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A PARALLEL VARIATIONAL MULTISCALE METHOD FOR

INCOMPRESSIBLE FLOWS BASED ON THE PARTITION OF

UNITY

CONG XIE AND HAIBIAO ZHENG

Abstract. A parallel variational multiscale method based on the partition of unity is proposed for
incompressible flows in this paper. Based on two-grid method, this algorithm localizes the global
residual problem of variational multiscale method into a series of local linearized residual problems.
To decrease the undesirable effect of the artificial homogeneous Dirichlet boundary condition of
local sub-problems, an oversampling technique is also introduced. The globally continuous finite
element solutions are constructed by assembling all local solutions together using the partition of
unity functions. Numerical simulations demonstrate the high efficiency and flexility of the new
algorithm.
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1. Introduction

The variational multiscale method was proposed to solve multiscale problems
by Hughes and co-workers in [1, 2]. A projection of the large scales in Large
Eddy Simulation method into appropriate subspaces was introduced. Since then
much attention has been paid in this field. For example, John and Kaya [3] gave
the finite element analysis of a variational multiscale method for the Navier-Stokes
equations. Gravemeier et al. [4] also presented the three-level variational multiscale
method. Zheng et al. improved the finite element variational multiscale method by
introducing two Gauss integration method [5] and adaptive technique [6]. Zhang et
al. [7], Yu et al. [8], Shan et al. [9] et al. presented subgrid model, projection basis
and modular type to improve the variational multiscale methods, respectively.

Based on the observation that in numerical simulations low frequency compo-
nents can be approximated well by the relative coarse grid and high frequency
components can be computed on a fine grid by some local and parallel procedure,
the parallel finite element computations have been widely used [10, 11, 12, 13].
Combining the partition of unity method [14, 15] and the parallel adaptive algo-
rithm from [11], Holst [16, 17] constructed the parallel partition of unity method
(PPUM). Zheng et al. [19, 20] developed some local and parallel finite element
algorithms based on the partition of unity. Song et al. [18] presented an adap-
tive local postprocessing technique based on the partition of unity method for the
Navier-Stokes equations. There are also some papers improving the variational mul-
tiscale methods by combining with two-grid method or local and parallel techniques
[21, 22].
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It is natural to consider to add the local parallel method to the variational mul-
tiscale method in order to retain the best features of both methods and overcome
many of their defects. In particular, we use the variational multiscle method based
on two local Gauss integrations [5] since it avoids constructing the projection op-
erator, keeps the same efficiency and does not need extra storage compared with
common VMS method. Comparing with the parallel method in [22], we add an
artificial stabilization term in the local and parallel procedure by considering the
residual as a subgrid value, which keeps the sub-problems stable. Then, an over-
sampling technique is introduced in order to overcome the undesirable effect of the
artificial homogeneous Dirichlet boundary conditions of local sub-problems. The
interesting points in this algorithm lie in: firstly, a class of partition of unity is
derived by a given triangulation, which guides the domain decomposition; second-
ly, the series of local linearized residual problems are implemented in parallel, and
they require less communication between each other; finally, the globally continu-
ous finite element solution is obtained by assembling all local solutions together via
the partition of unity functions.

The outline of the paper is as follows. We introduce the Navier-Stokes equa-
tions, the notations and some well-known results for the finite element methods in
section 2. In section 3, we first propose the parallel variational multiscale method
based on the partition of unity and then derive the error estimates. In section 4,
the implementation and some numerical simulations are presented to illustrate the
efficiency of our method. And finally a short conclusion is presented in section 5.

2. The Navier-Stokes Equations

We consider the following incompressible flows

−ν∆u+ (u · ∇)u+∇p = f in Ω,

∇ · u = 0 in Ω,(1)

u = 0 on ∂Ω,

where Ω represents a polyhedral domain in Rd (d =2, 3) with boundary ∂Ω, u, p, f
and ν > 0 represent the velocity vector, pressure, prescribed body force, kinematic
viscosity respectively. And ν is inversely proportional to the Reynolds number Re.

For a bounded domain Ω ⊂ Rd, we use the standard notations for Sobolev spaces
W s,k(Ω) and their associated norms [23, 24]. Especially when k = 2, Hs(Ω) =
W s,2(Ω) denotes the usual Soblev space, ‖ · ‖s,Ω = ‖ · ‖s,2,Ω denotes standard
Soblev norm, (·, ·)s denotes the inner product in L2(Ω) or its vector value version.
The space H1

0 (Ω) = {v ∈ H1(Ω) : v|∂Ω = 0} is equipped with the usual norm
‖∇ · ‖0,Ω or its equivalent norm ‖ · ‖1,Ω due to the Poincare’s inequality. H−1(Ω)
is the dual space of H1

0 (Ω). In the following we will denote the spaces consisting of
vector-valued functions in boldface.

For sub-domains D ⊂ G ⊂ Ω, D ⊂⊂ G means that dist(∂D\∂Ω, ∂G\∂Ω) > 0.
Throughout the paper we use C to denote a generic positive constant whose value
may change from place to place but remains independent of the mesh parameter h.

The standard variational formulation of (1) is given by: find (u, p) ∈ (X,M)
satisfying

(2) νa(u,v) + b(u,u,v)− d(v, p) + d(u, q) = (f ,v), ∀(v, q) ∈ (X,M),

where

X = H1
0(Ω), M = L2

0(Ω) = {q ∈ L2(Ω);

∫
Ω

qdx = 0},
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and

a(u,v) = (∇u,∇v), d(v, p) = (∇ · v, p),

b(u,w,v) = ((u · ∇)w,v) +
1

2
((divu)w,v)

=
1

2
((u · ∇)w,v) −

1

2
((u · ∇)v,w).

They have the following properties:

(3)

a(u,v) ≤ ‖u‖1,Ω‖v‖1,Ω, ∀u,v ∈ X,
d(v, q)| ≤ ‖v‖1,Ω‖q‖0,Ω, ∀(v, q) ∈ (X,M),
b(u,v,w) = b(u,w,v), ∀u,v,w ∈ X,
|b(u,v,w)| ≤ C‖u‖1,Ω‖v‖1,Ω‖w‖1,Ω, ∀u,v,w ∈ X.

It is well-known [25, 26] that, if ν and f satisfy the following conditions

Nb||f ||−1,Ω

ν2
< 1, Nb = sup

u,w,v∈H1

0
(Ω),u,w,v 6=0

b(u,w,v)

||u||1,Ω||w||1,Ω||v||1,Ω
,

then, the problem (2) has a unique solution.
Let τh be a regular triangulation of the domain Ω, and h denote the maximum

diameter of the elements in τh. We use P2−P1 elements in this paper, which means
that Xh and Mh contain piecewise polynomials of degree 2 and 1 respectively.
(XH ,MH) is defined in the same way but on τH with coarser mesh size H where
H > h. Set (Xh

0 ,M
h
0 ) = (Xh,Mh)

⋂
(X,M).

It is known that the standard Galerkin finite element discretization of (2) is
unstable in the case of high Reynolds number (or smaller viscosity). Therefore,
we consider the finite element variational multiscale method [5]: find (uh, ph) ∈
(Xh

0 ,M
h
0 ) satisfying

(4)

νa(uh,v)+b(uh,uh,v)−d(v, ph)+d(uh, q)+G(uh,v) = (f ,v) ∀(v, q) ∈ (Xh
0 ,M

h
0 ),

where G(uh,v) = α((I −Πh)∇uh, (I −Πh)∇v). Let L = L2(Ω)d×d and Πh : L →
L
h be the orthogonal projection operator with the following properties:

((I −Πh)r,gh) = 0, ∀r ∈ L, gh ∈ L
h,(5)

‖Πr‖0 ≤ C‖r‖0, ∀r ∈ L,(6)

‖(I −Πh)r‖0 ≤ Ch‖r‖1, ∀r ∈ L ∩H1(Ω)d×d,(7)

where I is the identify operator.
According to [5], we can use the equivalent formulation of G based on two local

Gauss integrations as follows,

G(uh,v) = α
∑

Ωe∈τh

{

∫
Ωe,s

∇uh∇vdx−

∫
Ωe,1

∇uh∇vdx} ∀uh, v ∈ Xh,

where
∫
Ωe,i

g(x)dx denotes an appropriate Gauss integral over Ωe which is exact

for polynomials of degree i, i = 1, 2. For all test functions v ∈ Xh, ∇uh must be
piecewise constant when i = 1. And set α = O(h2) in order to keep the rates of
convergence.

In [22] Shang proved the following theorem.

Theorem 1. Assume that (u, p) is a nonsingular solution to the Navier-Stokes
equations satisfying (u, p) ∈ (H3(Ω)n

⋂
H1

0 (Ω)
n) × (H2(Ω)

⋂
L2
0(Ω)), and α tends
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to zero as h tends to zero. Then the solution (uh, ph) computed by the numerical
scheme (4) satisfies

‖u− uh‖1,Ω + ‖p− ph‖0,Ω ≤ ch2 + cα,(8)

‖u− uh‖0,Ω + ‖p− ph‖−1,Ω ≤ ch(h2 + α) + cα2.(9)

3. The Parallel Variational Multiscale Method based on the Partition of

Unity

In this section, we will derive a partition of unity based on a given triangulation,
and propose a framework for domain decomposition.

First, choose a regular conforming triangulation τHp
for Ω. For each node xi ∈

τHp
, ı = 1, 2, · · · , N, (here N is the number of nodes on τHp

), define corresponding

continuous linear Lagrange basis function ϕi, such that ϕi(xm) = δi,m. Let ωi =
suppϕi ∩ Ω, i = 1, 2, · · · , N denote the local subdomain.

Then, we denote ωi,0 = ωi, which means the local domain without oversampling.
To enlarge this domain we introduce one layer oversampling ωi,1, which is the
union of the supports of ϕi and one layer of its neighbors, and also multiple layers
oversampling ωi,s:

ωi,1 =
⋃

xm∈ωi,0

ωm, ωi,s =
⋃

xm∈ωi,s−1

ωm.

We will use Fig1 below to demonstrate the definition of oversampling.

Figure 1. Local domain with oversampling. ωi,0=blue region,
ωi,1=blue and red regions, ωi,2=blue, red and green regions.

It’s easy to check that, for any given s, {ωi,s}N1 is an open cover of Ω and {ϕi}
N
1

is a partition of unity subordinate to the cover {ωi,s}N1 which satisfying

suppϕi ⊂ ωi,s, ∀i.(10) ∑
i

ϕi ≡ 1 on Ω.(11)

||ϕi||L∞(Rn) ≤ C∞.(12)

||∇ϕi||L∞(Rn) ≤
CG

Hp

.(13)
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where C∞, CG are two constants.
Based on above special partition of unity, we develop a new local and parallel

variational mutiscale method as follows.

ALGORITHM PVMS-PU:

Step 1. Use the variational multiscale method to find a globally coarse grid
solution (uH , pH) ∈ (XH

0 ,M
H
0 ) such that

(14)
νa(uH ,v) + b(uH ,uH ,v)− d(v, pH) + d(uH , q) +G(uH ,v) = (f ,v),

∀(v, q) ∈ (XH
0 ,M

H
0 ).

Step 2. For a given τHp
, fix s ≥ 1, correct the residue (ei, ǫi) on a fine grid of each

overlapping subdomain ωi,s of τHp
in parallel, (ei, ǫi) ∈ (Xh

0 (ω
i,s),Mh

0 (ω
i,s)), i =

1, 2, · · · , N, such that

(15)
νa(ei,v) + b(ei,uH ,v) + b(uH , e

i,v)− d(v, ǫi) + d(ei, q) + β(∇ei,∇v)
= (R(uH , pH),v), ∀(v, q) ∈ (Xh

0 (ω
i,s),Mh

0 (ω
i,s)),

where (R(uH , pH),v) = (f ,v) − ν(uH ,v) − b(uH ,uH ,v) + d(v,pH) − d(uH , q).
Here

Xh
0 (ω

i,s) := {v ∈ Xh(Ω) : supp v ⊂⊂ ωi,s},

Mh
0 (ω

i,s) := {q ∈Mh(Ω) : supp q ⊂⊂ ωi,s and

∫
ωi,s

qdx = 0}.

Step 3. Update: (ui, pi) = (uH , pH) + (ei, ǫi) in ωi,s.

Step 4. Obtain the finite element solution uh =
N∑
i=1

ϕiu
i, ph =

N∑
i=1

ϕip
i.

In order to get the error estimate of this algorithm we first introduce a lemma
and regularity property from [12], which are listed as two lemmas here.

Lemma 1. Suppose that g ∈ H−1(Ω)n, 0 < H ≤ h̄0 and S ⊂⊂ Ω0 ⊂ Ω. Then
(w, r) ∈ Xh(Ω)×Mh(Ω)defined by

(16)
νa(w, v) + (uh,w,v) + b(w,uH ,v − d(v, r) + d(w, q) = (g,v),

∀(v, q) ∈ Xh
0 (Ω0)×Mh

0 (Ω0)

satisfies

(17) ‖w‖1,D + ‖r‖0,D ≤ C(‖w‖0,Ω0
+ ‖r‖−1,Ω0

+ ‖g‖−1,Ω0
).

Lemma 2. There exists a unique (Ψh,Ψh) ∈ X0
h(Ω) ×M0

h(Ω) satisfying the dual
problem:
(18)
(ν + β)a(v,Φh) + b(uh,v,Φh) + b(v,uh,Φh) + d(v,Ψh)− d(Φh, q) = (ψ,v) + (φ, q),

∀(v, q) ∈ H1
0 (Ω)× L2

0(Ω)

and has the following estimates

‖Φ− Φh‖1,Ω + ‖Ψ−Ψh‖0,Ω ≤ Ch(‖φ‖0,Ω + ‖ψ‖1,Ω),

‖Φh‖1,Ω + ‖Ψh‖0,Ω ≤ C(‖φ‖0,Ω + ‖ψ‖1,Ω).

We also need the following lemma which can be proved easily so that we don’t
show the details here.
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Lemma 3. Let C0 > 0 be a constant, and {ϕi}
N
1 be the partition of unity based

on τHp
with Hp ≥ C0. Then there exist constant C1, C2, C3, C4 independent of N

satisfying the following inequalities which will be used in the proof of next theorem.

‖
N∑
i=1

ϕiv‖1,Ω ≤ C1

N∑
i=1

‖ϕiv‖1,Ω, ∀∈H1(Ω),(19)

‖

N∑
i=1

ϕiq‖0,Ω ≤ C2

N∑
i=1

‖ϕiq‖0,Ω, ∀q ∈ L2(Ω),(20)

‖v‖21,Ω + ‖q‖20,Ω ≤ C3(

N∑
i=1

(‖ϕiv‖
2
1,Ω + ‖ϕiq‖

2
0,Ω)),(21)

‖ϕiv‖
2
1,Ω + ‖ϕiq‖

2
1,Ω ≤ C4(‖v‖

2
1,ωi + ‖q‖21,ωi).(22)

Then we can prove the following theorem.

Theorem 2. Assume that the conditions of Theorem 1 hold, 0 < H ≤ h, for a
given Hp ≥ C0 and s ≥ 1, the solution (uh, ph) defined by Algorithm PVMS-PU
satisfies

(23) ‖uh − uh‖1,Ω + ‖ph − ph‖0,Ω ≤ C(H3 +HαH + α2
H + β(H2 + αH)).

Proof. Step1. In order to get the final result, let D = ωi, Ω0 = Ωi,s, then, first
estimate ‖ei‖0,Ω0

+ ‖ǫi‖−1,Ω0
. From (4) and (14) we can easily get the equality:

(24)
νa(uh − uH ,ΦH) + b(uh − uH ,uH ,ΦH) + b(uH ,uh − uH ,ΦH)
+b(uh − uH ,uh − uH ,ΦH)− d(ΦH , ph − pH) + d(uh − uH ,ΨH)
+G(uh, ,ΦH)−G(uH ,ΦH) = 0.

It follows from (4) and (15) that

(25)
(ν + β)a(ei,v) + b(ei,uH ,v) + b(uH , e

i,v) − d(v, ǫi) + d(ei, q)
= νa(uh − uH ,v) + b(uh − uH ,uH ,v) + b(uH ,uh − uH ,v)
+b(uh − uH ,uh − uH ,v) − d(v, ph − pH) + d(uh − uH , q) +G(uh,v).

It’s also easy to see that the dual problem is given below:
(26)
(φ, ei) + (ψ, ǫi)
= (ν + β)a(ei,Φh) + b(uh, e

i,Φh) + b(ei,uH ,Φh) + d(ei,Ψh)− d(Φh, ǫ
i)

= νa(uh − uH ,Φh) + b(uh − uH ,uH ,Φh) + b(uH ,uh − uH ,Φh)
+b(uh − uH ,uh − uH ,Φh)− d(Φh, ph − pH) + d(uh − uH ,Ψh) +G(uh,Φh)

= νa(uh − uH ,Φh − ΦH) + b(uh − uH ,uH ,Φh − ΦH)
+b(uH ,uh − uH ,Φh − ΦH) + b(uh − uH ,uh − uH ,Φh − ΦH)
−d(Φh − ΦH , ph − pH) + d(uh − uH ,Ψh −ΨH)
+G(uh,Φh − ΦH) +G(uH ,ΦH).

Clearly we need to estimate each term on the right side. Using (3) and lemma
2, we obtain that:

νa(uh − uH ,Φh − ΦH) ≤ CH‖uh − uH‖1,Ω0
(‖φ‖0,Ω0

+ ‖ψ‖1,Ω0
),

b(uh − uH ,uH ,Φh − ΦH) + b(uH ,uh − uH ,Φh − ΦH)

≤ CH‖uh − uH‖1,Ω0
(‖φ‖0,Ω0

+ ‖ψ‖1,Ω0
),
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b(uh − uH ,uh − uH ,Φh − ΦH) ≤ CH‖uh − uH‖21,Ω0
(‖φ‖0,Ω0

+ ‖ψ‖1,Ω0
),

d(Φh − ΦH , ph − pH) ≤ CH‖ph − pH‖0,Ω0
(‖φ‖0,Ω0

+ ‖ψ‖1,Ω0
),

d(uh − uH ,Ψh −ΨH) ≤ CH‖uh − uH‖1,Ω0
(‖φ‖0,Ω0

+ ‖ψ‖1,Ω0
),

G(uh,Φh − ΦH) ≤ Cαh(‖u− uh‖1,Ω0
+ h‖u‖2,Ω0

)(‖φ‖0,Ω0
+ ‖ψ‖1,Ω0

),

G(uH ,ΦH) ≤ CαH(‖u− uH‖1,Ω0
+H‖u‖2,Ω0

)(‖φ‖0,Ω0
+ ‖ψ‖1,Ω0

).

It follows from the above inequalities that
(27)

(φ, ei) + (ψ, ǫi)
≤ C(H‖uh − uH‖1,Ω0

+H‖uh − uH‖21,Ω0
+H‖ph − pH‖0,Ω0

+ αh‖u− uh‖1,Ω0

+αH‖u− uH‖1,Ω0
+ (αhh+ αHH)‖u‖2,Ω0

)(‖φ‖0,Ω0
+ ‖ψ‖1,Ω0

),

which yields:

(28)
‖ei‖0,Ω0

+ ‖ǫi‖−1,Ω0

≤ C(H‖uh − uH‖1,Ω0
+H‖ph − pH‖0,Ω0

+H3‖u‖2,Ω0
).

Step2. We have the following equality from (4) and the Algorithm:

(ν + β)a(uh − uh,v) + b(uh − uh,uH ,v) + b(uH ,uh − uh,v)− d(v, ph − ph)
+d(uh − uh, q) = −G(uh,v) + βa(uh − uH ,v)− b(uh − uH ,uh − uH ,v).

Then using Lemma 1 and (28) we easily obtain:
(29)

‖uh − ui‖1,D + ‖ph − pi‖0,D
≤ C(‖uh − ui‖0,Ω0

+ ‖ph − pi‖−1,Ω0
+ ‖uh − uH‖21,Ω0

+ β‖uh − uH‖1,Ω0

+αh‖uh‖1,Ω0
)

≤ C(‖uh − uH‖0,Ω0
+ ‖ph − pH‖−1,Ω0

+ ‖ei‖0,Ω0
+ ‖ǫi‖−1,Ω0

+ ‖uh − uH‖21,Ω0

+β‖uh − uH‖1,Ω0
+ αh‖uh‖1,Ω0

)
≤ C(‖uh − uH‖0,Ω0

+ ‖ph − pH‖−1,Ω0
+ ‖uh − uH‖21,Ω0

+H‖uh − uH‖1,Ω0

+H‖ph − pH‖0,Ω0
+H3‖u‖2,Ω0

+ β‖uh − uH‖1,Ω0
+ αh‖uh‖1,Ω0

).

Thus, the inequality (29) is valid for every D = ωi,Ω0 = ωi,s, i = 1, 2, · · · , N.
We then get the global error estimate by using Theorem 1 and Lemma 2:

(30)

‖uh − uh‖1,Ω + ‖ph − ph‖0,Ω

= ‖
N∑
i=1

ϕi(uh − ui)‖1,Ω + ‖
N∑
i=1

ϕi(ph − pi)‖0,Ω

≤ C(
N∑
i=1

‖ϕi(uh − ui)‖21,Ω +
N∑
i=1

‖ϕi(ph − pi)‖20,Ω)
1

2

≤ C(
N∑
i=1

‖ϕi(uh − ui)‖21,ωi +
N∑
i=1

‖ϕi(ph − pi)‖20,ωi)
1

2

≤ C(
N∑
i=1

‖uh − ui‖21,ωi +
N∑
i=1

‖ph − pi‖20,ωi)
1

2

≤ C(
N∑
i=1

(‖uh − uH‖20,ωi,s + ‖ph − pH‖2
−1,ωi,s + ‖uh − uH‖41,ωi,s

+H2‖uh − uH‖21,ωi,s +H2‖ph − pH‖20,ωi,s +H6‖u‖22,ωi,s

+β2‖uh − uH‖21,ωi,s + α2
h‖uh‖

2
1,ωi,s))

1

2
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≤ C(
N∑
i=1

∑
Ei∈ωi,s

(‖uh − uH‖20,Ei
+ ‖ph − pH‖2−1,Ei

+ ‖uh − uH‖41,Ei

+H2‖uh − uH‖21,Ei
+H2‖ph − pH‖20,Ei

+H6‖u‖22,Ei

+β2‖uh − uH‖21,Ei
+ α2

h‖uh‖
2
1,Ei

))
1

2

≤ CCov(‖uh − uH‖20,Ω + ‖ph − pH‖2−1,Ω + ‖uh − uH‖41,Ω +H2‖uh − uH‖21,Ω
+H2‖ph − pH‖20,Ω +H6‖u‖22,Ω + β2‖uh − uH‖21,Ω + α2

h‖uh‖
2
1,Ω)

1

2

≤ C(H3 +HαH + α2
H + β(H2 + αH)).

Here, Cov is a finite integer defined as the maximal number of elements Ej con-
tained in each subdomain ωi,s. It is determined by the layer index s, the minimum
angle of the regular triangulation τHp

, and is independent of N. �

Remark 1. It has been mentioned in [5] that α should been chosen as O(h2) in
the computation. Thus we can make a conclusion that β only needs to be O(H) to
keep the rate of convergence.

Using the triangle inequality we can get the following theorem directly from
theorem 1 and theorem 2.

Theorem 3. Assume that the conditions of Theorem 1 hold, 0 < H ≤ h, for a
given Hp ≥ C0 and s ≥ 1, choose αH = O(H2), β = O(H), then, the solution
(uh, ph) defined by Algorithm PVMS-PU satisfies

(31) ‖u− uh‖1,Ω + ‖p− ph‖0,Ω ≤ C(h2 +H3).

4. Numerical Tests

The algorithm in all experiments is implemented by the public finite element
software Freefem++ [27]. All simulations were performed on a dawning parallel
cluster composed of 32 nodes, each with eight-core 2.0 GHz CPU, 2 GB × 8 DRAM,
and connected together by 20Gbps InfiniBand. The message-passing is supported
by MPICH.

4.1. Implementation. To verify the analysis results, we consider 2D numerical
examples. Dividing Ω into sub-squares with equal sizes h (or H , Hp), and drawing
the diagonal in each sub-square, we obtain the regular triangulation τh (or τH , τHp

).
For convenience of presentation, we introduce the following notations:
SFEMmeans the standard finite element method. Namely, the nonlinear systems

are solved by Newton iteration.
GVMS means the finite element variational multiscale method based on two local

Gauss integrations (4).
PVMS-PU means ALGORITHM PVMS-PU.

4.2. Rates of convergence study. The first test problem is a smooth problem in
Ω = [0, 1]×[0, 1], where the exact solution of the stationary Navier-Stokes equations
(1) is given by (u = (u1, u2), p):

u1 = 10x2(x− 1)2y(y − 1)(2y − 1),

u2 = −10x(x− 1)(2x− 1)y2(y − 1)2,

p = 10(2x− 1)(2y − 1),

here, ν = 1.0 for simplicity, f and the boundary conditions are set by (u =
(u1, u2), p).

To get the optimal orders for H1-norm of velocity and L2-norm of pressure, we
should choose H and h such that h ∼ H

3

2 . In this example, we compute the finite
element solutions by PVMS-PU with coarse mesh sizes H = 1

12n (n=1, 2, 3, 4) and
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the corresponding fine mesh sizes h = H/m (m=4, 5, 6, 7). Besides, according
to Theorem 1and 3, we choose αH = 0.1H2, β = 0.1H . The corresponding linear
algebraic system is solved by LU factorization. Convergence of the Newton iteration
is achieved when the relative H1-error of successive iterative velocities is within a
fixed tolerance of 10−6, i.e., the following condition is satisfied:

||un+1
µ − un

µ||1,Ω

||un+1
µ ||1,Ω

≤ 10−6,

where un
µ (µ could be h, H) is the nth Newton iterative solution.

For PVMS-PU, we fix P1-PU on τHp
, Hp = 1/12, s = 1, thus, N = 169, all

simulations are implemented with 32 processors.

Table 1. The errors of GVMS

h ||u− ūh||1,Ω Order ||p− p̄h||0,Ω Order CPU
1/48 0.000365636 - 0.00112071 - 3.62
1/120 5.89085e-05 1.9943 0.00017977 1.99814 33.46
1/216 1.92045e-05 1.99225 5.68389e-05 1.98735 153.99
1/336 - - - - -

Table 2. The errors of PVMS-PU

H h ||u− uh||1,Ω Order ||p− ph||0,Ω Order Wall time
1/12 1/48 0.00102771 - 0.00118434 - 2.85
1/24 1/120 0.000126349 2.05336 0.00018409 1.99975 12.17
1/36 1/216 3.57543e-05 2.11658 5.64822e-05 2.01571 50.62
1/48 1/336 1.47535e-05 2.05336 2.35785e-05 1.99975 182.75

To further test our PVMS-PU, we also consider another smooth problem (re-
ferred as Solution 2) with exact solution u = (u1, u2)

u1 = sin(πx)2 sin(2πy),

u2 == − sin(2πx) sin(πy)2,

p = cos(πx) cos(πy).

In present computations, the same parameters h, H and s for PVMS-PU are chosen
as Solution 1. The results are tabulated in Tables 3 and 4. From these two tables,
we can observe similar phenomena and draw same conclusion as found from Tables
1 and 2.

Table 3. Solution 2, the errors of GVMS

h ||u− ūh||1,Ω Order ||p− p̄h||0,Ω Order Wall time
1/48 0.00566745 - 0.000179236 - 3.32
1/120 0.00090770 1.99891 2.86259e-05 2.00198 29.82
1/216 0.000280193 1.99977 9.00352e-06 1.96788 153.65
1/336 - - - - -
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Table 4. Solution 2, the errors of PVMS-PU

H h ||u− uh||1,Ω Order ||p− ph||0,Ω Order Wall time
1/12 1/48 0.00809542 - 0.00283574 - 5.82
1/24 1/120 0.000937267 2.35306 0.00019754 2.9075 13.33
1/36 1/216 0.000284110 2.03068 4.44115e-05 2.53909 51.48
1/48 1/336 0.000116765 2.01252 1.56627e-05 2.35885 193.94

4.3. The driven cavity flow. A popular benchmark problem for testing numer-
ical schemes is the ’fluid driven cavity’. This problem is chosen because some
benchmark data is available for comparison. In this problem, computations are
carried out in the domain Ω = [0, 1]× [0, 1]. Flow is driven by the tangential veloc-
ity field applied to the top boundary in the absence of other body forces. On the
top side {(x, 1) : 0 < x < 1}, the velocity is equal to u = (1, 0), and zero Dirichlet
conditions are imposed on the rest of the boundary.

Based on PVMS-PU with P1-PU on τHp
, Hp = 1/12, s = 1, we compute for

Reynolds numbers Re = 5000 with fixed H = 1/48, h = 96 and Re = 10000 with
fixed H = 1/60, h = 120, and αH = 0.1H, β = 0.1H . the computational results
are shown in Figures 2 and 3, comparing with the results of Ghia, Ghia, and Shin
[28]. Ghia et al.’s algorithm is based on the time dependent stream function using
the coupled implicit and multigrid methods.

For different Reynolds numbers, the x component of velocity along the vertical
centerline and y component of velocity along the horizontal centerlines by PUPVMS
are drawn in Fig 2 and 3. The accuracy of the computed solutions by PUPVMS
has good agreements with the benchmark data of Ghia et al. [28].
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Figure 2. PUPVMS forRe = 5000. Left, x component of velocity
along the vertical centerline; right, y component of velocity along
the horizontal centerline.

5. Conclusion

In this paper we proposed the parallel variational multiscale method for the
incompressible flows based on the partition of unity and derived the global error
estimates. The implementation and some numerical simulations were presented to
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Figure 3. PUPVMS for Re = 10000. Left, x component of ve-
locity along the vertical centerline; right, y component of velocity
along the horizontal centerline.

illustrate the high efficiency and flexility of the new algorithm. Our next aim is to
develop some adaptive strategies for oversampling and refinements.

References

[1] T.J.R.Hughes. Multiscale phenomena: Green’s functions, the dirichlet-to-neumann formula-
tion, subgrid scale models, bubbles and the origins of stabilized methods. Computer Methods
in Applied Mechanics and Engineering, 127(1-4):387 – 401, 1995.

[2] T.J.R. Hughes, G.R. Feijoo, L. Mazzei, and J.B. Quincy. The variational multiscale method
- a paradigm for computational mechanics. Computer Methods in Applied Mechnics and
Engineering, 166(1-2):3–24, NOV 13, 1998.

[3] V. John, S. Kaya, A finite element variational multiscale method for the Navier-Stokes
equations, SIAM J. Sci. Comput., 26 (2005), 1485-1503.

[4] V. Gravemeier, W.A. Wall and E. Ramm, A three-level finite element method for the
instationary incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg.
193 (2004), 1323-1366.

[5] H. B. Zheng, Y. R. Hou, F. shi, and L. N. Song, A Finite Element Variational multiscale
method for incompressible flows based on two local Gauss integrations, J. Comput. Phys.,
228 (2009), 5961-5977.

[6] H. B. Zheng, Y. R. Hou and F. shi, Adaptive Finite Element Variational multiscale method

for incompressible flows based on two local Gauss integrations, J. Comput. Phys., 229 (2010),
7030-7041.

[7] Y. Zhang, M. F Feng and Y. N. He, Subgrid model for the stationary incompressible
Navier-Stokes equations based on the hgih order polynomial interpolation, Int. J. Numer.
Anal. Model., 7 (2010), 734-748.

[8] J. P Yu, H. B. Zheng and F. Shi, A finite element variational multiscale method for in-
compressible flows based on the construction of the projection basis functions, Int. J. Numer.
Meth. in Fluids, 70 (2012), 793-804.

[9] L. Shan, W. J. Layton and H. B. Zheng, Numerical analysis of modular VMS methods
with nonlinear eddy viscosity for the Navier-Stokes equations, Int. J. Numer. Anal. Model.,
10(2013), 943-5971.

[10] J. Xu and A. Zhou, Local and Parallel Finite Element Algorithms Based on Two-Grid
Discretizations, Math. Comp., 69 (2000), 881-909.

[11] R. Bank and M. Holst, A new paradigm for parallel adaptive meshing algorithms, SIAM
Rev., 45 (2003), 291-323.

[12] Y. He, J. Xu and A. Zhou, Local and Parallel Finite Element Algorithms for the Navier-
Stokes Problem, J. Comput. Math., 24 (2006), 227-238.



PARALLEL VARIATIONAL MULTISCALE METHOD FOR INCOMPRESSIBLE FLOWS 865

[13] Y. Shang, Y. He, D. Kim and X. Zhou, A new parallel finite element algorithm for the
stationary Navier-Stokes equations, Finite Elem. Anal. Des., 47 (2011), 1262-1279.
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