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FINITE VOLUME APPROXIMATION OF THE LINEARIZED

SHALLOW WATER EQUATIONS IN HYPERBOLIC MODE

ARTHUR BOUSQUET AND AIMIN HUANG

Abstract. In this article, we consider the linearized inviscid shallow water equations in space
dimension two in a rectangular domain. We implement a finite volume discretization and prove the
numerical stability and convergence of the scheme for three cases that depend on the background

flow ũ0, ṽ0, and φ̃0 (sub- or super-critical flow at each part of the boundary). The three cases
that we consider are fully hyperbolic modes.

Key words. shallow water equations, finite volume method, stability, and convergence.

1. Introduction

This article aims to study the finite volume approximation of the initial and
boundary value problem for the linearized shallow water (SW) equations in a rec-
tangle. This article builds on two previous articles [15] and [9]. In the theoretical
paper [15] the authors determine all the boundary conditions that one can associate
to the linearized shallow water equations and find, as explained below, five differ-
ent situations depending on the respective values of ũ0, ṽ0, φ̃0 corresponding to the
(constant) background flow around which the linearization is made. Omitting the
non generic cases where one of these constants vanish, we can assume, by a change
of variables that ũ0, ṽ0, φ̃0 are > 0. The article [15] raises of course the question
of the approximation of the SW equations in the rectangle in these different sit-
uations. This question was investigated in [9] which considers the approximation
of the inviscid linearized shallow water equations in the so-called supercritical (su-

personic) case, that is when ũ2
0 + ṽ20 > gφ̃0 (see below). Four cases remain to be

studied and we consider in this article three of them for which the stationary part
of the SW equations are fully hyperbolic. We do not discuss in this article the
approximation of the fifth case for which the stationary part of the SW equations is
partly hyperbolic and partly elliptic as this case necessitates a different approach.

Theoretically, we extended the results in [15] to more general hyperbolic systems
in [16] and possibly to more general polygonal-like domains in the fully hyperbolic
case (see [16, Remark 2.3]). Hence, we could also study the finite volume approxi-
mation in the more general setting. However, in this article, we prefer to consider
the shallow water equations in a rectangular domain to stay close from our initial
motivation of this work that is the study of the Local Area Models (LAMs) in the
atmosphere and oceans sciences, see e.g. [22].

The linearized shallow water equations that we consider read

(1.1)











ut + ũ0ux + ṽ0uy + gφx = fu,

vt + ũ0vx + ṽ0vy + gφy = fv,

φt + ũ0φx + ṽ0φy + φ̃0(ux + vy) = fφ,
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where (x, y) ∈ M := (0, Lx) × (0, Ly), (u, v) are the horizontal components of the
velocity and φ is the potential height. The advection velocities ũ0, ṽ0 and the mean
geopotential height φ̃0 are constants, g is the gravitational acceleration, fu, fv, and
fφ are the source terms. As shown in [15], the boundary conditions which can
be associated with these equations depend on the relative values of the velocities
(ũ2

0, ṽ
2
0 > or < gφ̃0), that is whether these velocities are sub- or supercritical (sub- or

supersonic). The three supersonic cases, when ũ2
0 + ṽ20 − gφ̃0 > 0, that we consider

are called: the mixed hyperbolic case (two sub-cases) and the fully hyperbolic

subcritical case. The supercritical case, when ũ0 >

√

gφ̃0, ṽ0 >

√

gφ̃0, has been

considered in [9]. In this article we will focus on the other three cases. For the
mixed hyperbolic case, we only consider one sub-case, where

(1.2) ũ0, ṽ0, φ̃0 > 0, ũ0 <

√

gφ̃0, ṽ0 >

√

gφ̃0,

since the other sub-case where

ũ0, ṽ0, φ̃0 > 0, ũ0 >

√

gφ̃0, ṽ0 <

√

gφ̃0,

would be similar. In the fully hyperbolic subcritical case, we assume that

(1.3) ũ0, ṽ0, φ̃0 > 0, ũ0 <

√

gφ̃0, ṽ0 <

√

gφ̃0, ũ2
0 + ṽ20 − gφ̃0 > 0.

We will study the cases (1.2) and (1.3) separately in Section 2 and 3.
As we know, the literature on the shallow water equations is very vast, both on

the theoretical and computational aspects, considering the viscous equations or the
partly or totally inviscid equations and considering that the height is either always
strictly positive or that it can vanish. See e.g. [1,2,4,8,12,21] on the computational
side and see e.g. [5, 6, 10, 11, 14, 17–20] on the theoretical side. Regarding the nu-
merical stability of time discretized finite volume schemes, see e.g. [8], [9], and [12].
The proof of the convergence results follows the same methods as e.g. [3] and [13].

This article is organized as follows. At the end of this introductory section, we
present some notations which we will use throughout this article. Section 2 and
3 are devoted to show the stability and convergence results of the finite volume
scheme for the linearized SW equations in the mixed hyperbolic case and in the
fully hyperbolic subcritical case, respectively.

We now write (1.1) in the compact form

(1.4) ut + E1ux + E2uy = f ,

where u = (u, v, φ)T , f = (fu, fv, fφ)
T and

E1 =





ũ0 0 g
0 ũ0 0

φ̃0 0 ũ0



 , E2 =





ṽ0 0 0
0 ṽ0 g

0 φ̃0 ṽ0



 .

Note that E1, E2 admit a symmetrizer S0 = diag(1, 1, g/φ̃0), which means that
S0E1, S0E2 are both symmetric (see e.g. [7, Chapter 1]).

Here and in the following, we endow the space H = L2(M)3 with the Hilbert
scalar products and norms, for u = (u, v, φ)T , u′ = (u′, v′, φ′)T :

〈u,u′〉 = (S0u,u
′) = (u, u′) + (v, v′) +

g

φ̃0

(φ, φ′), |u| = {〈u,u〉}1/2,

(u,u′) = u′Tu = (u, u′) + (v, v′) + (φ, φ′), ‖u‖ = {(u,u)}1/2.

(1.5)
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where (·, ·) denotes the standard scalar product on L2(M). The appearance of

the coefficient g/φ̃0 in the inner product 〈·, ·〉 is needed for physical (dimensional)
reasons.

2. The mixed hyperbolic case for the linearized shallow water equations

In this section we consider the mixed hyperbolic case, see (1.2). We associate
with (1.1) the initial conditions:

(2.1) u = (u, v, φ)T = (u0, v0, φ0)T , at t = 0.

2.1. Preliminary theoretical results. The results in this subsection are taken
from [15]. From [15, Sections 1 and 3.2], we know that there exists a real non-
singular matrix P such that PTS0E1P and PTS0E2P are both diagonal. We set

κ̃0 =
√

g(ũ2
0 + ṽ20 − gφ̃0)/φ̃0, and we have:

P−1 =





ũ0 −ũ0 κ̃0

ṽ0 −ũ0 −κ̃0

ũ0 ṽ0 g



 .

Direct computations show that

PTS0E1P = D1 := diag(a1, a2, a3)

:= diag(
ũ0κ̃0 + gṽ0
2(ũ2

0 + ṽ20)κ̃0
,
ũ0κ̃0 − gṽ0
2(ũ2

0 + ṽ20)κ̃0
,

ũ0

ũ2
0 + ṽ20

),

PTS0E2P = D2 := diag(b1, b2, b3)

:= diag(
ṽ0κ̃0 − gũ0

2(ũ2
0 + ṽ20)κ̃0

,
ṽ0κ̃0 + gũ0

2(ũ2
0 + ṽ20)κ̃0

,
ṽ0

ũ2
0 + ṽ20

).

(2.2)

Under assumption (1.2), we find that

(2.3) a1, a3, b1, b2, b3 > 0, and a2 < 0.

We introduce the new variables

(2.4) Ξ :=





ξ
η
ζ



 = P−1u =





ṽ0u− ũ0v + κ̃0φ
ṽ0u− ũ0v − κ̃0φ
ũ0u+ ṽ0v + gφ



 .

Then using the new variables Ξ, we rewrite (1.4) as

(2.5) D0Ξt +D1Ξx +D2Ξy = PTS0f ,

where, as we noticed, D0 = PTS0P is symmetric and positive-definite. Since now
D1 and D2 are diagonal, we can assign the boundary conditions in the Ξ variables
for the parts of ∂M corresponding to the incoming characteristics. According to
the signs of the ai’s and bi’s (i = 1, 2, 3), we associate with (2.5) the following
boundary conditions in the Ξ variables:

(2.6)











ξ = ζ = 0, on ΓW = {x = 0},

η = 0, on ΓE = {x = Lx},

ξ = η = ζ = 0, on ΓS = {y = 0}.
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Therefore, the boundary conditions we associate with (1.1) read in the original u
variables (see [15, Section 3.2]):

(2.7)











ṽ0u− ũ0v + κ̃0φ = ũ0u+ ṽ0v + gφ = 0, on ΓW = {x = 0},

ṽ0u− ũ0v − κ̃0φ = 0, on ΓE = {x = Lx},

u = v = φ = 0, on ΓS = {y = 0}.

We now define two unbounded operators on H = L2(Ω)3:

Au = E1ux + E2uy, ∀u ∈ D(A),

ÃΞ = D1Ξx +D2Ξy, ∀Ξ ∈ D(Ã),
(2.8)

where the domains D(A) and D(Ã) are

D(A) = {u ∈ H : Au ∈ H ,u satisfies the boundary conditions (2.7)} ,

D(Ã) =
{

Ξ ∈ H : ÃΞ ∈ H ,Ξ satisfies the boundary conditions (2.6)
}

.

Using the relation (2.4) between u and Ξ, we immediately find that

(2.9) Au = (PTS0)
−1ÃΞ.

Lemma 2.1. Assume that (1.2) holds. Then for any sufficiently smooth u ∈ D(A)

and Ξ ∈ D(Ã), there holds

(2.10) 〈Au,u〉 = (ÃΞ,Ξ) ≥ 0.

Proof. We infer from (2.4) and (2.9) that

〈Au,u〉 = 〈(PTS0)
−1ÃΞ, PΞ〉 = (S0(P

TS0)
−1ÃΞ, PΞ) = (ÃΞ,Ξ),

and the positivity of the operator Ã is achieved by integrations by parts:

(ÃΞ,Ξ) = (D1Ξx +D2Ξy,Ξ)

=

∫ Ly

0

(a1ξ
2)
∣

∣

x=Lx

x=0
+ (a2η

2)
∣

∣

x=Lx

x=0
+ (a3ζ

2)
∣

∣

x=Lx

x=0
dy

+

∫ Lx

0

(b1ξ
2)
∣

∣

y=Ly

y=0
+ (b2η

2)
∣

∣

y=Ly

y=0
+ (b3ζ

2)
∣

∣

y=Ly

y=0
dx

≥ 0,

where the last inequality follows from the boundary conditions (2.6). �

Remark 2.1. The fact that the initial and boundary value problem (1.1), (2.1),
(2.7) is well posed is a recent result proved in [15]. The proof relies on the semigroup
theory and necessitates in particular proving (by approximation) that 〈Au,u〉 ≥ 0
for all u ∈ D(A). The fact that (2.7) makes sense for such u’s results from a trace
theorem also proved in [15, Section 2.1].

2.2. Finite volume discretization. We decompose M = (0, Lx) × (0, Ly) into
Nx × Ny cells denoted by (ki,j)1≤i≤Nx,1≤j≤Ny of size ∆x × ∆y with Nx∆x = Lx

and Ny∆y = Ly.
For 0 ≤ i ≤ Nx and for 0 ≤ j ≤ Ny let

(2.11) xi+1/2 = i∆x, and yj+1/2 = j∆y.

Then the cells (ki,j) are, for 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny,

(2.12) ki,j = (xi−1/2, xi+1/2)× (yj−1/2, yj+1/2).
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We also define the center (xi, yj) of each cell kij ,

(2.13)

{

xi =
1
2 (xi−1/2 + xi+1/2) = (i − 1)∆x+ ∆x

2 , 1 ≤ i ≤ Nx,

yj =
1
2 (yj−1/2 + yj+1/2) = (j − 1)∆y + ∆y

2 , 1 ≤ j ≤ Ny.

In view of imposing the boundary conditions, we add fictitious cells on the four
sides of the boundary:

k0,j = (−∆x, 0)× (yj−1/2, yj+1/2),

centered at (x0 = −
∆x

2
, yj), 1 ≤ j ≤ Ny,

kNx+1,j = (Lx, Lx +∆x)× (yj−1/2, yj+1/2),

centered at (xNx+1 = Lx +
∆x

2
, yj), 1 ≤ j ≤ Ny,

ki,0 = (xi−1/2, xi+1/2)× (−∆y, 0),

centered at (xi, y0 = −
∆y

2
), 1 ≤ i ≤ Nx,

ki,Ny+1 = (xi−1/2, xi+1/2)× (Ly, Ly +∆y),

centered at (xi, yNy+1 = Ly +
∆y

2
), 1 ≤ i ≤ Nx.

(2.14)

The finite volume scheme is found by integrating the equations (1.4) or (2.5)
over each control volume (ki,j)1≤i≤Nx,1≤j≤Ny : for 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny,

d

dt

1

∆x∆y

∫

ki,j

u dxdy +
E1

∆x∆y

∫ yj+1/2

yj−1/2

[u(xi+1/2, y, t)− u(xi−1/2, y, t)] dy

+
E2

∆x∆y

∫ xi+1/2

xi−1/2

[u(x, yj+1/2, t)− u(x, yj−1/2, t)] dx

=
1

∆x∆y

∫

ki,j

f(x, y, t)dxdy.

(2.15)

Let us denote

Vh = {u = (u, v, φ) are step functions over M :

u|ki,j = ui,j , ∀ 0 ≤ i ≤ Nx + 1, 0 ≤ j ≤ Ny + 1}.
(2.16)

Now we can define the subspaces Vh ⊂ Vh and P−1Vh ⊂ Vh, that take into
account the boundary conditions (2.7):

Vh = {u = (u, v, φ) are step functions over M : u|ki,j = ui,j ,

∀ 0 ≤ i ≤ Nx + 1, 0 ≤ j ≤ Ny + 1, and u satisfies:

ṽ0u0,j − ũ0v0,j + κ̃0φ0,j = ũ0u0,j + ṽ0v0,j + gφ0,j = 0,

for 1 ≤ j ≤ Ny,

ṽ0uNx+1,j − ũ0vNx+1,j − κ̃0φNx+1,j = 0, for 1 ≤ j ≤ Ny,

ui,0 = vi,0 = φi,0 = 0, for 1 ≤ i ≤ Nx.},

(2.17)
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and,

P−1Vh = {Ξ = (ξ, η, ζ) are step functions over M : Ξ|ki,j = Ξi,j ,

∀ 0 ≤ i ≤ Nx + 1,

0 ≤ j ≤ Ny + 1, and Ξ satisfies:

ξ0,j = ζ0,j = 0, for 1 ≤ j ≤ Ny,

ηNx+1,j = 0, for 1 ≤ j ≤ Ny,

ξi,0 = ηi,0 = ζi,0 = 0, for 1 ≤ i ≤ Nx.}.

(2.18)

We now define the discrete scalar products and norms over Vh.

Definition 2.1. Let uh = (uh, vh, φh) ∈ Vh and ũh = (ũh, ṽh, φ̃h)h ∈ Vh; we set

(uh, ũh)h = ∆x∆y

Nx
∑

i=1

Ny
∑

j=1

(

ui,j ũi,j + vi,j ṽi,j + φi,j φ̃i,j

)

,

〈uh, ũh〉h = (S0uh, ũh)h,

and,

|u|h = 〈uh,uh〉h = (S0uh,uh)h,

‖u‖h = (uh,uh)h.

(2.19)

Since the boundary conditions are easier to compute in terms of Ξ, we will
define our spatial scheme through Ξ. For the x derivatives, we are using an upwind
scheme for ξ and ζ and a downwind scheme for η due to the signs of the ai’s and
bi’s in this case. For the y derivatives, we are using an upwind scheme for ξ, η
and ζ. Therefore, the discretized version Ãh of Ã is defined as follows: for all
Ξh ∈ P−1Vh,

(2.20) ÃhΞh := Ãx
h
Ξh + Ã

y
h
Ξh,

where, for 1 ≤ i ≤ Nx and 1 ≤ j ≤ Ny:

(Ãx
h
Ξh)i,j =

(

a1
ξi,j − ξi−1,j

∆x
, a2

ηi+1,j − ηi,j
∆x

, a3
ζi,j − ζi−1,j

∆x

)

,

(Ãy
h
Ξh)i,j =

(

b1
ξi,j − ξi,j−1

∆y
, b2

ηi,j − ηi,j−1

∆y
, b3

ζi,j − ζi,j−1

∆y

)

.

(2.21)

Similar to the relation (2.9), we define the discretized version Ah of A as: for
uh ∈ Vh,

(2.22) Ahuh := (PTS0)
−1ÃhΞh, where Ξh = P−1uh.

The discretized version fh(t) ∈ Vh of the forcing term f(t) is defined by

(2.23) fh(t)
∣

∣

ki,j
= fi,j(t), ∀ 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny,

where

fi,j(t) =
1

∆x∆y

∫

ki,j

f(x, y, t)dxdy.

With these definitions, the finite volume spatial approximation of equation (2.15)
is

d

dt
uh(t) +Ahuh(t) = fh(t),

uh(t) ∈ Vh.
(2.24)
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Lemma 2.2. The operators Ãh and Ah defined in (2.20) and (2.22) are positive
over P−1Vh and Vh , respectively. That is for any uh ∈ Vh and Ξh = P−1uh ∈
P−1Vh, we have

(2.25) 〈Ahuh,uh〉h =
(

ÃhΞh,Ξh

)

h
≥ 0,

where the scalar products are defined in (2.19).

Proof. Using relation (2.22), we find that

〈Ahuh,uh〉h = 〈(PS0)
−1ÃhΞh, PΞh〉h

=
(

S0(PS0)
−1ÃhΞh, PΞh

)

h

=
(

ÃhΞh,Ξh

)

h
.

(2.26)

We are now left to prove that
(

ÃhΞh,Ξh

)

h
≥ 0. Using the fact that

(2.27) 2(a− b)a = a2 − b2 + (a− b)2,

and taking into account that Ξh ∈ P−1Vh we have the following equalities

∆x∆ya1

Nx
∑

i=1

Ny
∑

j=1

ξi,j − ξi−1,j

∆x
ξi,j

=
a1∆y

2

Nx
∑

i=1

Ny
∑

j=1

[

|ξi,j |
2 − |ξi−1,j |

2 + |ξi,j − ξi−1,j |
2
]

=
a1∆y

2

Ny
∑

j=1

[

|ξNx,j|
2 +

Nx
∑

i=1

|ξi,j − ξi−1,j |
2

]

,

∆x∆ya3

Nx
∑

i=1

Ny
∑

j=1

ζi,j − ξi−1,j

∆x
ξi,j

=
a3∆y

2

Nx
∑

i=1

Ny
∑

j=1

[

|ζi,j |
2 − |ζi−1,j |

2 + |ζi,j − ζi−1,j |
2
]

=
a3∆y

2

Ny
∑

j=1

[

|ζNx,j|
2 +

Nx
∑

i=1

|ζi,j − ζi−1,j |
2

]

,

(2.28)
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∆x∆yb1

Nx
∑

i=1

Ny
∑

j=1

ξi,j − ξi,j−1

∆y
ξi,j

=
b1∆x

2

Nx
∑

i=1

Ny
∑

j=1

[

|ξi,j |
2 − |ξi,j−1|

2 + |ξi,j − ξi,j−1|
2
]

=
b1∆x

2

Nx
∑

i=1



|ξi,Ny |
2 +

Ny
∑

j=1

|ξi,j − ξi,j−1|
2



 ,

∆x∆yb2

Nx
∑

i=1

Ny
∑

j=1

ηi,j − ηi,j−1

∆y
ηi,j

=
b2∆x

2

Nx
∑

i=1

Ny
∑

j=1

[

|ηi,j |
2 − |ηi,j−1|

2 + |ηi,j − ηi,j−1|
2
]

=
b2∆x

2

Nx
∑

i=1



|ηi,Ny |
2 +

Ny
∑

j=1

|ηi,j − ηi,j−1|
2



 ,

(2.29)

∆x∆yb3

Nx
∑

i=1

Ny
∑

j=1

ζi,j − ζi,j−1

∆y
ζi,j

=
b3∆x

2

Nx
∑

i=1

Ny
∑

j=1

[

|ζi,j |
2 − |ζi,j−1|

2 + |ζi,j − ξi,j−1|
2
]

=
b1∆x

2

Nx
∑

i=1



|ζi,Ny |
2 +

Ny
∑

j=1

|ζi,j − ζi,j−1|
2



 .

(2.30)

Now from

(2.31) 2(a− b)b = a2 − b2 − (a− b)2,

we deduce that

∆x∆ya2

Nx
∑

i=1

Ny
∑

j=1

ηi+1,j − ηi,j
∆x

ηi,j

=
a2∆y

2

Nx
∑

i=1

Ny
∑

j=1

[

|ηi+1,j |
2 − |ηi,j |

2 − |ηi+1,j − ηi,j |
2
]

= −
a2∆y

2

Ny
∑

j=1



|η1,j |
2 +

Ny
∑

i=1

|ηi+1,j − ηi,j |
2



 .

(2.32)

Since a1, a3, b1, b2, b3 > 0 and a2 < 0, we infer the positivity of
(

ÃhΞh,Ξh

)

h
from

equations (2.28)-(2.32).
�

2.3. Time discretization: the Euler implicit scheme. We now study the
time discretization of equations (2.24) and introduce the classical Euler implicit
scheme in time. We define a time step ∆t with Nt∆t = T and we set tn = n∆t
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for 0 ≤ n ≤ Nt. We denote by {un
h ∈ Vh, 0 ≤ n ≤ Nt} the discrete unknowns. We

start with u0
h ∈ Vh given by

(2.33) u0
i,j =

1

∆x∆y

∫

ki,j

u0(x, y)dxdy, for 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny,

where u0 is the (given) initial data appearing in (2.1). We notice also using the
Cauchy-Schwarz inequality that

(2.34) |u0
h| ≤ |u0|.

The Euler implicit scheme for (2.24) then reads

(2.35)











un+1
h − un

h

∆t
+Ahu

n+1
h = fn+1

h ,

un
h ∈ Vh, for 0 ≤ n ≤ Nt.

with

fn+1
h =

1

∆t

∫ (n+1)∆t

n∆t

fh(t)dt.

We notice that (I + ∆tAh) is invertible because Ah is positive and therefore
I + ∆tAh is positive definite. For this reason the system (2.35) admits a unique
solution un+1

h when un
h is known.

To obtain an estimate on |un+1
h |h, we take the scalar product of (2.35) with

2∆tun+1
h (scalar product 〈·, ·〉h) and find that

(2.36) |un+1
h |2h−|un

h|
2
h+ |un+1

h −un
h|

2
h+2∆t〈Ahu

n+1
h ,un+1

h 〉h = 2∆t〈fn+1
h ,un+1

h 〉h.

Using the Cauchy-Schwarz inequality, the right hand side of (2.36) can be estimated
as

2∆t〈fn+1
h ,un+1

h 〉h = 2∆t〈fn+1
h ,un+1

h − un
h〉h + 2∆t〈fn+1

h ,un
h〉h

≤ ∆t2|fn+1
h |2h + |un+1

h − un
h|

2
h +∆t|fn+1

h |2h +∆t|un
h |

2
h,

(2.37)

which, together with the positivity of Ah (see Lemma 2.2), permits us to infer from
(2.36) that

(2.38) |un+1
h |2h ≤ (1 + ∆t)|un

h |
2
h +∆t(1 + ∆t)|fn+1

h |2h.

We now estimate ∆t|fn+1
h |2h as follows:

∆t|fn+1
h |2h ≤ ‖S0‖

2

∫ (n+1)∆t

n∆t

Nx
∑

i=1

Ny
∑

j=1

∫

ki,j

|f(x, y, t)|2dxdydt,

≤ ‖S0‖
2

∫ (n+1)∆t

n∆t

∫

M

|f(x, y, t)|2dxdydt := ‖S0‖
2|f |2L2(tn,tn+1,L2(M)).

(2.39)

In view of equation (2.39), equation (2.38) yields

(2.40) |un+1
h |2h ≤ (1 + ∆t)

[

|un
h|

2
h + ‖S0‖

2|f |2L2(tn,tn+1,L2(M))

]

,
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and iterating (2.40) and using that 1 + ∆t ≤ e∆t, we obtain that

|un+1
h |2h ≤ (1 + ∆t)

[

|un
h |

2
h + ‖S0‖

2|f |2L2(tn,tn+1,L2(M))

]

,

≤ (1 + ∆t) [(1 + ∆t)( |un−1
h |2h + ‖S0‖

2|f |L2(tn−1,tn,L2(M)) )

+‖S0‖
2|f |2L2(tn,tn+1,L2(M))

]

≤ (1 + ∆t)2
[

|un−1
h |2h + ‖S0‖

2|f |2L2(tn−1,tn+1,L2(M))

]

≤ · · ·

≤ (1 + ∆t)n+1
[

|u0
h|

2
h + ‖S0‖

2|f |2L2(0,tn+1,L2(M))

]

,

≤ e(n+1)∆t
[

|u0|2 + ‖S0‖
2|f |2L2(0,tn+1,L2(M))

]

.

(2.41)

From equation (2.41) and the fact that ∆tNt = T , we conclude that

(2.42) |un
h |

2
h ≤ eT

[

|u0|2 + ‖S0‖
2|f |2L2(0,T,L2(M))

]

, ∀n = 0, 1, · · · , Nt.

Theorem 2.1. The scheme defined by the equations (2.35), (2.20), (2.22), is stable
in L∞(0, T ;L2(M)) in the sense of (2.42).

2.4. Time discretization: the Euler explicit scheme. For the time discretiza-
tion, in this section, we use the Euler explicit scheme that we apply to the equa-
tions (2.24). We keep the same spatial discretization as in the previous section. For
u0
h ∈ Vh given by (2.33), the Euler explicit scheme for (2.24) reads

(2.43)











un+1
h − un

h

∆t
+Ahu

n
h = fnh ,

un
h ∈ Vh, for 0 ≤ n ≤ Nt,

with

fnh =
1

∆t

∫ (n+1)∆t

n∆t

fh(t)dt.

We take the scalar product of (2.43)1 with 2∆tun
h (scalar product 〈·, ·〉h) and obtain

(2.44) |un+1
h |2h ≤ |un

h |
2
h + |un+1

h − un
h|

2
h − 2∆t〈Ahu

n
h,u

n
h〉h + 2∆t〈fnh ,u

n
h〉h.

Since we have 〈Ahu
n
h ,u

n
h〉h =

(

ÃhΞ
n
h,Ξ

n
h

)

h
by (2.26), we then conclude from

(2.28)-(2.32) that

− 〈Ahu
n
h ,u

n
h〉h ≤

−
a1∆y

2

Ny
∑

j=1

Nx
∑

i=1

|ξni,j − ξni−1,j |
2 +

a2∆y

2

Ny
∑

j=1

Nx
∑

i=1

|ηni+1,j − ηni,j |
2

−
a3∆y

2

Ny
∑

j=1

Nx
∑

i=1

|ζni,j − ζni−1,j |
2 −

b1∆x

2

Ny
∑

j=1

Nx
∑

i=1

|ξni,j − ξni,j−1|
2

−
b2∆x

2

Ny
∑

j=1

Nx
∑

i=1

|ηni,j − ηni,j−1|
2 −

b3∆x

2

Ny
∑

j=1

Nx
∑

i=1

|ζni,j − ζni,j−1|
2.

(2.45)

From the starting equation (2.43)1 we have

|un+1
h − un

h|
2
h = |fnh −Ahu

n
h |

2
h∆t2 ≤ 2|Ahu

n
h|

2
h∆t2 ++2|fnh |

2
h∆t2

≤ 2‖P−1S−1
0 P−T ‖‖ÃhΞ

n
h‖

2
h∆t2 + 2|fnh |

2
h∆t2.

(2.46)
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Let us denote by

(2.47) µ0 := ‖P−1S−1
0 P−T ‖ = sup

x∈R3, ‖x‖≤1

‖P−1S−1
0 P−Tx‖.

Therefore, we infer from (2.46) that

|un+1
h − un

h|
2
h ≤

2µ0
∆t2∆y

∆x

Nx
∑

i=1

Ny
∑

j=1

[

a21|ξ
n
i,j − ξni−1,j |

2 + a22|η
n
i+1,j − ηni,j |

2

+a23|ζ
n
i,j − ζni−1,j |

2
]

+ 2µ0
∆t2∆x

∆y

Nx
∑

i=1

Ny
∑

j=1

[

b21|ξ
n
i,j − ξni,j−1|

2 + b22|η
n
i,j − ηni,j−1|

2

+b23|ζ
n
i,j − ζni,j−1|

2
]

+ 2|fnh |
2
h∆t2.

(2.48)

Under the assumptions:

(2.49)
∆t

∆x
≤

1

2µ0
min(

1

a1
,−

1

a2
,
1

a3
),

∆t

∆y
≤

1

2µ0
min(

1

b1
,
1

b2
,
1

b3
),

we obtain from equations (2.45) and (2.48) that

(2.50) |un+1
h − un

h|
2
h − 2∆t〈Ahu

n
h,u

n
h〉h ≤ 2|fnh |

2
h∆t2.

Therefore, under these assumptions, inequality (2.44) yields

(2.51) |un+1
h |2h ≤ |un

h|
2
h + 2∆t〈fnh ,u

n
h〉h + 2|fnh |

2
h∆t2,

which, by using the Cauchy-Schwarz inequality, implies that

|un+1
h |2h ≤ |un

h |
2
h +∆t|un

h |
2
h +∆t|fnh |

2
h + 2∆t2|fnh |

2
h,

≤ (1 + ∆t)|un
h|

2
h + (2∆t+ 1)∆t|fnh |

2
h.

(2.52)

From equation (2.39) and the fact that ∆t ≤ T , we deduce that

|un+1
h |2h ≤ (1 + ∆t)|un

h |
2
h + (1 + 2T )‖S0‖

2|f |2L2(tn,tn+1,L2(M))]

≤ (1 + ∆t)2|un−1
h |2h

+ (1 +∆t)(1 + 2T )‖S0‖
2|f |2L2(tn−1,tn,L2(M))

+ (1 + 2T )‖S0‖
2|f |2L2(tn,tn+1,L2(M))

≤ . . .

≤ (1 + ∆t)n|u0
h|

2
h

+ (1 + 2T )

n
∑

s=1

(1 + ∆t)n−s‖S0‖
2|f |2L2(ts,ts+1,L2(M)),

(2.53)

which, together with 1 + x ≤ ex, implies that

|un+1
h |2h ≤ en∆t

[

|u0|2 + (1 + 2T )‖S0‖
2|f |2L2(0,tn+1,L2(M))

]

.(2.54)

Hence, we have the stability result

(2.55) |un
h|

2
h ≤ eT

[

|u0|2 + (1 + 2T )‖S0‖
2|f |2L2(0,T,L2(M))

]

, ∀n = 0, · · · , Nt.



FV APPROXIMATION OF THE SHALLOW WATER EQUATIONS 827

Theorem 2.2. Under the following CFL conditions

(2.56)
∆t

∆x
≤

1

2µ0
min(

1

a1
,−

1

a2
,
1

a3
),

∆t

∆y
≤

1

2µ0
min(

1

b1
,
1

b2
,
1

b3
),

the scheme defined by the equations (2.43), (2.20), (2.22), is stable in L∞(0, T ;L2(M))
in the sense of (2.55),

2.5. Convergence results. In this section we prove the convergence of functions
associated with the un

h for both the Euler explicit and implicit schemes in time.
More results on the convergence on finite volume schemes can be found in [3]
and [13]. We first remark that we have the uniqueness of the solution for the
linearized SWEs (1.1) (see [15, Theorem 9]).

We now define the adjoint operator A∗ of A as follows (for more details, see [15,
Section 3.2.1]):

A∗v := −E1vx − E2vy , ∀v ∈ D(A∗),

with

D(A∗) = {v = (v1, v2, v3) ∈ H : A∗v ∈ H and v satisfies:

ṽ0v
1 − ũ0v

2 + κ̃0v
3 = ũ0v

1 + ṽ0v
2 + gv3 = 0, on ΓE = {x = Lx},

ṽ0v
1 − ũ0v

2 − κ̃0v
3 = 0, on ΓW = {x = 0},

v1 = v2 = v3 = 0, on ΓN = {y = Ly}}.

(2.57)

Of course, the usual relation for adjoint operator holds, i.e.

〈Au,v〉 = 〈u,A∗v〉, ∀u ∈ D(A), ∀v ∈ D(A∗).

Similarly, the adjoint operator Ã∗ of Ã is defined as follows: forΨ = (Ψ1,Ψ2,Ψ3) ∈

D(Ã∗),

(2.58) Ã∗Ψ := −D1Ψx −D2Ψy,

where

D(Ã∗) = {Ψ = (Ψ1,Ψ2,Ψ3) ∈ H : Ã∗Ξ ∈ H and Ξ satisfies:

Ψ1 = Ψ3 = 0, on ΓE = {x = Lx},

Ψ2 = 0, on ΓW = {x = 0},

Ψ1 = Ψ2 = Ψ3 = 0, on ΓN = {y = Ly}},

(2.59)

and we have the usual relation

(ÃΞ,Ψ) = (Ξ, Ã∗Ψ), ∀Ξ ∈ D(Ã), ∀Ψ ∈ D(Ã∗).

We also have a similar relation as in (2.9) for the adjoint operators A∗ and Ã∗,
that is

(2.60) A∗v = (PTS0)
−1Ã∗Ψ, with Ψ = P−1v.

Then we define Ã∗
h, the discretized version of Ã∗:

Ã∗
hΨh := Ã

∗,x
h Ψh + Ã

∗,y
h Ψh, ∀Ψh ∈ P−1V∗

h,
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where, for 1 ≤ i ≤ Nx and 1 ≤ j ≤ Ny,

(Ã∗,x
h

Ψh)i,j =

(

−a1
Ψ1

i+1,j −Ψ1
i,j

∆x
,−a2

Ψ2
i,j −Ψ2

i−1,j

∆x
,−a3

Ψ3
i+1,j − Ψ3

i,j

∆x

)

,

(Ã∗,y
h

Ψh)i,j =

(

−b1
Ψ1

i,j+1 −Ψ1
i,j

∆y
,−b2

Ψ2
i,j+1 −Ψ2

i,j

∆y
,−b3

Ψ3
i,j+1 −Ψ3

i,j

∆y

)

,

(2.61)

and

P−1V∗
h = {Ψh = (Ψ1

h,Ψ
2
h,Ψ

3
h) are step functions over M :

Ψh

∣

∣

ki,j
= Ψi,j , ∀ 0 ≤ i ≤ Nx + 1, 0 ≤ j ≤ Ny + 1,

and Ψh satisfies:

Ψ1
Nx+1,j = Ψ3

Nx+1,j = 0, for 1 ≤ j ≤ Ny,

Ψ2
0,j = 0, for 1 ≤ j ≤ Ny,

Ψ1
i,Ny+1 = Ψ2

i,Ny+1 = Ψ3
i,Ny+1 = 0, for 1 ≤ i ≤ Nx.}.

(2.62)

From the equations (2.22)-(2.21), we obtain that, the following adjoint relation,

(2.63) (ÃhΞh,Ψh)h = (Ξh, Ã
∗
hΨh)h,

holds for all Ξ ∈ P−1Vh and Ψh ∈ P−1V∗
h.

Finally, we define A∗
h, the discretized version of A∗: for all vh ∈ V∗

h,

(2.64) A∗
hvh = (PTS0)

−1Ã∗
h
Ψh, where Ψh = P−1vh,

where

V∗
h = {vh = (v1h, v

2
h, v

3
h) are step functions over M :

vh

∣

∣

ki,j
= vi,j , ∀ 0 ≤ i ≤ Nx + 1, 0 ≤ j ≤ Ny + 1, and vh satisfies:

ṽ0v
1
Nx+1,j − ũ0v

2
Nx+1,j + κ̃0v

3
Nx+1,j = 0, for 1 ≤ j ≤ Ny,

ũ0v
1
Nx+1,j + ṽ0v

2
Nx+1,j + gv3Nx+1,j = 0, for 1 ≤ j ≤ Ny,

ṽ0v
1
0,j − ũ0v

2
0,j − κ̃0v

3
0,j = 0, for 1 ≤ j ≤ Ny,

v1i,Ny+1 = v2i,Ny+1 = v3i,Ny+1 = 0, for 1 ≤ i ≤ Nx}.

(2.65)

Similarly, we also have

(2.66) 〈Ahuh,vh〉h = 〈uh,A
∗
hvh〉h, ∀uh ∈ Vh, vh ∈ V∗

h.

Let us define r̃h : (C∞(M))3 ∩ D(Ã∗) −→ P−1V∗
h, for Ψ = (Ψ1,Ψ2,Ψ3) ∈

(C∞(M))3 ∩ D(Ã∗)

(2.67) r̃hΨ := (r̃hΨ
1, r̃hΨ

1, r̃hΨ
1),

where for Ψ♯ = Ψ1,Ψ2,Ψ3;

(r̃hΨ
♯)i,j =

1

∆x∆y

∫

ki,j

Ψ♯(x, y)dxdy, for 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny,

and,

(r̃hΨ
1)Nx+1,j = (r̃hΨ

3)Nx+1,j = 0, for 1 ≤ j ≤ Ny,

(r̃hΨ
2)0,j = 0, for 1 ≤ j ≤ Ny,

(r̃hΨ
1)i,Ny+1 = (r̃hΨ

2)i,Ny+1 = (r̃hΨ
3)i,Ny+1 = 0, for 1 ≤ i ≤ Nx.

(2.68)
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Lemma 2.3. For all Ψ ∈ (C∞(M))3 ∩ D(Ã∗), we have that as (∆x,∆y) → 0,

r̃hΨ −→ Ψ, strongly in L2(M),

Ã∗
hr̃hΨ −→ Ã∗Ψ, strongly in L2(M).

(2.69)

The proof of Lemma 2.3 is an application of the Taylor’s formula and we refer
the readers to [13, Section 3.1] for a detailed proof.

We also define rh : (C∞(M))3∩D(A∗) −→ V∗
h, for v = (v1, v2, v3) ∈ (C∞(M))3∩

D(A∗) by

(2.70) rhv = P r̃h(P
−1v).

As an immediate consequence of Lemma 2.3 and identities (2.60) and (2.64), we
have the following result.

Lemma 2.4. For all v ∈ (C∞(M))3 ∩D(A∗), we have that as (∆x,∆y) → 0,

rhv −→ v strongly in L2(M),

A∗
hrhv −→ A∗v, strongly in L2(M).

(2.71)

In order to prove the convergence result, we first consider the Euler implicit
scheme (2.35) and then briefly study the Euler explicit scheme (2.43).

Euler implicit scheme. We first introduce the approximated solution denoted
by ūh: for each t ∈ In := (n∆t, (n+ 1)∆t] and n = 0, . . . , NT − 1, we set

ūh(t) = un+1
h , ∀ t ∈ In,(2.72)

that is, ūh is the step function on the interval (0, T ) with values taken from the
right of each interval In. We also define f̄h in the same fashion, i.e. f̄h = fn+1

h on
In for n = 0, · · · , NT − 1.

Lemma 2.5. For un
h solution of (2.35), there exists a subsequence h′ such that

(2.73) ūh′ ⇀ u weak-star in L∞(0, T ; (L2(M))3).

Proof. The result directly follows from the uniform estimate (2.42). �

Let ϕ ∈ C∞([0, T ]) with ϕ(T ) = 0, v ∈ C∞(M)∩D(A∗), and define ϕ̄ and ϕ̃ by
setting

ϕ̄(t) = ϕ(tn), ∀ t ∈ In,

ϕ̃(t) =
ϕ(tn+1)− ϕ(tn)

∆t
(t− tn) + ϕ(tn), ∀ t ∈ In,

(2.74)

where tn = n∆t, for all n = 0, · · · , NT . By the Mean-Value Theorem, we obtain

ϕ̄, ϕ̃, ϕ̃t −→ ϕ, ϕ, ϕt, in C([0, T ]), respectively, as ∆t → 0.(2.75)

We now take the L2(M) inner product of (2.35)1 with ϕ(tn)rhv and then sum
for n = 0, . . . , NT − 1; we arrive at

NT−1
∑

n=0

〈
un+1
h′ − un

h′

∆t
, ϕ(tn)rh′v〉+

NT−1
∑

n=0

〈Ahu
n+1
h′ , ϕ(tn)rh′v〉

=

NT−1
∑

n=0

〈fn+1
h′ , ϕ(tn)rh′v〉.

(2.76)
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Using the fact that ϕ(T ) = 0 and equation (2.66), the left-hand side of (2.76) can
be written as follows

−

NT−1
∑

n=0

〈un+1
h′ ,

ϕ(tn+1)− ϕ(tn)

∆t
rh′v〉 −

ϕ(0)

∆t
〈u0

h′ , rh′v〉+

NT−1
∑

n=0

〈un+1
h′ , ϕ(tn)A

∗
hrh′v〉.

Therefore, equation (2.76) reads

−

∫ T

0

〈ūh′ , ϕ̃trh′v〉dt+

∫ T

0

〈ūh′ , ϕ̄A∗
hrh′v〉dt

= 〈u0
h′ , rh′v〉ϕ(0) +

∫ T

0

〈̄fh′ , ϕ̄rh′v〉dt.

(2.77)

Now passing to the limit and using Lemma 2.4, 2.5 and the convergence result
(2.75), we obtain

(2.78) −

∫ T

0

〈u, ϕtv〉dt+

∫ T

0

〈u, ϕA∗v〉dt = 〈u0,v〉ϕ(0) +

∫ T

0

〈f(t), ϕv〉dt,

where we also implicitly used the convergences of u0
h′ to u0 and f̄h′ to f in L2,

which can be obtained by the application of the Taylor’s formula (see Lemma 2.3
or [13, Section 3.1]) since C∞

c (M) (resp. C∞
c ([0, T ]×M)) is dense in L2(M) (resp.

L2((0, T )×M)).
By taking ϕ compactly supported on (0, T ) in (2.78), we conclude that

(2.79)
d

dt
〈u,v〉 + 〈u,A∗v〉 = 〈f ,v〉.

Now, (2.79) is valid for all v smooth, and we deduce that (2.78) is also valid for all
v ∈ D(A∗) since C∞(M) ∩D(A∗) is dense in D(A∗) (see [15]).

Multiplying (2.79) by ϕ ∈ C([0, T ]) with ϕ(T ) = 0 and then integrating by part
we find

(2.80) −

∫ T

0

〈u, ϕtv〉dt+

∫ T

0

〈u, ϕA∗v〉dt = 〈u(0),v〉ϕ(0) +

∫ T

0

〈f(t), ϕv〉dt,

for any v ∈ D(A∗). Comparing (2.78) and (2.80) and taking ϕ(0) 6= 0, we find that

(2.81) 〈u(0),v〉 = 〈u0,v〉, ∀v ∈ D(A∗).

Because D(A∗) is dense in (L2(M))3 (see [15, Section 3.2.1]), we have that

(2.82) u(0) = u0 (as elements of L2(M)3).

Note that since we have uniqueness of the solution u for the linearized SWEs
(1.1) with initial condition (2.82) (see [15]), we can conclude that every subsequence
uh′ converge to the same limit.

Hence, we proved the following convergence theorem for the Euler implicit scheme.

Theorem 2.3. For ūh, defined as in equation (2.72), with un+1
h the solution of

(2.35) we have that

(2.83) ūh converges to u in L∞(0, T ; (L2(M))3) weak-star,

as ∆t, h → 0 and u satisfies the following equation equivalent to (1.1), (2.82):

(2.84)







d

dt
〈u,v〉+ 〈u,A∗v〉 = 〈f ,v〉, ∀v ∈ D(A∗),

u(x, y, t = 0) = u0(x, y).
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Euler explicit scheme. We redefine ūh, f̄h and ϕ̄ by

ūh(t) = un
h, ∀ t ∈ In,

f̄h(t) = fnh , ∀ t ∈ In,

ϕ̄(t) = ϕ(tn+1), ∀ t ∈ In,

(2.85)

and ϕ̃ is the same as in (2.74). We still have the convergence (2.75) and the following
result, which is an immediate consequence of the uniform estimate (2.55) and the
uniqueness of the solution u for the linearized SWEs (1.1).

Lemma 2.6. For ūh, defined in equation (2.85)1, the solution of (2.43) we have
that

(2.86) ūh ⇀ u, weak-star in L∞(0, T ; (L2(M))3).

Taking the inner product of (2.43) with ϕ(tn+1)rhv in L2(M) and summing for
n = 0, . . . , NT − 1, we arrive at

NT−1
∑

n=0

〈
un+1
h′ − un

h′

∆t
, ϕ(tn+1)rh′v〉+

NT−1
∑

n=0

〈Ahu
n
h′ , ϕ(tn+1)rh′v〉

=

NT−1
∑

n=0

〈fnh′ , ϕ(tn+1)rh′v〉.

(2.87)

Using ϕ(T ) = 0 and (2.66), we rewrite the left-hand side of (2.87) as

−

NT−1
∑

n=0

〈un
h′ ,

ϕ(tn+1)− ϕ(tn)

∆t
rh′v〉 −

ϕ(0)

∆t
〈u0

h′ , rh′v〉 +

NT−1
∑

n=0

〈un
h′ , ϕ(tn+1)A

∗
hrh′v〉.

Therefore, equation (2.87) reads exactly the same as (2.77), with ūh, f̄h and ϕ̄
defined by (2.85),

−

∫ T

0

〈ūh′ , ϕ̃trh′v〉dt+

∫ T

0

〈ūh′ , ϕ̄A∗
hrh′v〉dt

= 〈u0
h′ , rh′v〉ϕ(0) +

∫ T

0

〈̄fh′ , ϕ̄rh′v〉dt.

(2.88)

Then passing to the limit using Lemma 2.4 and 2.6, we find

(2.89) −

∫ T

0

〈u, ϕtv〉dt+

∫ T

0

〈u, ϕA∗v〉dt = 〈u0,v〉ϕ(0) +

∫ T

0

〈f(t), ϕv〉dt.

We can also obtain that u(0) = u0 (as elements of L2(M)3). by following the same
arguments used for the Euler implicit scheme in (2.79)-(2.82).

Since we have uniqueness of the solution u, we can conclude that every subse-
quence u′

h converge to the same limit. Therefore, we proved the following theorem.

Theorem 2.4. For ūh, defined as in equation (2.72), with un+1
h the solution of

(2.43) we have that

(2.90) ūh converges to u in L∞(0, T ; (L2(M))3) weak-star,

as ∆t, h → 0 and u satisfies the following equations equivalent to (1.1), (2.82):

(2.91)







d

dt
〈u,v〉 + 〈u,A∗v〉 = 〈f ,v〉, ∀v ∈ D(A∗),

u(x, y, t = 0) = u0(x, y).
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3. The fully hyperbolic subcritical case for the linearized shallow water

equations

In this section we consider the fully hyperbolic subcritical case, see (1.3). We
associate with (1.1) the initial conditions:

(3.1) u = (u, v, φ)T = (u0, v0, φ0)T , at t = 0.

3.1. Preliminary theoretical results. In the fully hyperbolic subcritical case,
we still have the diagonalization (2.2), but under the assumption (1.3), we find that

(3.2) a1, a3, b2, b3 > 0, and a2, b1 < 0.

Using the same variables Ξ introduced in (2.4), we still have (2.5).
According to the signs of ai’s and bi’s (i = 1, 2, 3), we associate with (2.5) the

following boundary conditions in the Ξ variables:

(3.3)



















ξ = ζ = 0, on ΓW = {x = 0},

η = 0, on ΓE = {x = Lx},

η = ζ = 0, on ΓS = {y = 0},

ξ = 0, on ΓN = {y = Ly}.

Therefore, we associate with (1.1) the boundary conditions in the u variables (see
[15, Section 3.3]):

(3.4)



















ṽ0u− ũ0v + κ̃0φ = ũ0u+ ṽ0v + gφ = 0, on ΓW = {x = 0},

ṽ0u− ũ0v − κ̃0φ = 0, on ΓE = {x = Lx},

ṽ0u− ũ0v − κ̃0φ = ũ0u+ ṽ0v + gφ = 0, on ΓS = {y = 0},

ṽ0u− ũ0v + κ̃0φ = 0, on ΓN = {y = Ly}.

As in Subsection 2.1, we define the unbounded operators A and Ã on H =
L2(Ω)3 by (2.8) but the domains are now:

D(A) = {u ∈ H : Au ∈ H ,u satisfies the boundary conditions (3.4)} ,

D(Ã) =
{

Ξ ∈ H : ÃΞ ∈ H ,Ξ satisfies the boundary conditions (3.3)
}

.

We still have the relation (2.9) and the positivity results for A and Ã as in
Lemma 2.1:

Lemma 3.1. Assume that (1.3) holds. Then for every sufficiently smooth u ∈

D(A) and Ξ ∈ D(Ã), there holds

(3.5) 〈Au,u〉 = (ÃΞ,Ξ) ≥ 0.

The proof of Lemma 3.1 is exactly the same as the proof of Lemma 2.1 by taking
into account the boundary conditions (3.3). Also, as observed in Remark 2.1, (3.5)
is extended in [15] to any u in D(A).

3.2. Finite volume discretization. In this section we define the finite volume
spaces and discrete operator Ah for the fully hyperbolic subcritical case. The finite
volume spaces are similar to the ones in the previous section but with different
boundary conditions. In this case, the spatial discretization is the same as in
Section 2.2, see (2.11) -(2.16), we define two new subspacesWh ⊂ Vh and P−1Wh ⊂
Vh, that take into account the boundary conditions (3.4):
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Wh = {uh = (uh, vh, φh) are step functions over M : uh|ki,j = ui,j ,

∀ 0 ≤ i ≤ Nx + 1, 0 ≤ j ≤ Ny + 1, and uh satisfies:

ṽ0u0,j − ũ0v0,j + κ̃0φ0,j = ũ0u0,j + ṽ0v0,j + gφ0,j = 0,

for 1 ≤ j ≤ Ny,

ṽ0uNx+1,j − ũ0vNx+1,j − κ̃0φNx+1,j = 0, for 1 ≤ j ≤ Ny,

ṽ0ui,0 − ũ0vi,0 − κ̃0φi,0 = ũ0ui,0 + ṽ0vi,0 + gφi,0 = 0,

for 1 ≤ i ≤ Nx,

ṽ0ui,Ny+1 − ũ0vi,Ny+1 + κ̃0φi,Ny+1 = 0, for 1 ≤ i ≤ Nx.},

(3.6)

and,

P−1Wh = {Ξ = (ξ, η, ζ) are step functions over M : Ξh|ki,j = Ξi,j ,

∀0 ≤ i ≤ Nx + 1, 0 ≤ j ≤ Ny + 1, and Ξh satisfies:

ξ0,j = ζ0,j = 0, for 1 ≤ j ≤ Ny,

ηNx+1,j = 0, for 1 ≤ j ≤ Ny,

ηi,0 = ζi,0 = 0, for 1 ≤ i ≤ Nx,

ξi,Ny+1 = 0, for 1 ≤ i ≤ Nx.}.

(3.7)

We still adopt Definition 2.1 of the inner products and norms for the space Vh.
However, we use a different scheme rather than the one in Section 2.2: for the x
derivatives, we use an upwind scheme for ξ, ζ and a downwind scheme for η; for the
y derivatives, we use an upwind scheme for η and ζ, and a downwind scheme for ξ.
Therefore, the discretized version Ãh of Ã is defined as follows: for Ξh ∈ P−1Wh,

(3.8) ÃhΞh := Ãx
h
Ξh + Ã

y
h
Ξh,

where, for 1 ≤ i ≤ Nx and 1 ≤ j ≤ Ny:

(Ãx
h
Ξh)i,j =

(

a1
ξi,j − ξi−1,j

∆x
, a2

ηi+1,j − ηi,j
∆x

, a3
ζi,j − ζi−1,j

∆x

)

,

(Ãy
h
Ξh)i,j =

(

b1
ξi,j+1 − ξi,j

∆y
, b2

ηi,j − ηi,j−1

∆y
, b3

ζi,j − ζi,j−1

∆y

)

.

(3.9)

Similarly as in Section 2.2, the discretized version Ah of A is defined by

(3.10) Ahuh := (PTS0)
−1ÃhΞh, where Ξh = P−1uh, ∀uh ∈ Wh.

With the definitions in (3.8)-(3.10), the spatial approximation of equation (2.15)
is written as

d

dt
uh(t) +Ahuh(t) = fh(t),

uh(t) ∈ Wh,
(3.11)

where fh(t) is defined as in (2.23).

Lemma 3.2. The operators Ãh and Ah defined in (3.8)-(3.10) is positive over
P−1Wh and Wh , respectivly. That is for any uh ∈ Wh and Ξh = P−1uh ∈ P−1Wh

, we have

(3.12) 〈Ahuh,uh〉h =
(

ÃhΞh,Ξh

)

h
≥ 0.
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Proof. The proof is the same as for Lemma 2.2 except for the first coordinate of
(Ãy

h
Ξh)i,j . Using again (2.31) we deduce that

∆x∆yb1

Nx
∑

i=1

Ny
∑

j=1

ξi,j+1 − ξi,j
∆y

ξi,j =
b1∆x

2

Nx
∑

i=1

Ny
∑

j=1

[

|ξi,j+1|
2 − |ξi,j |

2 − |ξi,j+1 − ξi,j |
2
]

= −
b1∆x

2

Nx
∑

i=1



|ξi,0|
2 +

Ny
∑

j=1

|ξi,j+1 − ξi,j |
2



 .

Since b1 < 0, the positivity of
(

ÃhΞh,Ξh

)

h
is proven.

�

3.3. Time discretization: the Euler implicit scheme. In this section we ap-
ply the Euler implicit scheme in time to the equations (3.11). We define a time
step ∆t with Nt∆t = T and we set tn = n∆t for 0 ≤ n ≤ Nt. We denote by
{un

h ∈ Wh, 0 ≤ n ≤ Nt} the discrete unknowns. For u0
h ∈ Wh given by (2.33), the

Euler implicit scheme for (3.11) reads

(3.13)











un+1
h − un

h

∆t
+Ahu

n+1
h = fn+1

h ,

un
h ∈ Wh, for 0 ≤ n ≤ Nt.

with

fn+1
h =

1

∆t

∫ (n+1)∆t

n∆t

fh(t)dt.

We first remark that (I+∆tAh) is invertible becauseAh is positive and therefore
I + ∆tAh is positive definite. For this reason the system (3.13) admits a unique
solution un+1

h when un
h is known.

To obtain an estimate of |un+1
h |h, we take the scalar product (〈·, ·〉h) of equation

(3.13)1 with 2∆tun+1
h , and using the same arguments as in Section 2.3 we obtain

(3.14) |un+1
h |2h ≤ (1 + ∆t)

[

|un
h|

2
h + ‖S0‖

2|f |2L2(tn,tn+1,L2(M))

]

,

and iterating (3.14), we have

|un+1
h |2h ≤ (1 + ∆t)

[

|un
h|

2
h + ‖S0‖

2|f |2L2(tn,tn+1,L2(M))

]

,

≤ (1 + ∆t)2
[

|un−1
h |2h + ‖S0‖

2|f |2L2(tn−1,tn+1,L2(M))

]

,

≤ (1 + ∆t)n+1
[

|u0
h|

2 + ‖S0‖
2|f |2L2(0,tn+1,L2(M))

]

.

(3.15)

From equation (3.15) and since ∆tNt = T , we conclude that

(3.16) |un
h|

2
h ≤ eT

[

|u0|2 + ‖S0‖
2

∫ T

0

∫

M

|f |2dxdydt

]

, ∀n = 0, 1, · · · , Nt.

Theorem 3.1. The scheme defined by the equations (3.13), (3.8)-(3.10), is stable
in L∞(0, T ;L2(M)) in the sense of (3.16).
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3.4. Time discretization: the Euler explicit scheme. In this section we apply
the Euler explicit scheme in time to the equations (3.11). With the same spatial
discretization as in the previous section and For u0

h ∈ Wh given by (2.33), the Euler
explicit scheme for (3.11) reads

(3.17)











un+1
h − un

h

∆t
+Ahu

n
h = fnh ,

un
h ∈ Wh, for 0 ≤ n ≤ Nt,

with

fnh =
1

∆t

∫ (n+1)∆t

n∆t

fh(t)dt.

We take the scalar product (〈·, ·〉h) of equation (3.17)1 with 2∆tun
h to obtain

(3.18) |un+1
h |2h ≤ |un

h |
2
h + |un+1

h − un
h|

2
h − 2∆t〈Ahu

n
h,u

n
h〉h + 2∆t〈fnh ,u

n
h〉h.

Since 〈Ahu
n
h,u

n
h〉h =

(

ÃhΞ
n
h,Ξ

n
h

)

h
, we have

− 〈Ahu
n
h ,u

n
h〉h ≤

−
a1∆y

2

∑

j

∑

i

|ξni,j − ξni−1,j |
2 +

a2∆y

2

∑

j

∑

i

|ηni+1,j − ηni,j |
2

−
a3∆y

2

∑

j

∑

i

|ζni,j − ζni−1,j |
2 −

b1∆x

2

∑

j

∑

i

|ξni,j+1 − ξni,j |
2

−
b2∆x

2

∑

j

∑

i

|ηni,j − ηni,j−1|
2 −

b3∆x

2

∑

j

∑

i

|ζni,j − ζni,j−1|
2.

(3.19)

Similar to (2.46), we deduce from the equation (3.17) that

(3.20) |un+1
h − un

h|
2
h ≤ |fnh −Ahu

n
h|

2
h∆t2 ≤ 2µ0∆t2‖ÃhΞ

n
h‖

2
h + 2∆t2|fnh |

2
h,

where µ0 is defined in (2.47). Therefore

|un+1
h − un

h |
2
h ≤

2µ0
∆t2∆y

∆x

Nx
∑

i=1

Ny
∑

j=1

[

a21|ξ
n
i,j − ξni−1,j |

2 + a22|η
n
i+1,j − ηni,j |

2

+a23|ζ
n
i,j − ζni−1,j |

2
]

+ 2µ0
∆t2∆x

∆y

Nx
∑

i=1

Ny
∑

j=1

[

b21|ξ
n
i,j+1 − ξni,j |

2 + b22|η
n
i,j − ηni,j−1|

2

+b23|ζ
n
i,j − ζni,j−1|

2
]

+ 2∆t2|fnh |
2.

(3.21)

Under the assumptions:

(3.22)
∆t

∆x
≤

1

2µ0
min(

1

a1
,−

1

a2
,
1

a3
),

∆t

∆y
≤

1

2µ0
min(−

1

b1
,
1

b2
,
1

b3
),

we find from equations (3.19) and (3.21) that

(3.23) |un+1
h − un

h|
2
h − 2∆t〈Ahu

n
h,u

n
h〉h ≤ 2∆t2|fnh |

2
h.
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Therefore, inequality (3.18) yields

|un+1
h |2h ≤ |un

h|
2
h + 2∆t〈fnh ,u

n
h〉h + 2∆t2|fnh |

2
h

≤ (1 + ∆t)|un
h |

2
h + (2∆t+ 1)∆t|fnh |

2
h.

(3.24)

From equation (3.24) and the fact that ∆t ≤ T , we deduce that

|un+1
h |2h ≤ (1 + ∆t)|un

h |
2
h + (1 + 2T )‖S0‖

2|f |2L2(tn,tn+1,L2(M))]

≤ (1 + ∆t)2|un−1
h |2h + (1 +∆t)(1 + 2T )‖S0‖

2|f |2L2(tn−1,tn,L2(M))

+ (1 + 2T )‖S0‖
2|f |2L2(tn,tn+1,L2(M))

≤ . . .

≤ (1 + ∆t)n|u0
h|

2
h

+ (1 + 2T )

n
∑

s=1

(1 + ∆t)n−s‖S0‖
2|f |2L2(ts,ts+1,L2(M)),

≤ (1 + ∆t)n|u0|2

+ (1 + 2T )

n
∑

s=1

(1 + ∆t)n−s‖S0‖
2|f |2L2(ts,ts+1,L2(M)),

(3.25)

which, together with 1 + x ≤ ex, implies that

|un+1
h |2h ≤ en∆t

[

|u0|2 + (1 + 2T )‖S0‖
2|f |2L2(0,tn+1,L2(M))

]

.(3.26)

Hence, we have the stability result

(3.27) |un
h|

2
h ≤ eT

[

|u0|2 + (1 + 2T )‖S0‖
2|f |2L2(0,T,L2(M))

]

, ∀n = 0, · · · , Nt.

Theorem 3.2. Under the following CFL conditions

(3.28)
∆t

∆x
≤

1

2µ0
min(

1

a1
,−

1

a2
,
1

a3
),

∆t

∆y
≤

1

2µ0
min(−

1

b1
,
1

b2
,
1

b3
),

the scheme defined by the equations (3.17), (3.8)-(3.10), is stable in L∞(0, T ;L2(M))
in the sense of (3.27),

3.5. Convergence results. In this section we prove the convergence of the un
h

for both the Euler explicit and implicit scheme in time for the fully hyperbolic
subcritical case. We also remark that we have the uniqueness of the solution for
the linearized SWEs (1.1) (see [15, Theorem 9]).

We define the adjoint operator A∗ of A as follows (for more details, see [15,
Section 3.3.1]):

A∗v := −E1vx − E2vy , ∀v ∈ D(A∗),

with

D(A∗) = {v = (v1, v2, v3) ∈ H : A∗v ∈ H and v satisfies:

ṽ0v
1 − ũ0v

2 + κ̃0v
3 = ũ0v

1 + ṽ0v
2 + gv3 = 0,

on ΓE = {x = Lx},

ṽ0v
1 − ũ0v

2 − κ̃0v
3 = 0, on ΓW = {x = 0},

ṽ0v
1 − ũ0v

2 − κ̃0v
3 = ũ0v

1 + ṽ0v
2 + gv3 = 0,

on ΓE = {y = Lx},

ṽ0v
1 − ũ0v

2 + κ̃0v
3 = 0, on ΓW = {y = 0}}.

(3.29)
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Of course, the usual relation for adjoint operator holds, i.e.

〈Au,v〉 = 〈u,A∗v〉, ∀u ∈ D(A), ∀v ∈ D(A∗).

Similarly, the adjoint operator Ã∗ of Ã is defined as follows: forΨ = (Ψ1,Ψ2,Ψ3) ∈

D(Ã∗),

(3.30) Ã∗Ψ := −D1Ψx −D2Ψy,

where

D(Ã∗) = {Ψ = (Ψ1,Ψ2,Ψ3) ∈ H : Ã∗Ξ ∈ H and Ξ satisfies:

Ψ1 = Ψ3 = 0, on ΓE = {x = Lx},

Ψ2 = 0, on ΓW = {x = 0},

Ψ2 = Ψ3 = 0, on ΓE = {y = Ly},

Ψ1 = 0, on ΓW = {y = 0}},

(3.31)

and we have the usual relation

(ÃΞ,Ψ) = (Ξ, Ã∗Ψ), ∀Ξ ∈ D(Ã), ∀Ψ ∈ D(Ã∗).

We also have a similar relation as in (2.9) for the adjoint operators A∗ and Ã∗,
that is

A∗v = (PTS0)
−1Ã∗Ψ, with Ψ = P−1v.

Then we define Ã∗
h, the discretized version of Ã∗:

Ã∗
hΨh := Ã

∗,x
h Ψh + Ã

∗,y
h Ψh, ∀Ψh ∈ P−1W∗

h,

where

(Ã∗,x
h

Ψh)i,j =

(

−a1
Ψ1

i+1,j −Ψ1
i,j

∆x
,−a2

Ψ2
i,j −Ψ2

i−1,j

∆x
,−a3

Ψ3
i+1,j − Ψ3

i,j

∆x

)

,

(Ã∗,y
h

Ψh)i,j =

(

−b1
Ψ1

i,j −Ψ1
i,j−1

∆y
,−b2

Ψ2
i,j+1 −Ψ2

i,j

∆y
,−b3

Ψ3
i,j+1 −Ψ3

i,j

∆y

)

,

(3.32)

and

P−1W∗
h = {Ψh = (Ψ1

h,Ψ
2
h,Ψ

3
h) are step functions over M :

Ψh

∣

∣

ki,j
= Ψi,j , ∀ 0 ≤ i ≤ Nx + 1, 0 ≤ j ≤ Ny + 1,

and Ψh satisfies:

Ψ1
Nx+1,j = Ψ3

Nx+1,j = 0, for 1 ≤ j ≤ Ny,

Ψ2
0,j = 0, for 1 ≤ j ≤ Ny,

Ψ2
i,Ny+1 = Ψ3

i,Ny+1 = 0, for 1 ≤ i ≤ Nx,

Ψ1
i,0 = 0, for 1 ≤ i ≤ Ny}.

(3.33)

From the equations (3.9)-(3.10), we obtain the following adjoint relation:

(3.34) (ÃhΞh,Ψh) = (Ξh, Ã
∗
hΨh)

holds for all Ξ ∈ P−1Wh and Ψh ∈ P−1W∗
h.

Finally, we define A∗
h, the discretized version of A∗: for all vh ∈ W∗

h,

(3.35) A∗
hvh = (PTS0)

−1Ã∗
hΨh, where Ψh = P−1vh,
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W∗
h = {vh = (v1h, v

2
h, v

3
h) are step functions over M :

vh

∣

∣

ki,j
= vi,j , ∀ 0 ≤ i ≤ Nx + 1, 0 ≤ j ≤ Ny + 1, and vh satisfies:

ṽ0v
1
Nx+1,j − ũ0v

2
Nx+1,j + κ̃0v

3
Nx+1,j = 0, for 1 ≤ j ≤ Ny,

ũ0v
1
Nx+1,j + ṽ0v

2
Nx+1,j + gv3Nx+1,j = 0, for 1 ≤ j ≤ Ny,

ṽ0v
1
0,j − ũ0v

2
0,j − κ̃0v

3
0,j = 0, for 1 ≤ j ≤ Ny,

ṽ0v
1
i,Ny+1 − ũ0v

2
i,Ny+1 − κ̃0v

3
i,Ny+1 = 0, for 1 ≤ i ≤ Nx,

ũ0v
1
i,Ny+1 + ṽ0v

2
i,Ny+1 + gv3i,Ny+1 = 0, for 1 ≤ i ≤ Nx,

ṽ0v
1
i,0 − ũ0v

2
i,0 + κ̃0v

3
i,0 = 0, for 1 ≤ i ≤ Nx}.

(3.36)

Similarly, we also have

(3.37) 〈Ahuh,vh〉 = 〈uh,A
∗
hvh〉, ∀uh ∈ Wh, vh ∈ W∗

h.

We have the same Lemmas and Theorems as in Section 2.5, the only differences
are the definition of Ã∗ and A∗, therefore we will not prove the two theorems below
as the proof is the same as in Section 2.5.

Euler implicit scheme. With the Euler implicit time discretization we have
the following convergence result:

Theorem 3.3. For ūh, defined as in equation (2.72), with un+1
h the solution of

(3.13) we have that

(3.38) ūh converges to u in L∞(0, T ; (L2(M))3) weak-star,

as ∆t, h → 0 and u satisfies the following equation equivalent to (1.1), (2.82):

(3.39)







d

dt
〈u,v〉+ 〈u,A∗v〉 = 〈f ,v〉, ∀v ∈ D(A∗),

u(x, y, t = 0) = u0(x, y).

Euler explicit scheme. With the Euler explicit time discretization we have
the following convergence result:

Theorem 3.4. For ūh, defined as in equation (2.85)1, with un+1
h the solution of

(3.17) we have that

(3.40) ūh converges to u in L∞(0, T ; (L2(M))3) weak-star,

as ∆t, h → 0 and u satisfies the following equation equivalent to (1.1), (2.82):

(3.41)







d

dt
〈u,v〉+ 〈u,A∗v〉 = 〈f ,v〉, ∀v ∈ D(A∗),

u(x, y, t = 0) = u0(x, y).

4. Concluding remarks

In this article, we proposed a unified way to implement finite volume discretiza-
tion for the linearized 2D inviscid SWEs in a rectangular domain with the boundary
conditions proposed in [15], where the well-posedness result for the linearized 2D
inviscid SWEs is established, and we believe that the finite volume scheme we
proposed here can be also applied to more general linear hyperbolic initial and
boundary value problems in a rectangle (see [16] for theoretic results). We also
proved the numerical stability and convergence result for the scheme in the fully
hyperbolic case, that is when ũ2

0 + ṽ20 > gφ̃0 (see (1.2)-(1.3)). As we known in [15],
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there is another important case called the elliptic-hyperbolic case remaining to be
investigated, which is left for future work.
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