INTERNATIONAL JOURNAL OF © 2015 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 12, Number 1, Pages 94-124

CONVERGENT FINITE DIFFERENCE SCHEME
FOR 1D FLOW OF COMPRESSIBLE MICROPOLAR FLUID

NERMINA MUJAKOVIC AND NELIDA CRNJARIC-ZIC

Abstract. In this paper we define a finite difference method for the nonstationary 1D flow of
the compressible viscous and heat-conducting micropolar fluid, assuming that it is in the ther-
modynamical sense perfect and polytropic. The homogeneous boundary conditions for velocity,
microrotation and heat flux are proposed. The sequence of approximate solutions for our problem
is constructed by using the defined finite difference approximate equations system. We investi-
gate the properties of these approximate solutions and establish their convergence to the strong
solution of our problem globally in time, which is the main results of the paper. A numerical ex-
periment is performed by solving the defined approximate ordinary differential equations system
using strong-stability preserving (SSP) Runge-Kutta scheme for time discretization.

Key words. micropolar fluid flow, initial-boundary value problem, finite difference approxima-
tions, strong and weak convergence.

1. Introduction

The theory of micropolar fluid was introduced by A. C. Eringen in 1960, [8].
Eringen suggested many possible applications of the micropolar fluid, but from
the mathematical point of view the theory is still in the early stage of develop-
ment. The results for incompressible flow are very well systematized in the book
of Lukaszewicz,[11] but the theory for compressible flows, especially for the flows
involving temperature, is still in the beginning.

In this paper we focus on the compressible flow of the isotropic, viscous, and
heat conducting micropolar fluid, which is in thermodynamical sense perfect and
polytropic. The model for this type of flow was first considered by Mujakovi¢ in
[12] where she developed a one-dimensional model. The model is quite complex
from numerical point of view, as well as from theoretical standpoint. It consists
of four partial differential equations - one of which is a differential equation of
the first order, and the other three are non-linear parabolic equations of second
order. In the work [13] the local existence and uniqueness of the solution, which
is called generalized, for our model with the homogeneous boundary conditions for
velocity, microrotation and heat flux were proved, while in [13] Mujakovié¢ proved
the existence of global in time solution for the described problem. So far, the
numerical analysis of this model was done only by Faedo-Galerkin method [12, 7, 15]
that is unsuitable for wider application.

The main goal of this paper is to propose a numerical method for solving a given
model using the finite difference approach, which is more acceptable in practical
applications. We define the semidiscrete finite difference approximate equations
system and investigate the properties of the sequence of the approximate solutions.
We prove that the limit of this sequence is the solution to our problem and that
it has the same properties as the solution in [12]. In this way the convergence
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of the corresponding numerical scheme is established and furthermore, the global
existence of the solution for the considered problem, already proved in [13], verified.
In our work we follow some ideas of [3, 4].

Other authors who have discussed various models of fluid by using finite differ-
ences mainly don’t analyze the problem of convergence of approximate solutions
from a theoretical point of view. The approach used here can be applied in other
research models based on similar systems of partial differential equations.

The paper is organized as follows. In the second section we introduce the math-
ematical formulation of our problem. In the third section we derive the finite dif-
ference approximate equations system and in the fourth section present the main
result. In Sections 5-8, we prove uniform a priori estimates for the approximate
solutions. Proof of convergence of a sequence of approximate solutions to a solution
of our problem is given in the ninth section. Finally, in the tenth section we perform
the numerical experiment.

2. Mathematical model

We are dealing with the one-dimensional flow of the compressible viscous and
heat-conducting micropolar fluid flow, which is thermodynamically perfect and
polytropic. Let p, v, w and 6 denote, respectively, the mass density, velocity,
microrotation velocity and temperature in the Lagrangian description. The mo-
tion of the fluid under consideration is described by the following system of four
equations (see, for example, [12]):

(2.1) op + p?0,v =0,

(2.2) 0w = 0y (pOzv) — KOy(p0),

(2.3) pow = Alpds (pOsw) — ],

(2.4) 00,0 = —Kp*0 0,v + ,02(8371))2 + /)2(8mw)2 +w?+Dpd, (p0.0).

The system is considered in the domain Qr = (0,1) x (0,7"), where T > 0 is arbi-
trary; K, A and D are positive constants. Equations (2.1)-(2.4) are, respectively,
local forms of the conservation laws for the mass, momentum, momentum moment
and energy. We take the following non-homogeneous initial conditions:

(2.5) p(z,0) = po(x), v(z,0) =vo(x), w(z,0) =wo(x), O(x,0) = 0(x),
and homogeneous boundary conditions:

(2.6) v(0,t) = v(1,t) =0, w(0,t) =w(1,t) =0

(2.7) 0:0(0,t) = 0.6(1,t) =0,

for z € (0,1) and ¢ € (0,T). Here pg, vg, wo and Oy are given functions. We assume
that there exists a constant m € R* such that

(2.8) po(x) >m, 6Op(x) >m forx e (0,1).
Let the initial data (2.5) have the following properties of smoothness
(2.9) po,00 € H'((0,1)) and wp,wo € HA((0,1)).

Because of embedding H!((0,1)) into C([0,1]), it is easy to check that there exists
M € R* such that

(2.10) po(z), |vo(2)], |wo ()], 00(x) < M, for x € [0,1].

Under the stated assumptions (2.8)-(2.9) in the previous papers [12, 13] is proven
that problem (2.1)-(2.7) has unique solution (p, v,w, 8) in the domain Qr, for every
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T > 0, with the following properties:

(2.11) p € L=(0,T; H'((0,1))) N H(Qr),
(2.12) v,w,0 € L=(0,T; H'((0,1))) N H'(Qr) N L*(0,T; H*((0,1))),
(2.13) p>0,0>0 on Q7.

These results were obtained by using the Faedo—Galerkin method for a local exis-
tence theorem and the principle of extension for a global existence theorem. From
embedding and interpolation theorems (e.g. see [5, 6]) we can conclude that from
(2.11) and (2.12) it follows:

(2.14) p € L¥(0,T;C(10,1])) N C([0, T L*((0,1))),
(2.15) v,w,0 € L*(0,7;CY([0,1])) N C([0, T); H'((0,1))),
(2.16) v,w,0 € C(Qr).

Also, in article [14] we have a proof that the solution (p,v,w,f) converges to the
stationary constant solution (a~!,0,0, E1) in the space (H1((0,1)))* (when t — 00),
where

1
1 1 1
2.1 = —d Ey = 2y — 2 6o ||? .
@1 a= [ e B gl + gglenl + 1o

(M= 1F 22 0,10))-
3. Finite-difference spatial discretization and approximate solutions

In this section we introduce a space discrete difference scheme in order to obtain
appropriate approximate system of the equation system (2.1)-(2.7). We construct
semi-discrete finite difference approximate solutions on a uniform staggered grid.
In making a discrete scheme we use some ideas from [4] and [3].

Let h be an increment in x such that Nh = 1 for N € Z*. The staggered
grid points are denoted with =, = kh, &k € {0,1,...,N} and z; = jh, j €

{%, oy N — %} For each integer N, we construct the following time dependent
functions

(3.1) pi(®).0;(t), j=35,....N -3,

(3.2) ve(t),wk(t), k=0,1,...,N,

that form a discrete approximation to the solution at defined grid points

p(xjvt)aa(xjvt)a j:%w--aN_%a

v(xg, t),w(zk, t), k=0,1,...,N.
First, the functions p;(t), vi(t),wk(t),0;(t), j=%,...,N— 3, k=1,...,N —1, are
determined by using appropriate spatial discretization of equation system (2.1)-
(2.4):

3.3) Pi

—p}ouv;

(pdv)x — K (p0)y,

Alpré(pdw) — wy]

3.6)  pify = —Kpi0;0u; + pj(6v))° + p} (0w))? + wi + Dp;6(pod);
where j = %, o, N — % and k=1,...,N — 1. § is the operator defined with

w W
[N
S— ~—
)

>~

g <

ol Bl

(-

9143 — 914

(3.7) 09, 5 ,
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forl=jorl=k Forke{l,...,N}andje€{3,...,N— 1}, the functions py, 0
and v;, w; we define by

(3.8) Pe=pr—1, Ok=0,_1 and wvj=v1, wj=w; 1.

2
Equations (3.3)-(3.6) are ordinary differential equations.
Taking into account the boundary conditions (2.6)-(2.7), we define

(3.9) vo(t) = un(t) =0, wo(t) =wn(t) =0,
(3.10) 86 (t) = 80N (t) = 0.

Now the system (3.3)-(3.6) with (3.9)-(3.10) contains 4N + 2 equations for 4N + 2
unknown functions.
The initial conditions are defined in accordance with given initial conditions (2.5)

as:
(3.11)
1 G+ (G+3)h . ) )
(03,6)(0) = E/(, N p(x)dx,h/(, ) e {3 N ),
J—3)h J—3
(3.12)
1 [kn 1 [kh
(v, w)(0) = E/ vo(x)dx,ﬁ wo(z)dz |, ke {l,...,N -1},
(k=1)h (k=1)h
and

(3.13) v(0)=vn(0)=0 wp(0) =wn(0)=0, and §6y(0)=3d0x(0)=0.
It is easy to see, that from (2.8) and (2.10) it follows

(3.14) m < p;(0), 0;(00) <M, j=41 ... N—-1i
and
R
(3.15) — < —.
M jflpj(o) m
-2

Averaging of the initial conditions (3.11) and (3.12) was necessary for obtaining
the following estimates based on the smoothness properties (2.9). Using (2.9) one
can conclude that

N-3% N
(3.16) S sl on<c, Y | w) | (0n < C,
=1 k=0
N-1 N—3
(3.17) |(5px, 661> (0)h < C, |(6v;, 8w;)|*(0)h < C,
k=1 j:%
and
Nfé N
(3.18) i 0) [ Oh < C Y | w) Oh < C,
j:% k=1

where C' > 0 is a constant, which depends on initial functions and not on step h
(or N).

. From the basic theory of differential equations and the local existence theorem,
it is known that there exists a smooth solution of the Cauchy problem (3.3)-(3.6),



98 N. MUJAKOVIC AND N. CRNJARIC-ZIC

(3.9)-(3.10) with the initial conditions (3.11)-(3.13) locally on some time interval
[0,T), T > 0 ([1, 16]). Because of positivity of the initial conditions (see (3.14))
and smoothness of the solution on the considered interval, we can choose such T so
that

(319) O<pj(t),9j(t)<oo, j:%,...,N—
(3.20) ok (®)], [w(8)] <00, k=0,...,N

for t € [0,T). Let [0,T)4s) be the maximal time interval on which the smooth
solution satisfying (3.19) and (3.20) exists. Our first goal is to show that the
solution is globally defined on [0,00), i.e., that T,.; = co. We will achieve this
by showing, for fixed h > 0, the boundedness of the mass density, the velocity, the
microrotation velocity and the temperature, as well as the lower boundedness of
the density and the temperature away from zero (see Section 5). (From that, we
conclude that the solution (p;, vk, wk,0;), j = LN — %,k =0,...,N can be
defined globally in time.

Now, using the solution of the Cauchy problem (3.3)-(3.6), (3.9)-(3.13) we con-
struct for ¢ > 0 the following approximate functions.

For each fixed N, z € (% [zN], % ([xN] + 1)], we define

N[

1
GRS

321)  oM(z,t) = i)+ @N = [@N])(Vny () — v (),

(322)  wV¥(zt) = wEm)+ @N — [2N)(Wen)11(t) — v ()

and similarly for z € (% ([N + 1] — 3), % ([N + 3] + 3)], we define
(3.23)

@) = paniyoy () + @N = (N + 1 = 301103 (0 — pananyy (0,
(3.24)

N2 (2,t) = Opniy-1 () + @N = ([N + 3 = D) Opns 21420 = Opns -1 (1),

For x € [0, 75] we take

_1 -1
pN7E (2,t) = pi(t), ON"E (1) = 0.(t)
and for x € (1 — 5%, 1]
_1 -1
pN 2({E,t) :pré(t)v GN (:E t) _0N 1(t)
We also introduce the corresponding step functions:

(3.25)  (vn,wn)(@,t) = (Ve Wan))(8), @ € (F[zN], 5 ([eN] + 1)),

(326)  (pp—1,0n_2)(xt) = (Pansi—2,0uny2-2)(0),
z e (x([aN + 3] = 3), x (&N + 3] + 3)],
(327) (ph—%vgh—%)( ) ( %,0%)@), MS [07 ﬁ]a

(328) (ph—%vgh—%)(xvt) (pN 0N——)(t)v (]- - 2N7]‘]'

In this section the semi-discrete finite dlfference scheme resulting with the system
of ordinary differential equations is defined. In what follows the convergence of
this scheme will be proved. For determining the solution of the system (3.3)-
(3.6), (3.9)-(3.10) numerically, the time discretization should be performed. The
time discretization algorithm used in the considered numerical experiment is briefly
described in Section 10.
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4. The main result

The aim of this paper is to prove the following statements.

Theorem 4.1. Suppose that the initial data (po,vo,wo,00) satisfy properties (2.8)-

(2.9). Then there exist subsequences of approzimate solutions (still denoted) {(pN~2,vN WV, ON=2)}
and {(ph,%,vh,wh,eh,%)} in the domain Qr (for each T € R*) such that, as

N — oo (or h —0),

(@.1) (P72, 0N, WY ONTE) = (p,v,w,0)  strongly in (C(Qr))*,

(4.2) *weakly in (L°°(0,T; H'((0,1))))*
(4.3) weakly in (H*(Qr))?,
(4.4) (N, W™ 0N = (v,w, 0) weakly in (L*(0,T; H*((0,1))))*

(45)(/)117% y Uh, Wh;, ehfé) — (pa v, W, 0) StTO’N,gly in (LOO(Oa Ta LQ((Oa 1))))4

The function (p,v,w,0) satisfies equations (2.1)-(2.4) a.e. in Qr, conditions (2.5)-
(2.7) in the sense of traces and p and 0 have the properties

4.6 inf p >0, infé > 0.
(46) infp inf

Notice that the function (p,v,w, 8) introduced in Theorem 4.1 is the solution of
the same problem as the function introduced in Section 2. Moreover, the properties
of the function (p,v,w,0) coincide with the properties (2.11)-(2.16). Indeed, our
goal was to obtain the same solution, but using the different approach.

The proof of Theorem 4.1 is essentially based on a careful examination of a
priori estimates and limit procedure. We first study, for each N, the approximate
problem (3.3)-(3.6), (3.9)-(3.13) and derive the a priori estimates for its solution
independent of N (or h) by utilizing a technique of articles [4] and [3]. Using the
obtained a priori estimates and results of weak and strong compactness [5, 6], we
extract the subsequences of approximate solutions, which, when N tends to infinity
(or h — 0), has the limit in the strong or weak sense on the domain (0,1) x (0,7),
where 1" > 0 is arbitrary. Finally, we show that this limit is the solution to our
problem. In this article we use some ideas from [2].

The proof of our theorem is a direct consequence of the results that we obtain
in the following sections.

5. Basic estimates and global construction of the difference scheme

Throughout this paper, we denote by C > 0 or C; > 0 (: = 1,2,...) generic
constants independent of N, having possibly different values at different places.

In order to construct a global differential scheme, in this section we make some
key estimations for (pj, vk, wi,0;)(t), j=4%,...,N— %, k=1,...,N -1
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Lemma 5.1. There exists C' > 0 such that, for T > 0 arbitrary and for all t €
[0,T1], it holds

(5.1) / Z Bi ’ (605) )2 dT+/ %(5%) hdr +

2
/ Ej i h dr + D p’“(‘m’“) PROTE) b g <
p;b; 0 1 91@7;9“%

where ®(w) =w —1— lnw is a nonnegative convex function.

Proof. Multiplying (3.3), (3.4), (3.5) and (3.6), respectively, by K (p; — 1)pj_2h, vgh,
Ailp_lwkh and pj_l( —)h summing over j = l o, N — % andk=1,...,N—1
and adding the obtained equatlonb we get

N-1
1
2 2
(5.2) —t KZ(I) bt g kah+2AZwkh+Z¢
N-3 N-3 N-3 N-1 (60%)
_J pj J k) _
+ 1 - (00)) h+z - (0w)) h+z:1 h+DZ Gk__9k+1 =0,
=3 2
Taking into account (3.14) we easily see that
N-1 1 N-1
(5.3) <o Y a0 <C,
—~  pi(0) +
]—2 j 2
uniformly by N. Integrating (5.2) over [0,¢], ¢ T, and using (3.16) and (5.3), we
immediately get (5.1). O

In the same way as in [4], this results verifies the existence of solution to the
Cauchy problem (3.3)-(3.6), (3.9)-(3.13) for all time, that is Ty,q, = co. Indeed,
for fixed h > 0, the estimation

B )+ 1) + 5 el + 2 0,(0) <

implies the global bounds of the functions (p;, vk, ws, 6;):

=1Q

0< o) <o), 0,00 <0715 < o0,
h J h
and o o
)] < =, (8] < =

where @' denote the two branches of the inverse function of ® defined on (0, 1]
and [1, 00), respectively. In this case, (pj, vk, wk, 6;) can be locally extended beyond
the maximal time interval [0, T},qz), that is a contradlctlon unless Typqe = 00.

Hence, we have our construction of the difference scheme (p;, vy, ws,0;)(t) and
the corresponding approximate solutions

(PN 3,0,V 0N E) (2 8) and (pp_y,vnswns By ()
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defined on [0, T, for each T > 0.

The estimations obtained in the next three lemmas do not depend of N and T
also.

Lemma 5.2. For each t € [0,T], T > 0 arbitrary, it holds
N

<

(5.4) <

1
m
(where m, M € RT are as in (5.14)).

Proof. Multiplying (3.3) by pj_Qh and summing over j, we have

A &
(5.5) - - Z Sv; h=0.
1 P ,
i=3
Integrating (5.5) over [0, ¢] and using (3.15) we easily get (5.4). O

Lemma 5.3. There exists a constant C > 0 such that, for t € [0,T], it holds

11\771 1N1 N-3%
- 2(Vh + — t)h 0;(t)h <
2k:1vk() 24 :1W +E C.

(5.6)

=

Proof. Multiplying (3.4), (3.5) and (3.6), respectively, by wvih, p,le_lwkh and
py. th, summing over j and k, taking into account (3.8)-(3.10) after addition of the
obtained equations, we get the following equality

N-1
d (1= 2 )
Integrating over [0, ¢] and using (3.16), from (5.7) follows (5.6). O

Lemma 5.4. There exists C > 0 such that, for t € [0,T], it holds

+ N—1

5.8 w2h+/ Sw;) th+/ ZEpdr < C,
(5:8) AZk Zm 1) ;M

where py is defined by (3.8).

Proof. We multiply (3.5) by p,?lA_lwkh and sum over k. After integration over
[0,¢] and using (3.16), we get immediately (5.8). O

6. Boundedness of the density

In the following sections we make estimates for the difference scheme at some
fixed interval [0, T] C [0, 00). Now, we establish the uniform bounds for the density,
which are essential for our proof of the main results.

Lemma 6.1. There exist constants C1,Cy € R such that, for all t € [0,T)
(6.1) C1 < pi() < Cs.
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Proof. ;From (5.1) we have

N-3 1 N=3 C
d—)+ Y s < S =CN,
; pit) = h
J=3 J=73
which implies that there exists at least one a; € {%, o, N — %} such that, for all
t€0,T]
(6.2) C™ 1< p,,(t)<C, C71<6,,(t)<C,

where C' € R™. Inserting (3.3) into (3.4) we get
’[}k:—%(&lnp)k—K(S(pe)k, kZl,...,N—l.

After integration over [0, t], multiplying by h and summation, it takes the form

k
D () = om(O)h = —Inpgy(t) +1npa,(t) +In ey (0) = Inpa, (0) —
m=a¢+3
t t
_ KA pk-l—%gk-i—%dT + KA patéath,
ie.,
k k
(6.3) exp{ — Z U (E)h + Z vm (0)h » =
m=a;+% m=a;+%
Prs1(t)pa, (0 t t
= Mexp{K/ pk+;0k+;dT—K/ patﬁath},

Pa; ()P4 1 (0) 0 > 0

where we have used a convention notation > % _ = — an:y for the case y < z.
We define the discrete Kazhikov-Shelukhin type of functions by
t
(6.4) Y (t) = exp {K/ Pa,(7)0a, (T)dT},
0
k k
(6.5) Bi(t) =exp — > vm(t)h+ > v (0)h
m=a;++ m=a;+3

Inserting (6.4)-(6.5) into (6.3) and multiplying by Kpy, 1(t)0;,1(t) we get, for
k=1,...,N —1, that

KBty ()2 Dres Oy @ _ % <eXp {K/ot Pk+§9k+%d7}> '

Pa. (0)
Integrating over [0, ¢] and using (6.3) again, we obtain
(6.6)
P / Pa; (t)Pry1(0)
Bk pat 0, 1(7)dr = ———2—B,()Y(t) -1
C e = ) O

Notice that, because of (5.1) and (3.16), it holds

12 ;N1 1/2
’— ot h—i—va | < ( h) +<ng(0)h> <c

k=1
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thus, we conclude that there exists C' € R* such that
(6.7) C~1 < Bi(t) < C,

forallt € [0,7] and k =1,...,N — 1. We can easily see that Y(¢) > 1, ¢t € [0,T].
Let be

: Y(t)
Y(t) = .
0 )
Then equation (6.6), with the help of (6 7) and (6.2) gives
Y
0 / oy (T (.
Pr+1 (t) Pk+

Multiplying the above inequality by h, summing up for £k =0,..., N — 1, and using
estimates (5.4), (3.15) and (5.6), we obtain

Y(t)<C (1 + /Otf/(r)dr> ,

from which, after applying the Gronwall inequality, follows Y (t) < C, t € [0,T].
Therefore, we have

(6.5) 1Y (1) < pa,(0)C < C.
Then, using (6.3)-(6.4) and estimates (3.14), (6.2), (6.7) and (6.8) we get

09 nex® < e {K [ oy i) -
por (14 0)

=~ oY@ sC

fort € [0,7] and £ =0,..., N — 1. Notice that from (6.6) follows the inequality

1 t
<C 1—|—/ 0, 1(7 dT).
Pry(t) ( 0 e (7)

Taking into account that, for a; defined by (6.2), we have

(6.10)

2
k
(6.11) Opin(t) = O, () + Y 6(VO),h| <
r=a;+3
% r—lh’ k er—i-l
< 1 —=
< + 2197’—19 1 _E:Jrlpr—%h

and inserting (6.11) into (6.10) we obtain

(6.12)
1 t 1 k k 60 Eprflh
< Cl1+ max ZHH_;h Z()izdr
kar%(t) plsr<nN prfé(T) r—aptl . L1 9r7%9r+%
tT3 T=atT3
Using (5.6) from (6.12) we get immediately
t 1 b (00)7p,—1h
max <C |1+ max ©0)rp 2 _dr |,
0<k<N—1p 41 (t) 0 0SkSN=1p 1 (T) 0,101

1
r=at+5
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from which, after applying the Gronwall inequality and estimate (5.1), follows the
boundedness

1

(6.13) <C,

Pk+%(t)
for each k = 0,...,N —1 and ¢t € [0,7]. The estimates (6.9) and (6.13) give the
proof of (6.1). O

7. Boundedness of the energy density and its consequences

Denote the energy density with

(1) Wilt) = 507(0) + 5 1R(0) + 6,y (),

fork=1,...,N and t € [0,T]. It is easy to see that Wj(t) > 0, for each k.

Multiply equations (3.4), (3.5) and (3.6), respectively by vy Wih, A’lpglkakh
and pj_lVVj n %h, j=k-— % respectively, and sum up the resulting equality for
k=1,...,N. Then with help of

(7.2) (5112),67% = (51’)1@7% (v + vg—1).
we obtain
(7.3) liiwtherN:pk 1 (6Wy_1)*h = 7 I (t)
2dt = 6= o m=1 7
where
N
L(t) = (% —1) Zﬂm#ka%vmﬁ%f%hy
kilv
L) = (% -1) Zpk_%éwk_%wk_léWk_%h,
. k=1
L(t) = KY pp_10,_1v6W,_1h,
e
L(t) = =D pro0ksW, 1h,
]\1;:1
I;(t) = %Zpk_%dvk_%vkdwk_%h,
¥
Is(t) = % Zpkfédwkféwkéwkféh,
]\l;_l
L(t) = 2> pp_166k 16W,_1h.
k=1

Taking into account



FINITE DIFFERENCE SCHEME FOR MICROPOLAR FLUID FLOW 105

(7.2) and (6.1), and applying the Young inequality, we obtain the estimates of the

functions I,,(t), m =1,...,7. For instance,
(7.4)
N N
Il(t) = (% — 1) Zpk_%(svk_%kal(swk_%h = % (% — 1) Zpk_%dvk_%vk,l(dvz)k_%h
k=1 k=1
N
—l—LA (— Zpk 15”1@ 11}/1C 1(50.) )k 1h+ Z %5vk7%vk,159k,1h
k=1 k=1
N
< Z(Svk 2w + 0k 1h+CZ|5vk 1| vkl 6wy 1 | |wr + wr—1|h
k= k=1
N
C> |6v_ 1| |ok-1]166x—1|h
k=1
N N-1
< CZ v 1) (vf; + vy Y+ C (6w 1)H(wi Fwi_)h+e > Pr+ 1 (061)°h,
k=1 k=1

where € > 0 is arb1trary In an analogous way one obtains the inequalities:

N-1
(7.5) L) < C Z dwpy 1) wipy +wp)h+C Z OVg41) )2 (viy1 +vR)R
k=0
N-1
+e€ Z pk+%(50k+1)2h7
k=0

N-1 N-1
(76) I3(t) S C Z (S'Uk+ ('Uk+1 +Uk h+C Z 5wk+ ch+1 +wk)h
k=0 k=0

N-1 N-1
€Y iy (00x)°h+C Y 607, wih,
k:o k=0
N-1

(1.7 u(t) < —(D—2¢) Pk+%(59k)2h+

k=0
N-1 N—-1
+C Z (5Uk+%)2(01%+1 +o)h+C Z (Owp 41 1)} (Whgr +wih,
k=0 k=0
N-1 N-1
(7.8) Is(t) < C ) (3vps1)*(Vipa +oi)h +C Z (Owps 1) (Wigr +wi)h
k=0 k=0
—1
+€ pk—l—%((sak)th
k=0
N-1 N-1
(7.9) Is(t) < CY (0034 1)* (W1 + DR+ C Y (Swps1)*(Wips +wi)h
k=0 k=0
N-1
+e€ ket (59k)2h,

B
I
o
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N-1 N-1
(710)I;(t) < C (5vk+%)2(v,%+1 +v3)h+C Z (6wk+%)2(w,%+1 + wi)h
k=0 k=0
N-1 N-1
+26 Y oy 1 (600)°h+ 2 pry1(361)
k=0 k=0

Inserting (7.4)-(7.10) into (7.3) and integrating over [0,¢] we conclude (for suffi-
ciently small € > 0) that

t N—1

N
(7.11) ZW,?h+C/Z§Wk hdr+C/ Zaek Vhodr <

< c<1+ Z&vk+ 2(wiy +oP)h dr+
0 k=0
+ N—1

+ N—1
+/ > (Owiy 1) (Wiis +wh d7'+/ > 07 svih dr).
0 k=0 0 k=0 :

Lemma 7.1. There exist C1,Co,C € RT such that, for t € [0,T], it holds

+t N—1

N
(7.12) ZW,?%H—/ Z SWi_1)*h dr+/ Z(é&k)Qh dr +
k=1
N N
+clzvgh+c2zwgh+/ nghd7<c<1+/ Zo (v + v h d7>.
k=1 k=1 0 k=1 0

Proof. Multiplying (3.4) and (3.5), respectively, by vih and A~!p, 'w “w 3h, summing
over k, we get

(7.13)
1a &Y N
Z%Z Z 15’Uk 511 )k 1h+KZpk 10, _1(6v°)_1h
k=1 =1 k=1
1 d & N wi
(7.14) A Do wih Z—k —I—Zpk 10w, 1 (0w®),_1h =0.
k=1 k=

We use the equality
(7.15) (6v%),,

1= (v3 + v,%fl)ékaé + VR Vk—10V)_1,
that satisfies the function (dw?),
parameter € > 0 and estimation (3.18) to (7.13), after integration of the obtained

inequality, we have

1 also. Applying the Young inequality with the

N t N
1
(7.16) 1 E = — 2¢) /0 E pk_%(évk_%f(v;% +vi_)hdr
k=1 k=1

\

Zﬂk 19k 1(Uk+vk 1)hd7>,
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where we take € = £. From (7.14) it follows

(7.17)
1 N t N w4 1 t N
mzw,‘gh+/ Z—khd7+§/ > pro 1 (Owy_1)* (Wi +wi_y)hdr < C.
k=1 0 k=1 Pk 0 k=1

We take into account (6.1) and then multiply (7.16) and (7.17) with constants
determined in such a way that after adding the obtained inequalities to (7.11), the
parts consisting of (5wk_%)2(w,% +w?_,) and (5vk_%)2(v,% +wv}?_,) cancel each other
out. So, we get (7.12). O

Lemma 7.2. For each t € [0,T], it holds

N
(7.18) Z(Gi_% +up Fwih < C.
k=1

Proof. Inserting 6, 1 defined by (6.11) into the right hand side of inequality (7.12)
and integrating over [0, t], we obtain

t N
(7.19) /0 D 0r 1 (v +vi_y)hdr

IN

t+ N N-1 59r
cl > <1+ > (9 )
0 k=1 r=1 -

K = (59T)2pr7 9T+lh N
- C/o <1+Z g 2 o | D Oy vk + vl )hdr,
r=1 -

1
2
1 1 1
=%+ 5 Pr-1 )4

%p
9’" ) 01 (v +vi_y)hdr

T

1
3 rt+

Using estimates (6.1), (5.6) and the Young inequality from (7.19), we get

t N
(7.20) / D 071 (vf +vi_y)hdr
0 2

k=1

t N—-1 56, QPT,lh N
< C (1 + Z ()792> Z(@iil —|—v;§ —|—v£_1)hd7.
0 = 3 )=

Inserting (7.20) into (7.12) we have the inequality

N
(7.21) D (67 4 +vi vy Fwih <
k=1
t N-1 ((507,)2/%7;]1 N
< C+C/O (1 + Z W 2(927% + ot 4 vt +whhdr
r=1

r=3'r+3 ) k=1
Taking into account estimation (5.1) and applying the Gronwall inequality, from

(7.21) it follows that the boundedness of the function

N
2(927% +ot 4 vt Fwhh
k=1

for all ¢ € [0,T] and (7.18) is obtained. O
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Now with the help of (7. 18) and (5.1), from (7.20) we get immediately

(7.22) / Ze L (02 + v )hdr < C,

0 k=1
and then from (7.12) we easily conclude that for all ¢ € [0, 7] it holds

(7.23) / Z (6v—1)* (v} +vi_y)hdr < C,
0 k=1
0 k=1
+ N—1
(7.25) / > (661)hdr < C.
0 k=1

Lemma 7.3. There exists C € RY such that, for all t € [0,T], it holds

¢ N=3

(7.26) szm/ Z (6v;)?hdr < C.

Proof. Multiplying (3.4) by vih, summing over k = 1,..., N — 1 and applying the
Young inequality with a parameter ¢ > 0, we get

N-1 N—1 N-—1
1 2 2 2
(7.27) ST Z Ph+ > pi(0v)Ph < ey pi(6v;)*h+C Y pib3h

k= =1 =} =3

Integrating (7.27) over [0, ¢] and using (3.16), (6.1) and (7.18) (for e small enough),
we obtain (7.26). U

With the help of (7.15) we have

t t
(7.28) max |vg|ldr < C (1 —|—/ max |Uk|3dT)
0<k<N

o 0<k<

1+/ Z|5v j|hdr <C<1+/Z|5vk 1| (vE 4 vi 1)th>

<1+/ (0vp_1 th+/ Z vE v 1)hdr>
0 0

and using (7.18) and (7 26) we get
t

(7.29) onax, lvgldr < C fort € [0,T].
0

In the same way we conclude that
t

(7.30) max, lwg|dr < C fort € [0,T].
o 0<k<
Now,forj:%,...,N é,wehave
J
(7.31) 07 =02, + > (60°)i:1,

i=a¢
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where 6,, is defined by (6.2). Using the equality
(592)14-% = 59¢+%(9¢+1 +6,),
the estimation (6.2) and applying the Young inequality from (7.31) we obtain

N-3 N
(7.32) 07 <C+ Y 03h+> (56k)h.
j=1 k=1

2
Taking into account (6.1), (7.18) and (7.25) we conclude that from (7.32) it follows

t
(7.33) / max G?dT <C fortel0,T].
0 3Si<N—3
The consequence of (7.33) is
t
(7.34) / max O;dr <C fort e [0,T].
0 I<j<N-}

8. Further bounds for the density, velocity, microrotation velocity and
temperature

We proceed with the further bounds for the variables of the system, needed for
proving the main theorem.
Lemma 8.1. There exists a constant C € R such that, for all t € [0,T)], it holds
N—1
(8.1) (6px)*(H)h < C.
k=1

Proof. ;From (6.6) we can easily conclude that

(8.2) Pris(t) = Fry 1 (8) -G (1)
where
Pt 1 (0)pa, (1)
(8.3) Frya(t) = WBk(t)Y(t)a
1(0) ft
(8.4) Gry1(t) :HKPZ:(O) /0 Bi(7)Y (7)pa, (T)0)1 1 (T)dT

(B, and Y are defined by (6.5) and (6.4)). For estimating
0Fk Gy — Fj,_1 0Gy,
Gk-i—% Gk_%
we need the estimates of the functions (8.3), (8.4),  F}, and 6Gy,. Using (6.1), (3.3),
(6.7), (6.8) and (7.34), we find that there exist C1,Cs € RT such that

(8.6) Crt < Gypai(t) <Gy,

(8.5) opr =

(8.7) Cy' < Fyy(t) < Ca,
for k=0,...,N —1and all t € [0, T]. By the Taylor development we obtain

(8.8) 5By (t) = Bi(t) (1 — exp{ (vx(t) —vk(O))h})

h
= = Bul0) (90(0) = 0l0) + 5 (00(0) = w0 xp (A1) — 0O}
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for some 0 < A < 1. Using (6.7) and (7.26) for (8.8) we get
(8.9) 0B— 1 (8)] < C(log(0)] + Jog (B)] + 1)

With the help of (3.14), (6.2), (6.7), (6.8), (7.34) and (8.9) for the functions JFj,
and 0Gg, k=1,...,N — 1, we have

(8.10) |0F,| z ((é)) Y (£)(pk(0) Bi(t) + py_ 1 (0)0By,_1 (1)
< C(10pk(0)] + ok (t)] + [ox (0)| + 1),
(8.11)6G,| = % (m(o) /0 Pa, (T)Br(T)Y (1)0) 11 (T)dT+

2

+ oy [ oY (1) (8B (3 (7) + B(r)o6 () dr) |

IA

C <1 + |0k (0)| +/0 (lve ()] + |Uk(0)|)9k+%d7—+ OI |59k(7')|d7') .

Using (8.6), (8.7) and inequalities (8.10), (8.11) , from (8.5) we obtain

N N-1 N—
(8.12)> (0pk(t))*h < C <Z 5pr(0))2h + Z V3 (t Z 0)h + Z h+

k=1 k=1
¢ N— L N_1
2
+/0 Ogglgalzf{ 1 % kz th+/o ;(5%) th) .
(5.

Taking into account (3.16), (3.17), (5.6), (7.25) and (7.33), from (8.12), it follows
(8.1). O

Lemma 8.2. There exists C € R such that, for j = %,...,N — %, and all
t €1[0,T1], it holds

(8.13) 0;(t) > C.

Proof. Multiplying (3.6) by p;10;2 we obtain
d (1 ;i w? Kl 1

(8.14) — (—) =2 (6v;)? + 92 (50.)]) + 1= 9 = (6v;) — D6(pd); =

dt 0j 02 ijj 5 9]

Applying on the first part of the right-hand side the Young inequality, with a
parameter € > 0, we get inequality

d (1 Pj 2 Pj 1
a2 < Pi D 1
d (9j)+92(5 ) < €y (85)° + Ceps = D3(pd0), T2

which for € = 1 reads
(8.15) LY < cp, = Do(po0); -
' dt \o; ) = "< O gz

Using the inequality
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multiplying (8.15) by 2q(0ij)2‘1’1h, g € N\{1}, and summing up for j = %, ceey N—%,

we obtain for ¥; = %, the following inequality
J

N-1 N—1 N_1
d 2 2 _ 2 _
T 20 Y| <200 Y7 00T 420D Y 6(pow); 07 .
i1 i1 i1

J=3 J=3 J=3

(8.16)

Taking into account

N-—1

-2
2¢D > 5(p6W); Ui h =
=4
N-1
= —24qDY pk(amkf(\pii‘; + \Ifi?;; Wyt \I/iq:;) <0
k=1

and applying the Holder inequality on the first part of the right-hand side of (8.16),
we conclude that

L (N 2 S
2q 2q 2q
(8.17) T 2o | <2C | Y vih > pih
i=3 i=3 i=3

Using (6.1), from (8.17) we obtain the following differential inequality
(8.18) D'(t) < C,

where the function D(t) is defined by

1

2

N-}
(8.19) D)= > w¥h
7=}

(From (8.18) it follows

(8.20) D(t) < Ct+ D(0),

for t € [0,T], i.e., for ¥ = (\I'%, .. .,\I/N_%), we have

(8.21) | (t)] L2« < CT + D(0).

Notice that because of (3.14), D(0) < L. If ¢ — oo in (8.21), we obtain

1
W)z <CT + —,
m
which implies
1\ !
0;(t) > (CT+ E)
forj=12%,...,N—2%andallte0,T] O

Lemma 8.3. There exists C € R such that, for allt € [0,T] and j € {3,...
%}, the functions év; and dw; satisfy following inequalities:

1/4 1/4

N-2 N-1
(8.22) S| <C | D (5%0,41)°R > Gv)h|

r=1 r=1
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N-2 Vi Ny 1/4
(8.23) bl <C [ Y (0°w,p1)?h > (bwr)’h

r=1 r=1
Proof. Using (2.6) we get immediately
(8.24) ov1 +6vs +...+0uy_1 =0

for all t € [0,T]. It means that, for each ¢ € [0, T], there exists at least one pair of
indices a(t), B(t) € {3,...,N — 3} such that

Suppose that «(t), 5(t) are the smallest indices for which (8.25) is valid. If dv;(t) >
0, then we use dvg(,y and (for j < 5(t)) we obtain the inequality

B(t)—1
(8.26) 80516051 — 6030y Bva || < 3 120,44 (804 ] + |50, D,
r=j

from which, using the Holder inequality, it follows

B()-1 2 (a1 2
(8:27)  [ov;* < > 620,41 [*h > (8vrga| + [60,])°h
r=j r=j
1
N-32 2 /N-1L 2
< O > 16,1k > (6v,)?h
r=1 r=1

2

The same estimate can be obtained for j > §(¢). On the other side, if dv;(t) < 0,
we use 0vq(+) and (for j < a(t) or j > «a(t)), we have

(8.28) 607 < |0Va(e)|00aqe| — vsldv;]|
N—% % N—% %
< > 6%, 1 PR > (6v,)?h
= =
Inequality (8.23) is obtained analogously. O
Lemma 8.4. There exists C € Rt such that
N—— fN 1
(8.29) 5UJ )2h +/ V2hdr < C,
N-3 ¢ N 1
(8.30) (6w;)?h +/ V2hdr < C,
:% 0 _
(8.31) k(@) < C, |we(t)] < C,

forallt €]0,T]) and k € {1,...,N —1}.
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Proof. Multiplying (3.4) and (3.5), respectively, by 6%v,h and Ailp;162wkh and

summing up for k=1,..., N — 1, we get
1 N-3 d N-1
2 2 2
(832) 5 > — (00 Ph+ D p 1 (0%0k)h =
j:% k=1
N—-1 N—-1 N—-1
= Sprbys 10%0kh + K Y py_100k6%0kh — Y Spiduvy, 167 vkh,
k=1 k=1 k=1
(8.33)
1 N-— d N—-1 N—-1
24 Z d_(5wj)2h+ Y oroy (Bwr)’h= =) dprdwy y0Pwrh — Z £ §%wih.
j=1 k=1 k=1

k=1

With the help of (6.1), (8.22), (8.23) and using the Holder inequality and the Young

inequality with a parameter ¢ > 0, for the terms on the right-hand side of (8.32)
and (8.33) we find estimates on [0, T] as follows:

N—-1
|K25pk9k+15 vih| <GZ h+Cl<IJn<a¥if{7_0J2- 3 (dpn)h,
N-1 N-1 N-1
|K Y oy 100k6%0kh| < € > (6%0k)°h+ C Y (361)%h,
k=1 k=1 k=1
Nl N-1 T [N-3 TN 3
| > dprovg18ugh| < c( (8%v )2h> (6v;)2h <Z(5pk)2h>
k=1 k=1 j=1 k=1
N-1 N—3% N-1 2
< €Y (Pu)’h+C (6v)%h (Z (5pk)2h> ,
k=1 J:% k=1
N N-1 N t N 3
| > dprdwy 1wk < C < (52wk)2h> (6w;)?h < (5pk)2h>
k=1 k=1 j=1 k=1
N-1 N-3 N-1 2
< ) (FPw)’h+C (6w;)h ( ((5pk)2h> ,
k=1 j:% k=1
N—-1
|Z—52wh|<ez wk h—|—C’Zw,€h

k=1
Inserting these inequahtles into (8.32) and (8.33), integrating over [0, ¢], using (6.1)

(3.17), (5.6), (7.25), (7.33), (8.1), (7.26), (5.8) and € small enough, we conclude that
(8.29) and (8.30) are true. From the inequality

N—1 N-1 3 3
log(t)] < 0w, < ( (6v;)? ) (Z h)
=3 i=3

that satisfies the function wy, k =1,..., N — 1, also, follows (8.31). O
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Lemma 8.5. There exists C € Rt such that

N-

(334 (h3(0)h < C.
+ N—1

(8.35) /0 > (t) i < .
+ N—1

(8.36) /0 >~ (@l har < C:

for allt €10,T7.

Proof. Squaring (3.3), (3.4) and (3.5), multiplying by h, summing up for j =
2., N-1 and(k‘ =1,...,N —1, and using (6.1), (829) (8.30), (8.22), ( 1),

2
(7.33), (7.25) and (5.8), we get
N-1 N-1 N-1
(B5(0)°h = Y pu2h < S (60;)*h < G,
i=3 i=3 i=3
+ N—1 t /N—1 % N-1 %N 1
/ > (@()*h < C < (5%@%) (Z(évkﬁh) (6px)2hT +
0 k=1 0 \g=1 k=1 k=1
t N—-1 t N-1
+ / Z 051 (6%v)*hdT + max GJQ (8pr)?hdr +
0 03<iSN-3 " i
tN 1

+ /Zpk 1 (61)*hdr < C,
0 _

o\*
M7
=
>~
=
5

>
INA
Q
e ~~
VRS
i
>
no
I
>~
e
>
~__—
RN
M7
=
&
R‘
\_/
[N
2
=
ks
x-
:
\]
+

k=1 k=1 k:l k:l
t N—-1 t N—1
+ /Zpk L(6%wy) hdr+/ > khd <cC.
0 1 0 3— Pk

In what follows we make the estimates for the functions §6; and §26;. Notice
that due to 60y = 0 we have the inequality

N 3 /N-1 2
(8.37) (59)2<<Z(529Té)%) (Z(d&ﬂ%)

r=1 r=1
foreach k=1,...,N — 1.
Lemma 8.6. There exists C € RT such that
N-1 tN—3
(8.38) > (66)°h +/ > (6%0;)%hdr < C,
0 _1

k=1

(8.39) 16,0)] < C,
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for all t € [0,T) andj:%,...,N—%,

Proof. Multiplying (3.6) by p;1520jh, summing up for j = 1,..., N — 3, and using
(6.1), (8.22), (8.23) and (8.37) and the Young inequality we obtain

N— N—3
1 d 24 \2
(8.40) 3 Z 7 (00%) *h+C1 Y (6°0,)°h <
k=1 i=3%
N—% N-1
< N (8
SO +cl<gga]3cljZ v;)?
I=3 =3
N-1 3/N-1% : N-1 2(N-3 :
+ c( (5%@%) (6v;)%h | +C (Z(& w) h) (6w;)?h | +
k=1 j=1 k=1 i=1
N-1 N-3 >
+  C(max|w;])* + C (Z(é@k)2h> > (6ps)°h
k=1 j:%
Integrating over [0, ¢] from (8.40), for e small enough, we get
N-1 tN—3
Z(éekﬁm/ > (6%0,)°h <
k=1 0 j=1
t N-3 tN-1 ¢ (N-3
< C max 607 (6v;)°hdr +C [ > (6%vi)’hdr + C / (6v)h
0 3<iSN-3 © 0 21 0o\ .1
J*z ]72
1 3
+t N—1 t
+ Z W) th—i—C/ 5wj)2h dT+C/ (max |w;|)*dr +
0 0

2

t /[N-1 N-3
+ C/ <Z(60k)2h> (Z((spj ) dT+Z (60%)°
0

k=1 j:%

Taking into account (3.17), (8.29), (8.30), (8.31), (8.1) and (7.25), we easily con-
clude that (8.38) is true.

The function 6; satisfies the inequality

2

N-— N—-1
Z 160, (8)|h + 04, (1) <Z (60 (t ) + 04, (1)
k=1 k=1

1
i
we get (8.39). O
It remains to prove the following estimation.

Lemma 8.7. There exists C € RT such that for each t € [0,T] it holds

(N3

(8.41) / Z Vhdr < C.
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Proof. Squaring (3.6), multiplying by h, summing up for j = %, o, N — % and
using (6.1), (8.22), (8.23), (8.37) and the inequality

N

[N

N-1
(6v;)*h < C (6%v1,)2h,
k=1

<.
Il
[SIE

that satisfy the functions dw; and 46 also, we find that

N-1 N-1 N-3 N-1 N-3
> (0;(1)%h C (Z((S%)%) Y h|+C (Z(a%)%) (6v;)%h | +

j=1 k=1 k=1

IN

N-1 N—3
C (Z((Ska)Qh) Z (6w;)*h | + C(max |w;|)*

_|_
k=1 j=3
N1 N-1 N-1
+ O D @) h || D ©Gp)?h | +C D (6°6;)%N.
i=% i=3 i=3
Integrating over [0,¢] and taking into account (8.29), (8.30), (8.31), (8.38), (7.18)
and (8.1) we get immediately (8.41). O

9. Convergence of approximate solutions to a solution of (2.1)-(2.7)

In this section we show the compactness of sequences of approximate solutions
(pN=z, 0N, W, 6V~3) and (phfé,vh,wh, 9,17%) which are defined by (3.21)-(3.28)
and their convergence to a solution (p,v,w, 0) of (2.1)-(2.7).

With the help of (6.1), (8.1) and (8.34) we conclude that there exists C' € RT
(independent of N), such that

1 1
O0) @Ol [ @ e nde+ [ @ DRt < 0,
0 0

which implies the following statements.

Lemma 9.1. There exists a function

(9:2) p € C(@Qr)NH (Qr)NL>(0,T; H'((0,1)))

and a subsequence of {pN_%} (for simplicity denoted again as {pN_%}), such that
(9.3) PR — strongly in C(Qr),

(9.4) * weakly in L>(0,T; H'((0,1))),

(9.5) weakly in H(Qr)

(when N — oo or h — 0). There exists a subsequence of {p,_1} (still denoted
{pn_1}) such that

(9.6) Ph—y —> p  strongly in L>(0,T; L*((0,1))).
The function p satisfies the condition

(9.7) Cy < p(z,t) < Cy for (z,t) € Qrp,
where C1,Cy € RT.
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Proof. The conclusions (9.3)—(9.5) follow immediately from (9.1). Notice that using
(9.1), we have

1 1
08 [0 - pPende < [ @ w0t < o,

0 0
so (9.6) is satisfied. From (6.1) we can easily conclude (9.7). O

Taking into account estimates (8.31), (8.29), (8.35) for the function vV, (8.31),
(8.30), (8. 36) for the function w” and estimates (8.38), (8.39) and (8. 41) for the

function 632, we can conclude that there exists C' € R+ (independent of N), such
that

9.9) o™ (x, t)|—|—/(8v xtd:c—l—// [(00™) 0pav™)?|(z, t)dzdr < C,
(9.10)
1 T 1
™ (2, 1) —I—/ (Opw™)? (2, t)dx —|—/ / [(0w™)? + (0paw™)?|(, t)dadr < C,
0 0Jo
(9.11)
1 1 1 Tl 1 1
0N =2 (2, 1) +/ (0,0~ ~2)% (2, t)dx +/ / [(&50N75)2 + (893339N7§)2}($,t)d$d’7' <C,
0 0Jo
which implies the following statements.
Lemma 9.2. There exist functions

(9.12) wv,w,0 € C(Qp)NH (Qr)NL>®(0,T;H*((0,1))) N L*(0,T; H*((0,1)))

and a subsequence of {(v™,wN,0N"2)} (denoted again as {(vN,w™,0N"2)}) such
that

(9.13) (vN,wN, ON_%) — (v,w, 0) strongly in (C(Qr))>,

(9.14) * weakly in (L>(0,T; H((0,1))))3,
(9.15) weakly in (L*(0,T; H*((0,1))))3,
(9.16) weakly in (H(Qr))?,

(when N — oo or h — 0). There exists a subsequence of {(vh,wh,ﬁhfé)} (still
denoted {(vn,wn,0),_1)}) such that

(9.17) (v, wh, 0 1) — (v,w,0) strongly in (L>=(0,T; L*((0,1))))?
The function 6 has the property

(9.18) O(x,t) > C, (x,t) € Qr,

where C € RT.

Proof. The conclusions follow from (9.9)-(9.11) and inequality (9.8) that satisty
couples of functions vV, vy, w!, w;, and oN -3, 9h_%. Using the estimation (8.13)
we can easily conclude that (9.18) is correct. O

Notice that, because of (3.11) and (3.26)-(3.28), we have

(9.19) /0 [ph—1(x,0) — po(z)]>dx — 0, ash — 0.
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Furthermore, the sequences {vs(2,0)}, {wn(2,0)}, {6,_1(x,0)} converge, respec-
tively, to v, wo and 0y in L2((0,1)) (po, vo, wo and By are introduced by (2.9)).

Lemma 9.3. The functions p, v, w, 6 defined by Lemmas 9.1 and 9.2 satisfy
equations (2.1)-(2.4) a.e. in Qr.

Proof. Equation (3.3) can be written in the from
(9.20) Orpn(z,t) = —pi(z, )00 (x,t) on Q.
For any test function ¢ € D(Qr) from (9.20) we obtain

(9.21) //pthataprdxdT //pthav (z,m)p(x,T7)dxdr = 0.

Using the convergence pp(z,t) — p(x,t) strongly and 9,vN(z,t) — Oyv(z,t)
weakly, from (9.21) immediately follows

T p1 T o1
//8tp(x,7')cp(x,7)dxd7+//pz(x,T)amv(x,T)ap(x,T)dxdT:O.
0Jo 0Jo

for all ¢ € D(Qr).

Now, we choose N = % large enough so that the support of the test function
@ is away enough from the boundaries, that is suppy C (h,1 — h) x (0,T) =
(%,1— %) x (0,T). Define

(9.22) or(t) = on(x,t) = p([xN]h,t), kh <z < (k+ 1)h,

(9.23) 0i(t) = en_y (@) = (([zN + 3]k — 3)h,1), jh <z < (j+1)h.
We can see that

(9.24) or(t) =0, for k=0,1, N — 1, N,

(9.25) @;(t) =0, for j =1 N—1.

Multiply equations (3.4) and (3.5) by ¢xh, sum it up for k = 1,...,N — 1 and
integrate over [0,7] to get

(9.26)
T N-1 T N—-1 T N-1

/ Z Orvpprphdr + K/ Z 0(p0)kprhdr —/ Z 0(pov)kprhdr =0,
0 k=1 0 k=1

(9.27)

7 N-—1 7 N-—1 T N-—1

/ Z &,wk(pkhdr—/ Z 5(p5w)k<pkhd7'—|—/ Z —@kth—O
k=1 0 k=1

Since on, — @, 690,17% — Oz O, — Orip strongly converge as h — 0, we can write
equalities (9.26) and (9.27) as follows

(9.28)

//vh@(pda:dT—FK//ph 160, 18T<pda:dr—//ph 10,0V pdx dr = O(h),

(9.29)

—//wh&gapdxdT—// P 102w 8<pdxd7'—//p pdxdr = O(h),
h—1
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where O(h) — 0 as h — 0.

Using convergence (9.17), (9.6) and (9.16) we get that the functions p, v and
w satisfy equations (2.2) and (2.3) a.e. in Q. Similarly, multiplying (3.4)-(3.6),
respectively, by vipih, A_lplzlwkgokh and pj_lgojh, summingup fork=1,..., N—1
and j = ,..., N —  and integrating over [0, 7] we obtain

(9.30)

1 /T T 1 T 1
——//vi@gpda:dr—!—//ph_;(amvN)andxdT—i—//ph_;aTvahamgadxdT
2 Jo Jo 0Jo 2 0 Jo 2

T 1 T 1
—K//phflﬁhflavagadxdT—K//ph,;Gh,;vhﬁwgadxdT:O(h),
0 0 2 2 0 0 2 2

(9.31)
1

T 1 T 1 T 1
——//w}%aﬂpdmdr—k//ph_;(amwN)2<pda:dT—|—//p _10,w" wpOpp da dr
24 Jo Jo 0Jo 2 0Jo 2

T 12
+// hodedr = O(h),
0Jo

Ph—1

(9.32)

T p1 T o1 T p1
- /9h_;8t<pdxdT+K//ph_lﬁh_lavagadxdT—//ph_;(amvN)chdxdT
0Jo 2 0Jo 22 0Jo 2

T o1 T2 T 1
—//phfl(aTwN)andxdT—//—h<pda:dT+D//phflaTHNamgoda:dT
0Jo 2 0Jo Ph—1 0Jo 2
= O(h)

where O(h) — 0 as h — 0. After summing the above equations we get
(9.33)

T 1 T 1
—// (%v%—i—ﬁw%—k@h,;) 8t<pdxd7+//ph,;é)vavhamgpdxdT
0Jo 2 0 Jo 2

T 1 T 1
—K//ph_lﬁh_;vhamgoda:dr—k//ph_; mwNwhaTgodxdT
0Jo 2 2 0Jo

2

T 1
+D//ph,%agEGN&I(pdxdT:O(h).
0J0

Because of (9.6), (9.17) and (9.16), from (9.33), for h — 0, follows
T p1 T 1
(9.34) // (VO + Fwdw + 8,0) p du dr — / / 0z (pv0zv)p dx dr
0Jo 0Jo

T 1 T 1 T 1
—|—K//8m(p0v)<pdxd7'—//&T(pwamw)gada:dr—D//am(pamﬁ)gada:dr:O.
0Jo 0Jo 0 Jo

Now, already proven equations (2.2) and (2.3) we multiply, respectively, by v¢ and
A~ 'p~lwep, integrate over [0,1] x [0,7] and add up to (9.34). So we get that (2.4)
is satisfied. O

Lemma 9.4. The functions p, v, w and 6 satisfy the following conditions
(935) p(xv 0) = po(l‘), U(J?, 0) = ’U()(l'), QJ(J?, 0) = WO(x)v 0(337 0) = 90(33)7

9.36)  0(0,t) = v(1,¢) =0, w(0,t) =w(1,t) =0, 0,0(0,t) = d,0(1,t) =0,
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forx € (0,1) and t € (0,T) (po, vo, wo and By are introduced by (2.9)).

Proof. We choose ¢ € C*°([0,T]) that is equal to zero at some neighborhood of
point 7', while ¢(0) # 0, and u € L?((0,1)). We can apply the Green’s formula for
the functions vV and v and find out

T p1 T p1 1
(9.37) / / o pude dr + / / N udrdr = —@(0)/ o™ (z,0)u(z) d,
0 Jo 0 Jo 0

T p1 T ,1 1
(9.38) //&,wpudwdT—l—//wp'udxdT: —@(0)/ v(z, 0)u(x) dx.
0Jo 0Jo 0

Taking into account the strong convergence of vV (z,t) — v(z,t), vV (z,0) = vo(x)
and the weak convergence of d;v" — 9;v and comparing (9.37) and (9.38) we get

v(x,0) = vo(z), a.e. in (0,1).
In the same way we obtain w(z,0) = wo(x), p(x,0) = po(z) and 6(z,0) = Oy(x) for
x € (0,1).
Now we take ¢ € C*°([0, 1]) with the property ¢(0) # 0 and that is equal to zero
0

at some neighborhood of point 1. Let be v € L2((0,T)). We apply the Green’s
formula for the functions v~ and v again. It holds

T p1 T 1 T
(9.39) / / 0N pu dx dr + / / vNo'udrdr = —@(0)/ o™ (0, t)u(t) dt,
0Jo 0Jo 0

T 1 T p1 T
(9.40) //(%U(pudmdr—!—//v(p’udxdrz —@(0)/ v(0, t)u(t) dt.
0Jo 0Jo 0

Taking into account v™¥ (0,¢) = 0, from (9.39) and (9.40), when N — oo, we obtain
v(0,t) =0, a.e. in (0,7).

In the same way we get w(0,t) = 0. For the functions 9,0~ and 0,60 we have

T p1 T (1 T
(9.41) //(%mﬁNgaudxdT—i—//8m9Ngaludxd7-:—gp(0)/ 90N (0, t)u(t) dt,
0Jo 0Jo 0

T 1 T 1 T
(9.42) //(%ﬁ(pudmdr—!—//@m&p'udxdT: —@(0)/ 0:0(0, t)u(t) dt,
0Jo 0Jo 0

Comparing (9.41) and (9.42), when N — oo, and using the property 9,0™(0,t) =
06p(t) = 0, we get easily that

0,0(0,t) =0, a.e. in (0,7).

Finally, taking ¢ € C*°([0, 1]) with the property ¢(1) # 0 and that is equal to zero
at some neighborhood of point 0, we conclude as above, that

v(1,t) =w(l,t) = 0,0(1,t) =0 a.e. in (0,7)

is true. O



FINITE DIFFERENCE SCHEME FOR MICROPOLAR FLUID FLOW 121

181

——t=0
17t -A-t=05 /

1.6

15

1.4

13

1.2f

1.1

FIGURE 1. Numerical results at different time moments - density
(p). The initial values at discretization points are denoted with x.

10. Numerical example

In this section we consider the numerical solutions obtained by using finite dif-
ference approach on the chosen test example.

In order to determine numerical solutions of the system (2.1)-(2.7), the temporal
discretization of the system (3.3)-(3.13), which was obtained by using the semi-
discrete approach combined with the described spatial discretization, should be
performed. The system (3.3)-(3.6) is actually the ordinary differential equation
system of the first order in time variable that can be written in the form

(10.1) u(t) = F(u(t)),

where vector u consists of 4N — 2 unknown functions, ie., v = (pj, vk, ws, 0;),
j= %, o, N — %, k=1,...,N — 1. The corresponding boundary conditions are
given with (3.9)-(3.10), while the initial conditions are defined with (3.11)-(3.13). In
this work the temporal discretization is obtained by approximating numerically the
system (10.1) using the second-order strongly stable explicit Runge-Kutta method
(see, for example, [10, 9]) given by:

u” + AtF(u")

1 1 1

™+ oW £ ZALF (D
5 U —|—2u +2 tF(u'),

S
|

Here u™ denotes the numerical solution of system (10.1) at time moment t" = nAt
for the chosen time step At. For stability reasons of obtained numerical scheme,
we choose At = O(h?) .
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FIGURE 2. Numerical results at different time moments - velocity
(v). The initial values at discretization points are denoted with x.

0.8

0.6

0.4

0.2

B -A-A B -BA-A B -AXA B -A-B- B -A-A -A

_1 1 1 1
0 0.2 0.4 0.6 0.8 1
X

FIGURE 3. Numerical results at different time moments - microro-
tation velocity (w). The initial values at discretization points are
denoted with x.

We consider here the numerical solutions of problem (2.1)-(2.7) defined with the
following initial functions:

(10.2) po(z) = |27 — £| +1,
(10.3) vo(z) = sin(mx),
(10.4) wo(z) = sin(2mx),
(10.5) Oo(z) = 2+ cos(mz),
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FIGURE 4. Numerical results at different time moments - temper-
ature (#). The initial values at discretization points are denoted
with x.

TABLE 1. L norm for the differences between numerical solution
at t = 20 and stationary solution.

N [ [Ip7V(-20) = p%[leo | w7 (,20) — w®lo | [0V (-, 20) — 7 [loo | 107 (-, 20) — 0% [loo
8 1.11 x 1073 1.54 x 10~ 5.90 x 10”13 2.34 x 1072
16 2.79 x 107* 3.14 x 10714 6.76 x 10714 5.98 x 1073
32 6.99 x 107° 9.30 x 10714 3.93 x 10714 1.50 x 1073
64 1.75 x 107° 4.68 x 10713 3.44 x 10714 3.76 x 1074

and parameters A=K =D = 1.

In Figures 1-4 we present the numerical solution of the considered problem at
different time moments. We used N = 16 points in the spatial discretization. The
calculations were carried out on a sufficiently fine grid in time, which eliminates
the error of approximation in time in comparison with the approximation error in
space.

Since the exact analytical solution of the considered problem is unknown, we
can not compare numerical solutions with the exact ones. However, we can use the
fact that that the solution (p, v,w, 8) of the system (2.1)-(2.7) converges, as t — 0o,
to the stationary constant solution (p%,v%,w® 0%) = (a~1,0,0, E;) as explained
in Section 2 (see [14]), so that the obtained numerical solution at some large time
moment can be compared with this stationary solution. In the considered example
we have a~1! = 1.226285790315 and F; = 2.5. The difference of the numerical
solution obtained with finite difference method from this stationary solution is
taken at ¢ = 20. The numerical results are presented in Table 1.
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11. Conclusion

In this paper the finite difference scheme for the nonstationary 1D flow of the

compressible viscous and heat-conducting micropolar fluid, which is in the thermo-
dynamical sense perfect and polytropic, with the homogeneous boundary conditions
for velocity, microrotation and heat flux, is defined and analyzed. The sequence of
the approximate solution is constructed as a solution of the finite difference approx-
imate equations system, which is derived by using the appropriate finite difference
spatial discretization. The properties of these approximate solutions are analyzed
and their convergence to the strong solution of our problem globally in time is
proved. In this way the global existence of the solution is verified. The numerical
properties of the proposed scheme are presented on the chosen test example.
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