+2
i

∫

Ii

((eu)t + αeq + β(ω3)x)ψ
+
k+1,idx.(4.7c)

Using the inequalities (a + b)2 ≤ 2(a2 + b2), (a + b + c)2 ≤ 3(a2 + b2 + c2), and
applying Cauchy-Schwarz inequality yields

(a1 − α1)
2 ≤

1

2c4kh
4k+4
i

∥

∥

∥ψ+
k+1,i

∥

∥

∥

2

i

(

‖eq‖
2
i + ‖(ω1)x‖

2
i

)

,(4.8a)

(a2 − α2)
2 ≤

1

2c4kh
4k+4
i

∥

∥

∥ψ−
k+1,i

∥

∥

∥

2

i

(

‖ep‖
2
i + ‖(ω2)x‖

2
i

)

,(4.8b)

(a3 − α3)
2 ≤

3

4β2c4kh
4k+4
i

∥

∥

∥
ψ+
k+1,i

∥

∥

∥

2

i

(

‖(eu)t‖
2
i + α2 ‖eq‖

2
i + β2 ‖(ω3)x‖

2
i

)

.(4.8c)

Multiplying (4.8a) by
∥

∥

∥ψ+
k+1,i

∥

∥

∥

2

i
and (4.8b) and (4.8c) by

∥

∥

∥ψ−
k+1,i

∥

∥

∥

2

i
and using

(2.11b) and (2.11c), we get

(a1 − α1)
2
∥

∥

∥
ψ+
k+1,i

∥

∥

∥

2

i
≤ c̃kh

2
i

(

‖eq‖
2
i + ‖(ω1)x‖

2
i

)

,(4.9a)

(a2 − α2)
2
∥

∥

∥ψ−
k+1,i

∥

∥

∥

2

i
≤ c̃kh

2
i

(

‖ep‖
2
i + ‖(ω2)x‖

2
i

)

,(4.9b)

(a3 − α3)
2
∥

∥

∥ψ−
k+1,i

∥

∥

∥

2

i
≤

3c̃k
2β2

h2i

(

‖(eu)t‖
2
i + α2 ‖eq‖

2
i + β2 ‖(ω3)x‖

2
i

)

,(4.9c)

where c̃k is a constant given by

(4.9d) c̃k =
d2k
2c4k

=
2(2k + 2)2

(2k + 1)2(2k + 3)2
.

Finally, summing over all elements and using the fact that h = max
1≤i≤N

hi, we write

N
∑

i=1

(a1 − α1)
2
∥

∥

∥ψ+
k+1,i

∥

∥

∥

2

i
≤ c̃kh

2

(

‖eq‖
2
+

N
∑

i=1

‖(ω1)x‖
2
i

)

,(4.10a)

N
∑

i=1

(a2 − α2)
2
∥

∥

∥ψ−
k+1,i

∥

∥

∥

2

i
≤ c̃kh

2

(

‖ep‖
2
+

N
∑

i=1

‖(ω2)x‖
2
i

)

,(4.10b)

N
∑

i=1

(a3 − α3)
2
∥

∥

∥ψ−
k+1,i

∥

∥

∥

2

i
≤

3c̃k
2β2

h2

(

‖(eu)t‖
2 + α2 ‖eq‖

2 + β2
N
∑

i=1

‖(ω3)x‖
2
i

)

.(4.10c)

Combining this estimate with (2.21b), (2.21c), (2.21d), and (3.18) we establish
(4.6). �
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Theorem 4.2. Under the assumptions of theorem 4.1, there exists a positive con-
stant C independent of h such that, at any fixed t, we have

N
∑

i=1

(a1 + α1)
2
∥

∥

∥ψ+
k+1,i

∥

∥

∥

2

i
≤ Ch2k+2,

N
∑

i=1

(a2 + α2)
2
∥

∥

∥ψ−
k+1,i

∥

∥

∥

2

i
≤ Ch2k+2,

N
∑

i=1

(a3 + α3)
2
∥

∥

∥
ψ−
k+1,i

∥

∥

∥

2

i
≤ Ch2k+2.(4.11)

Proof. Using (2.1), we rewrite (4.1d) as

(4.12) Rh,1 = (eu)t + α(eu)x + β(ep)x, Rh,2 = ep − (eq)x, Rh,3 = eq − (eu)x.

Combining (4.12) and (4.5) we obtain

a21 =
1

4c4kh
4k+4
i

[∫

Ii

(eq − (eu)x)ψ
+
k+1,idx

]2

,(4.13a)

a22 =
1

4c4kh
4k+4
i

[∫

Ii

(ep − (eq)x)ψ
−
k+1,idx

]2

,(4.13b)

a23 =
1

4β2c4kh
4k+4
i

[∫

Ii

((eu)t + αeq + β(ep)x)ψ
+
k+1,idx

]2

.(4.13c)

Applying the inequalities (a+ b)2 ≤ 2(a2 + b2), (a+ b+ c)2 ≤ 3(a2 + b2 + c2), and
Cauchy-Schwarz inequality yields

a21 ≤
1

2c4kh
4k+4
i

∥

∥

∥ψ+
k+1,i

∥

∥

∥

2

i

(

‖eq‖
2
i + ‖(eu)x‖

2
i

)

,(4.14a)

a22 ≤
1

2c4kh
4k+4
i

∥

∥

∥ψ−
k+1,i

∥

∥

∥

2

i

(

‖ep‖
2
i + ‖(eq)x‖

2
i

)

,(4.14b)

a23 ≤
3

4β2c4kh
4k+4
i

∥

∥

∥ψ+
k+1,i

∥

∥

∥

2

i

(

‖(eu)t‖
2
i + α2 ‖eq‖

2
i + β2 ‖(ep)x‖

2
i

)

.(4.14c)

Multiplying (4.14a) by
∥

∥

∥ψ+
k+1,i

∥

∥

∥

2

i
and (4.14b) and (4.14c) by

∥

∥

∥ψ−
k+1,i

∥

∥

∥

2

i
, using

(2.11b), h = max
1≤i≤N

hi, and summing over all elements, we obtain

N
∑

i=1

a21

∥

∥

∥ψ+
k+1,i

∥

∥

∥

2

i
≤ c̃kh

2

(

‖eq‖
2
+

N
∑

i=1

‖(eu)x‖
2
i

)

≤ c̃kh
2
(

‖eq‖
2
+ ‖eu‖

2
1,I

)

,

N
∑

i=1

a22

∥

∥

∥ψ−
k+1,i

∥

∥

∥

2

i
≤ c̃kh

2

(

‖ep‖
2
+

N
∑

i=1

‖(eq)x‖
2
i

)

≤ c̃kh
2
(

‖ep‖
2
+ ‖eq‖

2
1,I

)

,

N
∑

i=1

a23

∥

∥

∥
ψ−
k+1,i

∥

∥

∥

2

i
≤

3c̃k
2β2

h2
(

‖(eu)t‖
2 + α2 ‖eq‖

2 + β2 ‖ep‖
2
1,I

)

,

where c̃k is the same constant defined in (4.9d).
Using the estimates (2.21b), (2.21c), (2.21d), and (3.19), we obtain

N
∑

i=1

a21

∥

∥

∥ψ+
k+1,i

∥

∥

∥

2

i
≤ Ch2k+2,

N
∑

i=1

a22

∥

∥

∥ψ−
k+1,i

∥

∥

∥

2

i
≤ Ch2k+2,

N
∑

i=1

a23

∥

∥

∥ψ−
k+1,i

∥

∥

∥

2

i
≤ Ch2k+2.

(4.15)
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Taking the L2 inner product of ψ±
k+1,i and φj , j = 1− 3, defined in (3.14a)-(3.14c),

and applying Cauchy-Schwarz inequality, we get

|α1|
∥

∥

∥ψ+
k+1,i

∥

∥

∥

2

i
=
∣

∣(φ1, ψ
+
k+1,i)i

∣

∣ ≤
∥

∥

∥ψ+
k+1,i

∥

∥

∥

i
‖φ1‖i ,

|α2|
∥

∥

∥ψ−
k+1,i

∥

∥

∥

2

i
=
∣

∣(φ2, ψ
−
k+1,i)i

∣

∣ ≤
∥

∥

∥ψ−
k+1,i

∥

∥

∥

i
‖φ2‖i ,

|α3|
∥

∥

∥ψ−
k+1,i

∥

∥

∥

2

i
=
∣

∣(φ3, ψ
−
k+1,i)i

∣

∣ ≤
∥

∥

∥ψ−
k+1,i

∥

∥

∥

i
‖φ3‖i .

Hence, we have

α2
1

∥

∥

∥
ψ+
k+1,i

∥

∥

∥

2

i
≤ ‖φ1‖

2
i , α2

2

∥

∥

∥
ψ−
k+1,i

∥

∥

∥

2

i
≤ ‖φ2‖

2
i , α2

3

∥

∥

∥
ψ−
k+1,i

∥

∥

∥

2

i
≤ ‖φ3‖

2
i .

Summing over all elements and applying (3.14a)-(3.14c) we get

N
∑

i=1

α2
1

∥

∥

∥ψ+
k+1,i

∥

∥

∥

2

i
≤

N
∑

i=1

‖φ1‖
2
i ≤ Ch2k+2,

N
∑

i=1

α2
2

∥

∥

∥ψ−
k+1,i

∥

∥

∥

2

i
≤

N
∑

i=1

‖φ2‖
2
i ≤ Ch2k+2,

(4.16)

N
∑

i=1

α2
3

∥

∥

∥ψ−
k+1,i

∥

∥

∥

2

i
≤

N
∑

i=1

‖φ3‖
2
i ≤ Ch2k+2.

Adding (4.15) and (4.16) and using the inequality (a + b)2 ≤ 2(a2 + b2) yields
(4.11). �

The main results of this section are stated in the following theorem. In particular
we state and prove asymptotic results of our a posteriori error estimates.

Theorem 4.3. Let k ≥ 1 and (u, q, p) and (uh, qh, ph), respectively, are solutions of
(2.1) and (2.3) subject to the approximated initial condition uh(x, 0) = P 1

hu(x, 0).
If Eu, Eq, and Ep are given in (4.4), where aj, j = 1− 3 are defined in (4.5), then
there exists a positive constant C independent of h such that

‖eu − Eu‖
2
≤ C h2k+3, ‖eq − Eq‖

2
≤ C h2k+3, ‖ep − Ep‖

2
≤ C h2k+3.(4.17)

Furthermore, there exist positive constants C1 − C3 independent of h such that

‖eu‖
2 =

N
∑

i=1

a21

∥

∥

∥
ψ+
k+1,i

∥

∥

∥

2

i
+ ε̂1, where |ε̂1| ≤ C1h

2k+5/2,(4.18a)

‖eq‖
2

=

N
∑

i=1

a22

∥

∥

∥ψ−
k+1,i

∥

∥

∥

2

i
+ ε̂2, where |ε̂2| ≤ C2h

2k+5/2,(4.18b)

‖ep‖
2

=

N
∑

i=1

a23

∥

∥

∥ψ−
k+1,i

∥

∥

∥

2

i
+ ε̂3, where |ε̂3| ≤ C3h

2k+5/2.(4.18c)

and, as h→ 0 with t kept fixed,

(4.19)
‖Eu‖

2

‖eu‖
2 = 1 +O(h1/2),

‖Eq‖
2

‖eq‖
2 = 1 +O(h1/2),

‖Ep‖
2

‖ep‖
2 = 1 +O(h1/2).
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Proof. First, we will prove (4.17). Subtracting (4.4) from (3.17a) and using (a +
b)2 ≤ 2a2 + 2b2, we obtain

‖eu − Eu‖
2
i =

∥

∥

∥(α1 − a1)ψ
+
k+1,i + ω1

∥

∥

∥

2

i
≤ 2(α1 − a1)

2
∥

∥

∥ψ+
k+1,i

∥

∥

∥

2

i
+ 2 ‖ω1‖

2
i ,

‖eq − Eq‖
2
i =

∥

∥

∥(α2 − a2)ψ
−
k+1,i + ω2

∥

∥

∥

2

i
≤ 2(α2 − a2)

2
∥

∥

∥ψ−
k+1,i

∥

∥

∥

2

i
+ 2 ‖ω2‖

2
i ,

‖ep − Ep‖
2
i =

∥

∥

∥(α3 − a3)ψ
−
k+1,i + ω3

∥

∥

∥

2

i
≤ 2(α3 − a3)

2
∥

∥

∥ψ−
k+1,i

∥

∥

∥

2

i
+ 2 ‖ω3‖

2
i ,

Summing over all elements and applying the estimates (3.18) and (4.6) yields

‖eu − Eu‖
2
=

N
∑

i=1

‖eu − Eu‖
2
i ≤ 2

N
∑

i=1

(α1 − a1)
2
∥

∥

∥ψ+
k+1,i

∥

∥

∥

2

i
+ 2

N
∑

i=1

‖ω1‖
2
i ≤ Ch2k+3,

‖eq − Eq‖
2 =

N
∑

i=1

‖eq − Eq‖
2
i ≤ 2

N
∑

i=1

(α2 − a2)
2
∥

∥

∥
ψ−
k+1,i

∥

∥

∥

2

i
+ 2

N
∑

i=1

‖ω2‖
2
i ≤ Ch2k+3,

‖ep − Ep‖
2
=

N
∑

i=1

‖ep − Ep‖
2
i ≤ 2

N
∑

i=1

(α3 − a3)
2
∥

∥

∥ψ−
k+1,i

∥

∥

∥

2

i
+ 2

N
∑

i=1

‖ω3‖
2
i ≤ Ch2k+3.

Next, we will prove (4.18). From (3.20) the LDG errors can be split as

eu = φ1 + ω1, eq = φ2 + ω2, ep = φ3 + ω3, x ∈ Ii.

Taking the L2 norm of the LDG errors, we obtain

‖eu‖
2
i = ‖φ1‖

2
i + 2(φ1, ω1)i + ‖ω1‖

2
i = α2

1

∥

∥

∥ψ+
k+1,i

∥

∥

∥

2

i
+ ε1,(4.20a)

‖eq‖
2
i = ‖φ2‖

2
i + 2(φ2, ω2)i + ‖ω2‖

2
i = α2

2

∥

∥

∥
ψ−
k+1,i

∥

∥

∥

2

i
+ ε2,(4.20b)

‖ep‖
2
i = ‖φ3‖

2
i + 2(φ3, ω3)i + ‖ω3‖

2
i = α2

3

∥

∥

∥ψ−
k+1,i

∥

∥

∥

2

i
+ ε3,(4.20c)

where

(4.20d) εj = 2(φj , ωj)i + ‖ωj‖
2
i , j = 1, 2, 3.

Summing over all elements we obtain

‖eu‖
2
=

N
∑

i=1

α2
1

∥

∥

∥ψ+
k+1,i

∥

∥

∥

2

i
+ε̃1, ‖eq‖

2
=

N
∑

i=1

α2
2

∥

∥

∥ψ−
k+1,i

∥

∥

∥

2

i
+ε̃2, ‖ep‖

2
=

N
∑

i=1

α2
3

∥

∥

∥ψ−
k+1,i

∥

∥

∥

2

i
+ε̃3,

where

ε̃1 =

N
∑

i=1

ε1, ε̃2 =

N
∑

i=1

ε2, ε̃3 =

N
∑

i=1

ε3.

Next, we write the LDG errors as

‖eu‖
2
=

N
∑

i=1

a21

∥

∥

∥ψ+
k+1,i

∥

∥

∥

2

i
+ ε̂1, ε̂1 =

N
∑

i=1

(α2
1 − a21)

∥

∥

∥ψ+
k+1,i

∥

∥

∥

2

i
+ ε̃1,(4.21a)

‖eq‖
2 =

N
∑

i=1

a22

∥

∥

∥ψ−
k+1,i

∥

∥

∥

2

i
+ ε̂2, ε̂2 =

N
∑

i=1

(α2
2 − a22)

∥

∥

∥ψ−
k+1,i

∥

∥

∥

2

i
+ ε̃2,(4.21b)

‖ep‖
2
=

N
∑

i=1

a23

∥

∥

∥ψ−
k+1,i

∥

∥

∥

2

i
+ ε̂3, ε̂3 =

N
∑

i=1

(α2
3 − a23)

∥

∥

∥ψ−
k+1,i

∥

∥

∥

2

i
+ ε̃3.(4.21c)
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Applying Cauchy-Schwarz inequality to (4.20d) yields

|εj | ≤ 2 ‖φj‖i ‖ωj‖i + ‖ωj‖
2
i , j = 1, 2, 3.

Summing over all elements and applying the Cauchy-Schwarz inequality with the
estimates (3.14d), (3.14e), (3.14f) and (3.18), we get

|ε̃j | ≤

N
∑

i=1

|εj | ≤ C h2k+5/2, j = 1, 2, 3.(4.22)

Next, we bound the first term in ε̂j, j = 1 − 3. Using Cauchy-Schwarz inequality,
the inequality (a+ b)2 ≤ 2a2 + 2b2, and applying Theorems 4.1 and 4.2, we obtain

N
∑

i=1

(α2
1 − a21)

∥

∥

∥ψ+
k+1,i

∥

∥

∥

2

i
=

N
∑

i=1

(α1 − a1)
∥

∥

∥ψ+
k+1,i

∥

∥

∥

i
(α1 + a1)

∥

∥

∥ψ+
k+1,i

∥

∥

∥

i

≤

(

N
∑

i=1

(α1 − a1)
2
∥

∥

∥ψ+
k+1,i

∥

∥

∥

2

i

)1/2( N
∑

i=1

(α1 + a1)
2
∥

∥

∥ψ+
k+1,i

∥

∥

∥

2

i

)1/2

≤ Ch2k+5/2,

N
∑

i=1

(α2
2 − a22)

∥

∥

∥ψ−
k+1,i

∥

∥

∥

2

i
=

N
∑

i=1

(α2 − a2)
∥

∥

∥ψ−
k+1,i

∥

∥

∥

i
(α2 + a2)

∥

∥

∥ψ−
k+1,i

∥

∥

∥

i

≤

(

N
∑

i=1
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Finally, combining these estimates with (4.21) and (4.22) completes the proof of
(4.18).
In order to prove (4.19) we use (4.18) to write

‖eu‖
2
= ‖Eu‖

2
+ ε̂1, ‖eq‖

2
= ‖Eq‖

2
+ ε̂2, ‖ep‖

2
= ‖Ep‖

2
+ ε̂3.

Using the fact that ‖eu‖
2
= O(h2k+2), ‖eq‖

2
= O(h2k+2), ‖ep‖

2
= O(h2k+2), and

ε̂j = O(h2k+5/2), j = 1− 3, we complete the proof of (4.19). �

In the previous theorem, we proved that the residual-based a posteriori error
estimates converge to the true spatial errors at O(hk+3/2) rate. We also proved
that the global effectivity indices in the L2-norm converge to unity at O(h1/2)
rate. We note that eu − Eu = u − (uh + Eu), eq − Eq = q − (qh + Eq), and
ep − Ep = p − (ph + Ep). Hence the computable quantities uh + Eu, qh + Eq,
and ph + Ep, respectively, converge to the exact solutions u, q = ux, and p = uxx
at O(hk+3/2) rate. We emphasize that this accuracy enhancement is achieved by
adding the error estimates to the approximate solutions only once at the end of
the computation i.e., at t = T . This leads to very efficient computations of the
post-processed approximations uh+Eu, qh+Eq, and ph+Ep. Additionally, Eu, Eq,
and Ep are computationally efficient because our LDG error estimates are obtained
by solving a local steady problem with no boundary conditions on each element.
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5. Numerical experiments

In this section, we present numerical experiments to validate our theoretical
results. We consider the following linear one-dimensional KdV equation

ut + ux + 2uxxx = 0, x ∈ [0, 2π], t ∈ [0, 1],

with an initial condition u(x, 0) = sin(x) and periodic boundary conditions. The
exact solution is given by u(x, t) = sin(x + t). We solve this problem using the
LDG method on uniform meshes having N = 5, 10, 20, 40 elements and using the
spaces P k with k = 1, 2 and 3. The initial condition is determined by the standard
L2 projection uh(x, 0) = Phu(x, 0). In fact, we have used the special projection
P 1
h , the projection P−

h , and the standard L2 projection as the initial condition
and observed similar results. To save space, we only report the results when the
standard L2 projection is used as the initial condition. Temporal integration is
performed by the fourth-order classical explicit Runge-Kutta method. A time step
∆t is chosen so that temporal errors are small relative to spatial errors. We do not
discuss the influence of the time discretization error in this paper.
In Figure 1, we present the L2 errors between the numerical solutions and the
projection of the exact solutions. The errors are plotted in log scale just for easy
visualization. For each P k space, we fit, in a least-squares sense, the data sets with
a linear function and then calculate from the fitting result the slopes of the fitting
lines. For each k, the slope of the fitting line is shown. These results indicate that
the LDG solution uh and its spatial derivatives qh, and ph areO(hk+2) super close to
the projections P−

h u, P
+
h q and P+

h p, respectively. Although the superconvergence
rate is proved to be of order k + 3/2, our computational results indicate that the
observed numerical convergence rate is higher than the theoretical rate.
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ē
q
||
)

 

 

k=1, slope =2.9696
k=2, slope =4.1021
k=3, slope =5.0041

−2 −1.5 −1 −0.5 0 0.5
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

log(h)

lo
g(
||
ē
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Figure 1: Log-log plots of ||ēu||, ||ēq|| and ||ēp|| at time t = 1 versus mesh sizes h
on uniform meshes having N = 5, 10, 20, 40 elements using P k, k = 1 to 3 (from
left to right).

We compute the maximum LDG errors ‖eu‖
∗
at shifted roots of (k + 1)-degree

right-Radau polynomial on each element Ii and then take the maximum over all
elements Ii, i = 1, · · · , N . Similarly, the maximum LDG errors ‖eq‖

∗
and ‖ep‖

∗
are

computed at shifted roots of (k+1)-degree left-Radau polynomial on each element
and by taking the maximum over all elements i.e.,

‖eu‖
∗ = max

1≤i≤N

(

max
1≤j≤k+1

|eu(x
+
j,i, t)|

)

, ‖eq‖
∗ = max

1≤i≤N

(

max
1≤j≤k+1

|eq(x
−
j,i, t)|

)

,

‖ep‖
∗
= max

1≤i≤N

(

max
1≤j≤k+1

|ep(x
−
k,i, t)|

)

,

where x±j,i are the shifted roots of R±
k+1,i on Ii.
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The maximum errors at the superconvergence points as well as their order of con-
vergence shown in Figure 2 indicate that the LDG errors eu, eq, and ep at time
t = 1 are O(hk+2) superconvergent at Radau points.
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Figure 2: Log-log plots of ||eu||
∗, ||eq||

∗ and ||ep||
∗ at time t = 1 versus mesh sizes

h on uniform meshes having N = 5, 10, 20, 40 elements using P k, k = 1 to 3.

On each element we apply the error estimation procedure (4.4)-(4.5) to compute
error estimates for the LDG solution and its derivatives up to second order. Let
δeu, δeq, δep and δθu, δθq, δθp be defined as

δeu(t) = ‖eu − Eu‖ , δeq(t) = ‖eq − Eq‖ , δep(t) = ‖ep − Ep‖ ,

δθu(t) =
∣

∣θu(t)− 1
∣

∣, δθq(t) =
∣

∣θq(t)− 1
∣

∣, δθp(t) =
∣

∣θp(t)− 1
∣

∣.

The results shown in Figure 3 indicate that the numerical convergence rate at t = 1
for δeu, δeq and δep is O(hk+3). The convergence rate is higher than the theoretical
rate which is proved to be of order k+3/2. Finally, the errors δθu, δθq, and δθp as
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Figure 3: Convergence rates at t = 1 for δeu, δeq and δep (left to right) on uniform
meshes having N = 5, 10, 20, 40 elements using P k, k = 1 to 3.

well as their order of convergence shown in Figure 4 suggest that the convergence
rate at t = 1 for δθu, δθq, and δθp is O(h2) under mesh refinement. These results
indicate that the observed numerical convergence rate is higher than the theoretical
rate which is proved to be O(h1/2). We note that the effectivity indices stay close
to unity for all times and converge under h- and p-refinements. Numerical results
further indicate that the error estimates converge to the true error with decreasing
mesh size and increasing polynomial degree k.

6. Concluding remarks

In this paper we constructed and analyzed a posteriori error estimates for the
LDG method for the linearized KdV equation in one space dimension. These error
estimates are computationally simple and are computed by solving a local steady
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Figure 4: Convergence rates at t = 1 for δθu, δθq, and δθp (left to right) on uniform
meshes having N = 5, 10, 20, 40 elements using P k, k = 1 to 3.

problem with no boundary conditions on each element. We first extended the work
of Hufford and Xing [30] to prove new superconvergence results for the auxiliary
variables in the LDG method that approximate the first and second derivatives of
the solution. More precisely, we proved that the (k+3/2)-th order superconvergence
rate holds also for the two auxiliary variables. We applied these superconvergence
results to show that the significant parts of the discretization errors for the k-degree
LDG solution and its spatial derivatives up to second order are proportional to
(k+1)-degree Radau polynomials. Superconvergence at Radau points were used to
construct residual-based a posteriori error estimates of the spatial errors. We proved
that, for smooth solutions, these a posteriori LDG error estimates for the solution
and its spatial derivatives at a fixed time t converge to the true errors at O(hk+3/2)
rate. Finally, we proved that the global effectivity indices, for the solution and its
derivatives in the L2-norm converge to unity at O(h1/2) rate. Our computational
results indicate that the observed numerical convergence rates are higher than the
theoretical rates. In our analysis time integration is assumed to be exact and thus
we are only estimating the spatial errors of the semi-discrete LDG method. The
extension of this proof for variable coefficient problems is straightforward. We are
currently investigating the superconvergence properties of the LDG method applied
to two-dimensional problems on rectangular and triangular meshes. Extending our
a posteriori error analysis to problems on tetrahedral meshes will be investigated
in the future. Finally, because we observed superconvergence of order k + 2 in
our numerical examples, future work will include investigating how to improve our
proofs to obtain optimal superconvergence results.

References

[1] S. Adjerid and M. Baccouch. The discontinuous Galerkin method for two-dimensional hy-
perbolic problems. Part I: Superconvergence error analysis. Journal of Scientific Computing,
33:75–113, 2007.

[2] S. Adjerid and M. Baccouch. The discontinuous Galerkin method for two-dimensional hy-
perbolic problems. Part II: A posteriori error estimation. Journal of Scientifc Computing,
38:15–49, 2009.

[3] S. Adjerid and M. Baccouch. Asymptotically exact a posteriori error estimates for a one-
dimensional linear hyperbolic problem. Applied Numerical Mathematics, 60:903–914, 2010.

[4] S. Adjerid and M. Baccouch. A superconvergent local discontinuous Galerkin method for
elliptic problems. Journal of Scientific Computing, 52:113–152, 2012.

[5] S. Adjerid, K. D. Devine, J. E. Flaherty, and L. Krivodonova. A posteriori error estimation
for discontinuous Galerkin solutions of hyperbolic problems. Computer Methods in Applied
Mechanics and Engineering, 191:1097–1112, 2002.

[6] M. Ainsworth and J. T. Oden. A posteriori Error Estimation in Finite Element Analysis.
John Wiley, New York, 2000.



194 M.BACCOUCH

[7] M. Baccouch. A superconvergent local discontinuous Galerkin method for the second-order
wave equation on cartesian grids. Computers and Mathematics with Applications, volume=.

[8] M. Baccouch. A local discontinuous Galerkin method for the second-order wave equation.
Computer Methods in Applied Mechanics and Engineering, 209–212:129–143, 2012.

[9] M. Baccouch. Asymptotically exact a posteriori error estimates for the one-dimensional
second-order wave equation. Under review, Numerical methods of partial differential equa-
tions, 2013.

[10] M. Baccouch. A posteriori error estimates for a discontinuous Galerkin method applied to
one-dimensional nonlinear scalar conservation laws. Applied Numerical Mathematics, 84:1–
21, 2014.

[11] M. Baccouch. Asymptotically exact a posteriori LDG error estimates for one-dimensional
transient convection-diffusion problems. Applied Mathematic and Computation, 226:455 –
483, 2014.

[12] M. Baccouch. Global convergence of a posteriori error estimates for a discontinuous Galerkin
method for one-dimensional linear hyperbolic problems. International Journal of Numerical
Analysis and Modeling, 11:172–193, 2014.

[13] M. Baccouch. The local discontinuous Galerkin method for the fourth-order Euler-Bernoulli
partial differential equation in one space dimension. Part I: Superconvergence error analysis.
Journal of Scientific Computing, 59:795–840, 2014.

[14] M. Baccouch. The local discontinuous Galerkin method for the fourth-order Euler-Bernoulli
partial differential equation in one space dimension. Part II: A posteriori error estimation.
Journal of Scientific Computing, 60:1–34, 2014.

[15] M. Baccouch. Superconvergence and a posteriori error estimates for the LDG method for
convection-diffusion problems in one space dimension. Computers & Mathematics with Ap-
plications, 67:1130–1153, 2014.

[16] M. Baccouch. Superconvergence of the local discontinuous Galerkin method applied to the
one-dimensional second-order wave equation. Numerical methods of partial differential equa-
tions, 30:862–901, 2014.

[17] M. Baccouch and S. Adjerid. Discontinuous Galerkin error estimation for hyperbolic problems
on unstructured triangular meshes. Computer Methods in Applied Mechanics and Engineer-
ing, 200:162–177, 2010.

[18] M. Baccouch and S. Adjerid. A posteriori local discontinuous Galerkin error estimation for
two-dimensional convection-diffusion problems. Journal of Scientific Computing (2014), doi
10.1007/s10915-014-9861-x, 2014.

[19] P. Castillo, B. Cockburn, I. Perugia, and D. Schötzau. An a priori error analysis of the local
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