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AN ERROR ESTIMATE OF THE COUPLED FINITE-INFINITE

ELEMENT METHOD FOR SCATTERING FROM AN ARC

WEI SUN AND FUMING MA

Abstract. The scattering problem from time-harmonic waves by a Neumann type crack in R2

is considered. A PML technique is used for solving the problem with a bounded domain instead
of the infinite domain. A coupled finite-infinite element method is employed in the computation.
Because of the singularity of the solution, the infinite element method is used near the crack tip.
An error analysis is presented for the numerical approximation. The convergence order of the
method is higher than FEM’s.
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1. Introduction

The scattering problem for an arc has attracted more and more attention in the
past ten years not only because of pure mathematical interest but also of consider-
able interest for crack-detecting problems in material sciences. The problem can be
governed by the Helmholtz equation with boundary conditions on both sides of the
arc and the radiation condition at infinity for scattered wave. The difficulty of the
scattering problem by an arc as compared to the case of closed smooth boundary is
the presence of the tips of crack. Krutitskii [21,22] reported that the solution has a
square root singularity at the end of the arc in Dirichlet and Neumann cases. The
solution does not belong to H

3
2 (R2\Γ) since the solution has a singularity of the

form r
1
2φ(θ), where (r, θ) are the polar coordinates centered at the crack tip.

Up to now, the main method to solve the problem is the application of integral
equations. In [16], Kress used it to solve the Dirichlet problem by using cosine
transformation and its numerical solution via fully discrete collocation methods.
Mönch [19] converted the unbounded Neumann problem into a boundary integral
equation. In [17], Kress and Lee extended the method to the case of the impedance
boundary condition. Liu [18] considered the scattering problem by a crack in R

2

with different impedance type boundary conditions on different sides. In his paper,
the solution is represented in the form of the combined angular potential and single-
layer potential.

We will consider the numerical computation of the scattering problem for an arc
in this paper. The first difficulty of the problem is infinity of the domain. We use
a PML technique for solving the problem with a bounded domain instead of the
infinite domain ( to limit the computational region). From the first paper [4] about
PML technique, various constructions of PML absorbing layers have been proposed
and studied in the literature (Chen [9,10], Collino and Monk [11]). The method
developed in the present paper is based on [9].

The second difficulty of the problem is the singularity of the solution. Infinite
element is considered for such reason. The infinite element was first investigated
by Bettess [5]. The method is to extend the element towards infinity in one di-
rection. Thus, shape functions are non polynomial but integrable over the infinite
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element, such as mapped infinite element developed by Bettess and Zienkiewicz [6],
and original wave envelope element by Astley [2]. The issue of formulating a math-
ematically variational statement has been addressed by [7] and [15]. Demkowicz
and Gerdes [14] presented a convergence analysis for the infinite element method
for the Helmholtz equation in exterior domains. In [13], Demkowicz and Ihlenburg
analyzed the error of the coupled finite-infinite element method (FIEM). The error
involves the radius of the computational domain covered with finite elements and
the number N of the radial terms of infinite elements. Zheng [24] estimated the
error of FIEM for the exterior Poisson equation . The result involves not only the
size h but also the order p of the quasiuniform finite element approximation with-
out any assumptions. The number N of radial terms of infinite elements has an
algebraic convergence.

In this paper, we present a novel error estimate of the coupled finite-infinite
element for scattering from an arc. The method is better than the usual FEM. The
number of meshes is less than the usual FEM. The method reflects the singularity
near the tip accurately. Thus the convergence order is higher. The error depends
on N exponentially.

The organization of this paper is as follows. In section 2, we estimate the solution
formulation in the neighborhood of the vertexes of the arc and its approximation.
In section 3, we introduce the PML problem of the arc and the uniqueness and the
convergence of the PML problem. A finite-infinite element subspace is constructed
in section 4. The uniqueness of the discrete problem and the error analysis is given.

Let us consider the following model problem. For a given arc Γ ⊂ R2 , we
denote the end points of the crack with P, Q, respectively. Denote the left-hand
and right-hand side of the crack by Γ+,Γ−. The outward normal to Γ+ is written
by n+ and the opposite direction is written by n−. For the given incident plane
wave ui(x) = ui(r, θ) = eikx·d with wave number k ∈ R+ and incident direction d,
consider the following scattering problem for total wave v(x) = ui(x) + us(x),

∆v + k2v = 0 in R
2 \ Γ,(1)

∂v

∂n±
= 0 on Γ±,(2)

√
r(
∂us

∂r
− ikus) → 0 as r = |x| → ∞.(3)

In (2),

(4)
∂v(x)

∂n±
= lim

h→0+
±n(x) · ▽v(x± hn(x)),

where the boundary condition at the ends of arc Γ is not required.
Noticing that ui is an entire function, then us satisfies the following system:

∆us + k2us = 0 in R
2 \ Γ,(5)

∂us

∂n±
= − ∂ui

∂n±
= g± on Γ±,(6)

√
r(
∂us

∂r
− ikus) → 0 as r = |x| → ∞.(7)

Throughout the paper, for a given domain Ω, we denote by |u|1,Ω, ‖u‖1,Ω the
standard semi-norm and norm of the function u in the space H1(Ω).
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2. Formulation of solution near endpoints of the arc and its approxima-

tion

Define

BP
ρ = {x ∈ R

2, |x− P | ≤ ρ }, BQ
ρ = {x ∈ R

2, |x−Q| ≤ ρ }.(8)

and SP
ρ = {x ∈ R2, |x − P | = ρ}, SQ

ρ = {x ∈ R2, |x − Q| = ρ}. Let R0 be a real

number such that the section of Γ in Bi
R0

can approximate as a line segment, where
i = P,Q, and R0 <

π
3k . Let R < min(1, R0). Let us associate each vertex i of the

arc Γ with polar coordinate (ri, θi) (such that the line θi = 0 coincides with the
section of Γ in Bi

R0
).

Proposition 2.1 {cos n
2 θ}∞n=0 and {sin n

2 θ}∞n=0 are both sets of orthogonal bases

of L2(0, 2π), respectively.
The total wave v(x) in Bi

R0
\Γ has the following expansion from separation of

variables,

(9) v|Bi
R0

\Γ =
a0

2
J0(kri) +

∞
∑

n=1

anJn
2
(kri) cos

n

2
θi,

where Jγ(z) are Bessel functions of the first kind of order γ. If (2) is the homogenous
Dirichlet boundary condition instead, the expansion of total wave is

v|Bi
R0

\Γ =
a0

2
J0(kri) +

∞
∑

n=1

bnJn
2
(kri) sin

n

2
θi.

Proposition 2.2

(10)
∣

∣

Jγ(kr)

Jγ(kR0)

∣

∣ ≤M
( r

R0

)γ ≤M,

where M is a constant independent of γ, if γ > 0, R0 <
π
3k , 0 < r < R0.

Proof. From [20], we know the Possion integral representation of Bessel func-
tions

Jγ(kr) =
1√

π Γ(γ + 1
2 )

(kr

2

)γ
∫ π

0

cos(kr cos θ) sin2γ θdθ.

Thus

(11)
∣

∣

Jγ(kr)

Jγ(kR0)

∣

∣ =
( r

R0

)γ∣
∣

∫ π

0
cos(kr cos θ) sin2γ θdθ

∫ π

0
cos(kR0 cos θ) sin

2γ θdθ

∣

∣,

since 0 < r < R0 <
π
3k ,

1
2 < cos(kr cos θ) < 1.

We have
∣

∣

Jγ(kr)

Jγ(kR0)

∣

∣ ≤M
( r

R0

)γ ≤M.

The proof is completed.

Proposition 2.3[14] Consider a series
∞
∑

n=0
pn with pn ≥ 0. Then

∞
∑

n=N+1

pn ≤ Ce−κN ,

holds for some C > 0, κ > 0, if and only if there exists some D > 0 such that

pn ≤ De−κn, ∀n
for the same κ > 0.
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Proposition 2.4
∞
∑

n=0

anbn ≤ (

∞
∑

n=0

an )(

∞
∑

n=0

bn),

if an, bn ≥ 0.
Proposition 2.5 Under the condition of Proposition 2.2 ,

(12)
∣

∣

{Jn
2
(kr)}′

Jn
2
(kR0)

∣

∣ ≤ K
n

2

1

r
(
r

R0
)

n
2 ,

where K is a constant independent of n, if r < R0.
Proof. From [20], we have

∣

∣

kJ ′
n
2
(kr)

Jn
2
(kR0)

∣

∣ =
∣

∣

k[Jn
2
+1(kr)− n

2krJ
n
2
(kr)]

Jn
2
(kR0)

∣

∣

≤
∣

∣

kJn
2
+1(kr)

Jn
2
(kR0)

∣

∣+
∣

∣

n

2r

Jn
2
(kr)

Jn
2
(kR0)

∣

∣.

(13)

According to Proposition 2.2,

(14)
n

2r

∣

∣

Jn
2
(kr)

Jn
2
(kR0)

∣

∣ ≤M
n

2

1

r
(
r

R0
)

n
2 ,

so

∣

∣

kJn
2
+1(kr)

Jn
2
(kR0)

∣

∣ =
∣

∣k
Jn

2
+1(kr)

Jn
2
(kr)

∣

∣

∣

∣

Jn
2
(kr)

Jn
2
(kR0)

∣

∣

≤
∣

∣k
Γ(n2 + 1

2 )

Γ(n2 + 3
2 )

∫ π

0 cos(kr cos θ) sinn+2 θdθ
∫ π

0
cos(kr cos θ) sinn θdθ

(
r

n
2
+1

R
n
2

0

)
∣

∣

≤Mk
2

n+ 1
r
{ r

R0

}
n
2

< K
n

2

1

r

( r

R0

)
n
2 ,

(15)

since r < R. This completes the proof of the proposition.
Lemma 2.1 Under the condition of Proposition 2.2, if u(R0, ·) ∈ Hν(0, 2π),

where

u = u(r, θ) =
a0

2

J0(kr)

J0(kR0)
+

∞
∑

n=1

Jn
2
(kr)

Jn
2
(kR0)

an cos
n

2
θ, r < R,

and

uN = uN(r, θ) =
a0

2

J0(kr)

J0(kR0)
+

N
∑

n=1

Jn
2
(kr)

Jn
2
(kR0)

an cos
n

2
θ,

we have

|u− uN |1,BR\Γ ≤ Ce−κN
2 |u(R0, ·)|ν, (0,2π),(16)

‖(u− uN )(R, ·)‖1,(0,2π) ≤ Ce−κN
2 |u(R0, ·)|ν, (0,2π),(17)

where N ≥ 1, C is a constant independent of ν and κ is a positive constant only
dependent on R and R0.

Proof.

(18) |u− uN |21,BR\Γ = | ∂
∂r

(u− uN)|20,BR\Γ + |1
r

∂

∂θ
(u− uN )|20,BR\Γ.
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According to Proposition 2.2,

|1
r

∂

∂θ
(u − uN)|20,BR\Γ

≤M2
∞
∑

N+1

(
n

2
)2
∫ R

0

r

r2
(
r

R0
)n|an|2dr

≤M2
∞
∑

N+1

(
n

2
)2
1

n
(
R

R0
)n|an|2.

(19)

From Proposition 2.5,

| ∂
∂r

(u− uN )|20,BR\Γ(20)

=
∞
∑

N+1

∫ R

0

r
{
kJ ′

n
2
(kr)

Jn
2
(kR0)

}2|an|2dr(21)

≤
∞
∑

N+1

|an|2K2

∫ R

0

(
n

2
)2
r

r2
(
r

R0
)ndr(22)

=K2
∞
∑

N+1

(
n

2
)2

1

n
(
R

R0
)n|an|2.(23)

We have

|u− uN |21,BR\Γ ≤C2
∞
∑

N+1

(
n

2
)2

1

n
(
R

R0
)n|an|2

≤C2
{

∞
∑

N+1

(
2

n
)2ν−1(

R

R0
)n
}{

∞
∑

N+1

(
n

2
)2ν |an|2

}

,

(24)

where C = max{M,K}. Since N ≥ 1,

(25) (
2

n
)2ν−1(

R

R0
)n < (

R

R0
)n = e−κn,

where κ = ln R0

R
> 0. According to Proposition 2.3, we get (16)

|u− uN |1,BR\Γ ≤ C e−κN
2 |u(R0, ·)|ν, (0,2π).

It is easy to see

(26) ‖(u− uN)(R, ·)‖20,(0.2π) ≤M2
∞
∑

N+1

|an|2(
R

R0
)n,

(27) |(u − uN)(R, ·)|21, (0,2π) ≤M2
∞
∑

N+1

(
n

2
)2
{ R

R0

}n|an|2,

So

‖(u− uN)(R, ·)‖21,(0,2π) ≤M2
∞
∑

N+1

(
n

2
)2
{ R

R0

}n|an|2

≤M2
{

∞
∑

N+1

(
2

n
)2ν−2(

R

R0
)n
}{

∞
∑

N+1

(
n

2
)2ν |an|2

}

≤C2 e−κN |u(R0, ·)|2ν, (0,2π).

(28)
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3. The PML formulation of the problem

In this section, we consider the existence, uniqueness and the convergence of the
solution of PML problem. Let Γ be contained in the interior of the disc BR̃ = {x ∈
R2 : |x| < R̃} . Denote ΩR̃ = BR̃\Γ. We surround the domain ΩR̃ with a PML

layer ΩPML = {x ∈ R2 : R̃ < |x| < ρ}. Let Γρ = {x ∈ R2 : |x| = ρ}, Ωρ = Bρ\Γ,
Ωe

ρ = Ωρ\(BP
R ∪BQ

R ).
Let α(r) = 1 + iσ(r) be the model medium property which satisfies

σ ∈ C(R), σ ≥ 0, and σ = 0 for r ≤ R̃.

Denote by r̃ the complex radius defined by

(29) r̃ = r̃(r) =

{

r r ≤ R̃,
∫ r

0 α(t)dt = rβ(r) r ≥ R̃.

From [9], the PML solution û in Ωρ = Bρ\Γ is defined as the solution of the
following system

(30)
∇ · (A∇û) + αβk2û = 0 in Ωρ,
∂û
∂n± = g± on Γ±, û = 0 on Γρ,

where A = A(x) is a matrix which satisfies, in polar coordinates,

∇ · (A∇) =
1

r

∂

∂r
(
βr

α

∂

∂r
) +

α

βr2
∂2

∂θ2
.

The problem (30) is shown as an approximation of problem (5)-(7).
Let a : H1(Ωρ)×H1(Ωρ) → C be a sesquilinear form

(31) a(û, ψ) =

∫

Ωρ

(
β

α
r
∂û

∂r

∂ψ

∂r
+

α

βr

∂û

∂θ

∂ψ

∂θ
− αβk2rûψ)dx,

Then the weak formulation for (30) is: Find û ∈ H1
E(Ωρ) such that

(32) a(û, ψ) =< g+, ψ >Γ+ + < g−, ψ >Γ− ∀ψ ∈ H1
E(Ωρ),

where H1
E(Ωρ) = {u : u ∈ H1(Ωρ), u|Γρ

= 0}, and < ·, · >Γ stands for the inner

product on L2(Γ).
We make the following assumption

(33) σ = σ0{
r − R̃

ρ− R̃
}m

for some constant σ0 > 0 and some integerm > 1. Let β(r) = 1+iσ̂(r), α0 = 1+iσ0.
It is easily to see that 0 < σ̂ ≤ σ ≤ σ0. Thus

(34) Re a(u, u) =

∫

Ωρ

[
1 + σσ̂

1 + σ2
r|∂u
∂r

|2 + 1 + σσ̂

1 + σ̂2

1

r
|∂u
∂θ

|2 + (σσ̂ − 1)k2r|u|2]drdθ,

where
1 + σσ̂

1 + σ2
,
1 + σσ̂

1 + σ̂2
≥ 1

σ2
0

.
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Next, we introduce another PML problem in order to represent the singularity of
P, Q, because it satisfies the homogeneous boundary condition on Γ. Let u = û+ui.
The problem (30) is equivalent to the following system

∇ · (A∇u) + αβk2u = f in Ωρ,(35)

∂u

∂n±
= 0, on Γ±,(36)

u = ui, on Γρ,(37)

where f = ∇ · (A∇ui) + αβk2ui. It is easy to see f = 0 in BR̃.
We set U = u− uiφ, where φ ∈ C∞(Ω̄ρ) satisfies

φ = 1 on Γρ, φ = 0 in BR̃.

It is easy to see that U is a solution of the following system

∇ · (A∇U) + αβk2U = f + g in Ωρ,(38)

∂U

∂n±
= 0, on Γ±,(39)

U = 0 on Γρ,(40)

where g = −∇ · [A∇(uiφ)]− αβk2uiφ. Clearly, g = 0 in BR̃.
The variational formulation of the problem (38)-(40) is to find U ∈ H1

E(Ωρ) such
that

(∇AU, v)− k2(αβU, v) = (f + g, v) ∀v ∈ H1
E(Ωρ).

Similar to the arguments in [11], we define two operatorsM : H1
E(Ωρ) → H1(Ωρ)

and N : H1
E(Ωρ) → H1(Ωρ) by Riez representation as follows

(41) (∇Mu,∇v) + (Mu, v) = (A∇u,∇v) + (u, v),

(42) (∇Nu,∇v) + (Nu, v) = ((αβk2 + 1)u, v),

for all u, v ∈ H1
E(Ωρ). Under the condition of (33), M−1 exists and is bounded.

The next step is to prove N is compact. If ω = Nu, ω ∈ H1(Ωρ) satisfies the
following boundary problem:

−∆ω + ω = (αβk2 + 1)u in Ωρ,(43)

∂ω

∂r
= 0 on Γρ,(44)

∂ω

∂n±
= 0 on Γ±.(45)

From the variational formulation and standard elliptic regularity theory, the
arguments of [8] imply that ‖ω‖ε,Ωρ

≤ C‖u‖1,Ωρ
, where 1 < ε < 3

2 . Since Hε(Ωρ)

is compactly embedded in H1(Ωρ), N is compact.
Now let G ∈ H1(Ωρ) be defined by

(∇G,∇v) + (G, v) = (f + g, v) ∀v ∈ H1(Ωρ).

Then the problem (38)-(40) is equivalent to finding U ∈ H1
E(Ωρ) such that

(46) U −M−1NU = M−1G.

Since U = u− uiφ, u satisfies

(47) u−M−1Nu = M−1F,
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where F is some function in H1(Ωρ). Clearly, the Fredholm alternative theorem is
applicable.

Remark. In general, I : Hε(Ωρ) 7→ H1(Ωρ) is compact under the condition
that Ωρ is Lipschitz. But [1] presents that I is still compact if Ωρ satisfies the cone
condition.

Proposition 3.1 The problem (35)-(37) has a unique solution u ∈ H1(Ωρ)
except for a discrete set of values of k.

The arguments of Chen [9] imply that the PML solution converges to the solution
of original scattering problem (5)-(7) in ΩR̃ for a large σ0 as the thickness of the
PML layer tends to infinity.

Let ue = u|Ωe
ρ
, uj = u|

B
j

R
, γj is the trace operator of Sj

R in H1(Ωe
ρ). Define

V := {u
∣

∣u|Ωe
ρ
∈ H1(Ωe

ρ), u|Bj

R
=

∞
∑

n=0

bn,j
Jn

2
(kr)

Jn
2
(kR)

cos
n

2
θj , γju

e = uj|Sj

R
, j = P,Q, },

where

bn,j =
1

2π

∫ 2π

0

γju
e cos

n

2
θdθ ∈ R.

Therefore, V ⊂ H1(Ωρ). And

‖u‖V = ‖u‖1,Ωρ
.

Obviously, u ∈ V can be decided by u|Ωe
ρ
uniquely.

Theorem 3.1 V is a closed subspace of H1(Ωρ).
Proof. Define

V0 = {
∞
∑

n=0

bn
Jn

2
(kr)

Jn
2
(kR)

cos
n

2
θ, ∀ bn ∈ R, 0 ≤ r ≤ R }.

Let functions {am} ∈ V0 ⊂ H1(BR) converge to a ∈ H1(BR), i.e. lim
m→∞

‖am−a‖1 =
0. So functions {am(R, ·)} ⊂ H

1
2 (0, 2π) is convergent according to trace theorem.

Assume that the limit is

am(R, ·) → b′ =

∞
∑

n=0

bn cos
n

2
θ. (m→ ∞)

Let

b =

∞
∑

n=0

bn
Jn

2
(kr)

Jn
2
(kR)

cos
n

2
θ ∈ V0.

Obviously, b′ = b(R, ·). From Lemma 2.1,

(48) ‖am − b‖1 ≤ C‖(am − b)(R, · )‖ 1
2
,(0,2π) → 0.

So a = b. V0 is closed. Thus V is a closed subspace. The proof is completed.
Define

Π : H1(Ωρ) → V

u → v

s.t Πu|Ωe
ρ
= u |Ωe

ρ
.
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Since v can only be decided by u |Ωe
ρ
, the operator Π is linear, injective, but not

one-to-one. Still Π is bounded.

|Πu|21,Ωρ
≤ |u|21,Ωe

ρ
+

∑

j=P,Q

|
∞
∑

n=0

bn,j
Jn(krj)

Jn(kR)
cos

n

2
θj |21,Bj

R

≤ |u|21,Ωe
ρ
+

∑

j=P,Q

|u(R, θj)|21
2
,(0,2π)

≤ C|u|21,Ωρ
.

(49)

Since (9), the solution of (47) in H1(Ωρ) must be in V . Let (47) multiple Π.

(50) u−ΠM−1Nu = ΠM−1F.

ΠM−1N is compact because Π is bounded. Fredholm alternative theorem is
applicable. Moreover, the solution of (47) must be the solution of (50). Thus (47)
and (50) has the same unique solution except for a discrete set of k.

4. Discrete problem and estimation of error

Let Fh = {Kh
i } be a regular triangulation of the domain Ωe

ρ, where h =

maxdiam{Kh
i }. If Kh

i ∩ (BP
R ∪BQ

R ) = ∅, Kh
i are triangles. If Kh

i ∩ (BP
R ∪BQ

R ) 6= ∅,
Kh

i are curved triangles which have one curved edge align with S
Q
R and SP

R . Let

Gh
i be a one-to-one sufficiently smooth mapping, which maps Kh

i onto the standard
triangle,

T = {(x1, x2)| − 1 < x1 < 1,−1 < x2 < x1}.
Let Xh

R,p(Ω
e
ρ) ⊂ H1(Ωe

ρ) denote the set of functions u such that u|Kh
i
◦ (Gh

i )
−1 is a

polynomial of degree ≤ p. The space we have used is the same as [24].

The mesh Fh induces two partitions Fh,i
R = {Kh,i

R,j}mi

j=1 of Si
R ,where i = P,Q.

Denote by {Nh,i
j }mi

j=1 the nodal points of Fh,i
R , which induces two partitions F∆θ,i =

{K∆θ,i
j }mi

j=1 of (0, 2π) with θ. Let X
∆θ,i
p (0, 2π) ⊂ H1(0, 2π) be the set of functions u

such that u|
K

△θ,i
j

is a polynomial of degree ≤ p with respect to the polar angle vari-

able. We define an interpolation operator Πθi such that Πθi(u|Si
R
) ∈ X△θ,i

p (0, 2π).

For v ∈ Hν(0, 2π), according to [23] , we have

(51) ‖v −Πθv‖t,(0,2π) ≤ C
hmin(ν,p+1)−t

pν−t
‖v‖ν,(0,2π),

where ν > 1, 0 ≤ t ≤ 1, p ≥ 1.
Let

Y
h,p
N,R(B

i
R) = {

N
∑

n=0

Jn
2
(kri)

Jn
2
(kR)

ωn(θi), ωn(θi) ∈ X∆θ,i
p (0, 2π) },

where i = P or Q.
Moreover,

X
h,p
N,R ={u ∈ H1(Ωρ) : u|Ωe

ρ
∈ Xh

R,p(Ω
e
ρ), u|Bp

R
∈ Y

h,p
N,R(B

p
R), u|BQ

R
∈ Y

h,p
N,R(B

Q
R )}.

(52)

We define

(53) uidis ∈ Xh
R,p(Γρ) = {u|Γρ

∣

∣u ∈ Xh
R,p(Ω

e
ρ)}, uidis(N

h
ρ,j) = ui(Nh

ρ,j),

where Nh
ρ,j is the nodal points of Fh in Γρ.

Define

(54) X̃
h,p
N,R = {u ∈ X

h,p
N,R : u|Γρ

= uidis}, X̃
h,p
N,R,0 = {u ∈ X

h,p
N,R : u|Γρ

= 0}.
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Now we get the following discrete version of (35)-(37):

Find uh,N,R ∈ X̃
h,p
N,R , such that

(55)
∫

Ωρ

(
β

α
r
∂uh,N,R

∂r

∂v

∂r
+

α

βr

∂uh,N,R

∂θ

∂v

∂θ
− αβk2ruh,N,R v) =< f, v >, ∀v ∈ X̃

h,p
N,R,0.

It is easy to see that Xh,p
N,R is ultimately dense in V. In addition, problem (30) is

equivalent to (50). Thus problem (55) has a unique solution expect for a discrete
set of values of k.

Theorem 4.1 Let u ∈ H1(Ωρ) be the solution of problem (35)-(37). Then if

u|Ωe
ρ
∈ Hm(Ωe

ρ), u(R0,j , ·) ∈ Hν+ 1
2 (0, 2π), we have

inf
wp,N∈X

h,p
N,R

|u− wp,N |1,Ωρ
≤ C

∑

j=P,Q

{ hmin(ν,p)

pν
|u(R0,j , ·)|ν+ 1

2
,(0,2π)+

e−κN
2 |u(R0,j , ·)|ν,(0,2π) +

hmin(p,m−1)

pm−1
|u|m,Ωe

ρ

}

.

(56)

Proof. Assume that ϕ′
R,h ∈ Xh

R,p(Ω
e
ρ) is the finite element approximation of the

following system

∇ · (A∇ϕ) + αβk2ϕ = f in Ωe
ρ,(57)

ϕ = ui on Γρ,(58)

ϕ = u|SP
R

on SP
R , ϕ = u|

S
Q

R

on SQ
R .(59)

where u is the solution of (35)-(37).
From the standard theories of finite element method,

(60) |ϕ− ϕ′
R,h|1,Ωe

ρ
≤ C

hmin(p,m−1)

pm−1
|ϕ|m,Ωe

ρ
.

Now let

(61) ϕh
N,R =































ϕ′
R,h, x ∈ Ωe

ρ,

J 1
2
(kr)

J 1
2
(kR)

ΠθP (u− uN )(Rj , ·) + ΠθP uN , x ∈ BP
R ,

J 1
2
(kr)

J 1
2
(kR)

ΠθQ(u− uN )(Rj , ·) + ΠθQuN , x ∈ B
Q
R .

It is easy to verify that ϕh
N,R ∈ X̃

h,p
N,R. We have

(62)

|u− ϕh
N,R|21,Ωρ

≤ |u− ϕ′
R,h|21,Ωe

ρ
+

∑

i=P,Q

{|u−ΠθiuN |21,Bi
R
\Γ + |

J 1
2
(kri)

J 1
2
(kR)

Πθi(u− uN)(R, ·)|21,Bi
R
\Γ}.
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We get

|
J 1

2
(kr)

J 1
2
(kR)

Πθ(u− uN )(R, ·)|21,BR\Γ

=
∣

∣

∂

∂r

(
J 1

2
(kr)

J 1
2
(kR)

)

Πθ(u− uN )(R, ·)
∣

∣

2

0,BR\Γ
+
∣

∣

1

r

J 1
2
(kr)

J 1
2
(kR)

∂

∂θ
Πθ(u− uN )(R, ·)

∣

∣

2

0,BR\Γ

=I1 + I2,

(63)

where

I1 =

∫ R

0

r
∣

∣

∂

∂r

(
J 1

2
(kr)

J 1
2
(kR)

)∣

∣

2
dr

∫ 2π

0

|Πθ(u− uN)(R, ·)|2dθ

≤K2

∫ R

0

(
1

2
)2
r

r2
r

R
dr

∫ 2π

0

|Πθ(u− uN )(R, ·)|2dθ

≤C
∫ 2π

0

|Πθ(u− uN)(R, ·)|2dθ,

(64)

I2 =

∫ R

0

r

r2

∣

∣

J 1
2
(kr)

J 1
2
(kR)

∣

∣

2
dr

∫ 2π

0

| ∂
∂θ

Πθ(u− uN )(R, ·)|2dθ

≤M2

∫ R

0

1

r

r

R
dr

∫ 2π

0

| ∂
∂θ

Πθ(u− uN )(R, ·)|2dθ

≤C
∫ 2π

0

| ∂
∂θ

Πθ(u− uN)(R, ·)|2dθ.

(65)

So

|
J 1

2
(kr)

J 1
2
(kR)

Πθ(u − uN)(R, ·)|21,BR\Γ

≤C‖Πθ(u− uN )(R, ·)‖1,(0,2π)
≤C ‖(u− uN)(R, ·)‖1,(0,2π) ≤ Ce−κN

2 |u(R0, ·)|ν,(0,2π).

(66)

In addition,

|uN−ΠθuN |21,BR\Γ = | ∂
∂r

(uN−ΠθuN )|20,BR\Γ+ |1
r

∂

∂θ
(uN−ΠθuN )|20,BR\Γ ≡ I3+I4,

and

I3 =

∫ R

0

| ∂
∂r

(uN −ΠθuN )|20,(0,2π)rdr ≤ C
h2min(ν,p+1)

p2ν

∫ R

0

| ∂
∂r
uN |2ν,(0,2π)rdr

=C
h2min(ν,p+1)

p2ν

N
∑

n=0

∫ R

0

π(
n

2
)2ν |an|2

{

kJ ′
n
2

(kr)

Jn
2
(kR0)

}2
rdr

≤Ch
2min(ν,p+1)

p2ν

N
∑

n=0

(
n

2
)2ν |an|2

∫ R

0

(
n

2
)2
1

r
(
r

R0
)ndr

≤Ch
2min(ν,p+1)

p2ν

N
∑

n=0

(
n

2
)2ν+1|an|2

≤Ch
2min(ν,p)

p2ν
|u(R0, ·)|2ν+ 1

2
,(0,2π),

(67)
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and

I4 =

∫ R

0

|uN −ΠθuN |21,(0,2π)
dr

r
≤ C

h2min(ν+1,p+1)−2

p2ν

∫ R

0

|uN |2ν+1,(0,2π)

dr

r
(68)

=C
h2min(ν+1,p+1)−2

p2ν

N
∑

n=0

(
n

2
)2ν+2|an|2

∫ R

0

{ Jn
2
(kr)

Jn
2
(kR0)

}dr

r
(69)

≤Ch
2min(ν,p)

p2ν
|u(R0, ·)|2ν+ 1

2
,(0,2π).(70)

So

(71) |u−ΠθuN |1,BR\Γ ≤ C
hmin(ν,p)

pν
|u(R0, ·)|ν+ 1

2
,(0,2π).

From Lemma 2.1, we get the conclusion.
Theorem 4.2 Problem (55) has a unique solution uh,N,R except for a discrete set

of values of k, if N, p are large enough, especially, under the condition of Theorem
4.1,

|u− uh,N,R|1,Ωρ
≤ C

∑

j=P,Q

{ hmin(ν,p)

pν
|u(R0,j , ·)|ν+ 1

2
, (0,2π)+

e−κN
2 |u(R0,j , ·)|ν, (0,2π) +

hmin(p,m−1)

pm−1
|u|m,Ωe

ρ

}

.

(72)
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