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ANALYSIS OF THE DISCONTINUOUS GALERKIN INTERIOR

PENALTY METHOD WITH SOLENOIDAL APPROXIMATIONS

FOR THE STOKES EQUATIONS

ADELINE MONTLAUR AND SONIA FERNANDEZ-MENDEZ

Abstract. The discontinuous Galerkin Interior Penalty Method with solenoidal approximations
proposed in [13] for the incompressible Stokes equations is analyzed. Continuity and coercivity of
the bilinear form are proved. A priori error estimates, with optimal convergence rates, are derived.
2D and 3D numerical examples with known analytical solution corroborate the theoretical analysis.
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1. Introduction

Discontinuous Galerkin (DG) methods have become very popular for incom-
pressible flow problems, especially in combination with piecewise solenoidal approx-
imations [2, 4, 5, 7, 12, 13, 14, 15]. In the context of conforming finite elements,
solenoidal approximations were derived by Crouzeix and Raviart in [6], allowing one
to obtain a formulation involving only velocity. Nevertheless their implementation
is non-trivial and they are limited to low-order approximations. While alternative
solutions for incompressible flows are, among others, velocity-pressure formulations
satisfying the Babuska-Brezzi condition, or hp-version FEM, in a DG framework
high-order solenoidal approximations can be easily defined. This leads to an impor-
tant saving in the number of degrees of freedom, with the corresponding reduction
in computational cost, see [16].

Cockburn and collaborators [4, 5] were among the first researchers to use solenoi-
dal approximations for incompressible flows in the context of the Local Discontin-
uous Galerkin (LDG) method, and they also introduced the concept of hybrid
pressure. Later, the use of solenoidal approximations and hybrid pressure has been
applied to an Interior Penalty Method (IPM), in [13], and to a Compact Discon-
tinuous Galerkin (CDG) method, see [16, 17]. In [13], the velocity approximation
space is decomposed in every element into a solenoidal part and an irrotational part.
This allows for a splitting of the original weak form in two uncoupled problems.
The first one solves for velocity and hybrid pressure, and the second one allows
evaluating the pressure in the interior of the elements, as a post-processing of the
velocity solution.

LDG, CDG and IPM methods all lead to symmetric and coercive bilinear forms
for self-adjoint operators. But IPM and CDG methods have the major advantage,
relative to LDG, of being compact formulations, that is, the degrees of freedom of
one element are only connected to those of immediate neighbors. In [16], IPM and
CDG methods are further compared for the solution of the Navier-Stokes equations.
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Both methods present similar results for the accuracy of the numerical solution,
reaching optimal convergence rates for velocity and pressure. The main differences
are that CDG is less sensitive to the selection of the penalty parameter, but has
the major disadvantage of the implementation and computation of the lifting op-
erators. The liftings, introduced in CDG [17] as well as in LDG [4], also induce
an approximate orthogonality property and a loss of consistency, whereas IPM is a
consistent formulation with a straight-forward implementation.

This paper performs a complete analysis of the discontinuous Galerkin IPM
(DG-IPM) with solenoidal approximations and hybrid pressure, as derived and
applied to 2D examples in [13], for the incompressible Stokes equations. Standard
properties of continuity and coercivity of the obtained weak form are proved. The
error estimate for velocity proved in [13] is recalled, and a new error estimate
is derived for the post-processed interior pressure, in the case of pure Dirichlet
boundary conditions. Some intermediate results from [4, 12] are used in these
demonstrations and derivations. All demonstrations in this paper are proved for
any spatial dimension (either triangles in 2D or tetrahedra in 3D), except for the
unique solvability of the IPM problem, which is only considered for the 2D case.

The paper is structured as follows. The IPM formulation, with a splitting of the
velocity space into solenoidal and irrotational parts, is summarized in Section 2 for
the solution of the incompressible Stokes equations. Various properties of the IPM
formulation are then presented and proved in Section 3. In particular, standard
properties of continuity and coercivity of the bilinear form are proved, the error
bound for velocity is recalled and a new error bound for interior pressure is derived.
2D and 3D numerical examples with analytical solutions validate the theoretical
analysis in Section 4.

2. Discontinuous Galerkin interior penalty formulation for Stokes

Let Ω ⊂ R
nsd be an open bounded domain with boundary ∂Ω and nsd the number

of spatial dimensions. Suppose that Ω is partitioned in nel disjoint subdomains Ωi,
triangles in 2D or tetrahedral elements in 3D, with boundaries ∂Ωi that define an
internal interface Γ; the following definitions and notation are used

Ω =

nel
⋃

i=1

Ωi, Ωi ∩Ωj = ∅ for i 6= j,

and Γ :=

nel
⋃

i,j=1
i6=j

Ωi ∩Ωj =
[

nel
⋃

i=1

∂Ωi

]

\∂Ω.

The strong form for the steady incompressible Stokes problem can be written as

−∇·σ = s in Ω,(1a)

∇·u = 0 in Ω,(1b)

u = uD on ΓD,(1c)

where ΓD = ∂Ω, s ∈ L2(Ω) is a source term, and σ is the (“dynamic” or “density-
scaled”) Cauchy stress, which is related to velocity u, and pressure p, by the linear
Stokes’ law

(2) σ = −p I+ 2ν∇su,

with ν being the kinematic viscosity and ∇
s = 1

2 (∇ +∇
T ).
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Note that, for a Dirichlet problem, the usual compatibility condition must be
satisfied, that is

∫

∂Ω uD ·ndΓ = 0. Furthermore, an additional equation is needed
in order to close the problem. For instance, pressure mean value can be set to zero.

The jump J·K and mean {·} operators are defined along the interface Γ using
values from the elements to the left and to the right of the interface (say, Ωi and Ωj)
and are also extended along the exterior boundary (only values in Ω are employed),
namely

J⊚K =

{

⊚i +⊚j on Γ,

⊚ on ∂Ω,
and {⊚} =

{

κi ⊚i +κj⊚j on Γ,

⊚ on ∂Ω.

Usually κi = κj = 1/2 but, in general, these two scalars are only required to verify
κi + κj = 1, see for instance [10]. The major difference between the mean and the
jump operator is that the latter always involves the normal to the interface or to
the domain. For instance, given two adjacent subdomains Ωi and Ωj , their exterior
unit normals are denoted respectively ni and nj (recall that ni = −nj) and along
∂Ω the exterior unit normal is denoted by n; the jump is then

JpnK =

{

pini + pj nj = ni(pi − pj) on Γ

pn on ∂Ω

for scalars, see [13] for vectors or tensors.
Finally, in the following equations,

(

·, ·
)

denotes the L2-scalar product in Ω, that
is

(

p, q
)

=
∑

Ωi∈Ω

∫

Ωi

p q dΩ for scalars,(3a)

(

u,v
)

=
∑

Ωi∈Ω

∫

Ωi

u ·v dΩ for vectors,(3b)

(

σ, τ
)

=
∑

Ωi∈Ω

∫

Ωi

σ : τ dΩ for second-order tensors(3c)

where all the integrals are considered element-wise. Similarly, derivative opera-
tors applied to discontinuous but piecewise smooth functions are understood in an
element-wise sense.

Analogously,
(

·, ·
)

Υ
denotes the L2-scalar product in any domain Υ ⊂ Γ ∪ ∂Ω.

For instance,

(4)
(

p, q
)

Υ
=

∫

Υ

p q dΓ

for scalars.

2.1. IPM formulation. The following discrete finite element spaces for velocity
and pressure are defined

V
h = {v ∈ [L2(Ω)]

nsd ; v|Ωi
∈ [Pk(Ωi)]

nsd ∀Ωi}

Qh = {q ∈ [L2(Ω)] ; q|Ωi
∈ [Pk−1(Ωi)] ∀Ωi}

(5)

where Pk(Ωi) is the space of polynomial functions of degree at most k in Ωi, with
some fixed approximation degree k ≥ 1.

Following the standard approach of Interior Penalty Method, introduced by [1]
for second-order parabolic equations, the Interior Penalty approach developed by
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[13] for the Stokes equations is: find uh ∈ V
h and ph ∈ Qh/R such that

(6)
a
(

uh,v
)

+ b
(

v, ph
)

+
(

{ph}, Jn ·vK
)

Γ∪ΓD

= l
(

v
)

∀ v ∈ V
h,

b
(

uh, q
)

+
(

{q}, Jn ·uhK
)

Γ∪ΓD

=
(

q,n ·uD

)

ΓD

∀ q ∈ Qh/R,

where

(7a) a
(

u,v
)

:=
(

2ν∇su,∇sv
)

+
γ

h

(

Jn ⊗ uK, Jn ⊗ vK
)

Γ∪ΓD

−
(

2ν{∇su}, Jn⊗ vK
)

Γ∪ΓD

−
(

Jn⊗ uK, 2ν{∇sv}
)

Γ∪ΓD

,

(7b) l
(

v
)

:=
(

f ,v
)

+
γ

h

(

uD,v
)

ΓD

−
(

n⊗ uD, 2ν∇sv
)

ΓD

,

(7c) b
(

v, p
)

:= −

∫

Ω

p∇· v dΩ.

The characteristic mesh size is denoted by h. For instance, following [11], for a
2D mesh of straight sides, the mesh parameter h can be defined on each side ∂Ωi,
interface between two elements Ωi and Ωj or on the boundary ∂Ω, by

(8) h|∂Ωi
=



















2

(

length(∂Ωi)

area(Ωi)
+

length(∂Ωi)

area(Ωj)

)−1

for ∂Ωi on Γ,

area(Ωi)

length(∂Ωi)
for ∂Ωi on ∂Ω.

Another possibility, in 2D as well as in 3D problems, is to consider h equal to the
minimum length of the sides of an element. The penalty parameter γ is a positive
scalar, depending on ν and k, which must be large enough to ensure the coercivity
of the symmetric bilinear form a

(

., .
)

, see [13] and Section 4.

2.2. IPM with solenoidal approximations. The velocity space Vh is now split
into the direct sum of a solenoidal part and an irrotational part, see [13, 5, 4] for

details, that is Vh = S
h ⊕ I

h, where

S
h =

{

v ∈ V
h | ∇· v|Ωi

= 0 for i = 1, . . . , nel
}

,

I
h ⊂

{

v ∈ V
h | ∇×v|Ωi

= 0 for i = 1, . . . , nel
}

.
(9)

For instance, a solenoidal basis in a 2D triangle for an approximation of degree
k = 2 is

S
h =

〈(

1
0

)

,

(

0
1

)

,

(

0
x

)

,

(

x
−y

)

,

(

y
0

)

,

(

0
x2

)

,

(

2xy
−y2

)

,

(

x2

−2xy

)

,

(

y2

0

)〉

,

and the irrotational complementary part for k = 2 is

I
h =

〈(

x
0

)

,

(

x2

0

)

,

(

0
y2

)〉

,

see for example [2] for the construction of these spaces.
Under these circumstances, the IPM problem (6) can be split in two uncoupled

problems. The first one solves for divergence-free velocities and the so-called hybrid
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pressures : find uh ∈ S
h and p̃h ∈ P h/R solution of

(10a)

{

a
(

uh,v
)

+
(

p̃h, Jn · vK
)

Γ∪ΓD

= l
(

v
)

∀v ∈ S
h,

(

q̃, Jn ·uhK
)

Γ∪ΓD

=
(

q̃,n ·uD

)

ΓD

∀q̃ ∈ P h/R,

with the form a
(

., .
)

defined in (7).
The space of hybrid pressures (pressures along the sides in 2D, or faces in 3D)

is simply:

P h :=
{

p̃ | p̃ : Γ ∪ ΓD −→ R and p̃ = Jn ·vK for some v ∈ S
h
}

.

In fact, [5] demonstrates that P h corresponds to piecewise polynomial pressures on
the element sides in 2D or faces in 3D.

Remark 1. The proof of the unique solvability of (10a) can be established in 2D
following [4]. An analogous result in 3D remains an open issue and is beyond the
scope of this paper. Note that numerical 3D results, see Section 4, do not indicate
any problems to that extent.

The second problem, which requires the solution (uh, p̃h) of (10a), evaluates the
interior pressures : find ph ∈ Qh such that

(10b) b
(

v, ph
)

= l
(

v
)

− a
(

uh,v
)

−
(

p̃h, Jn ·vK
)

Γ∪ΓD

∀v ∈ I
h.

It is important to note that equation (10b) is a post-processing of the solution of
(10a), with an element by element computation.

3. Analysis of IPM with solenoidal approximations

This section presents the standard continuity and coercivity properties of the
IPM bilinear form (7a) and the error bounds for the IPM Stokes formulation with
solenoidal velocity (10). To that end, the 9 ·9-norm is defined as

(11) 9v92 = ‖∇sv‖2Ω + ‖h1/2{∇sv}‖2Γ∪ΓD
+ ‖h−1/2Jn⊗ vK‖2Γ∪ΓD

with the L2-norms induced by the scalar products (3) and (4)

(12) ‖f‖2Ω =
(

f, f
)

and ‖f‖2Γ∪ΓD
=
(

f, f
)

Γ∪ΓD

.

Note that, given the element-wise integration in the definition of the L2-scalar
products in (3) and (4), these L2-norms also involve element-wise integrals, allowing
their application to discontinuous functions.

The steps used here to prove the continuity and coercivity of a
(

., .
)

are similar
to the ones followed in [12], also for the Stokes equations, using some properties
proved in [11], for an elasticity problem. Note that in [12], an alternative IPM
formulation is derived, the main difference with the method analyzed here being
the presence of a non-consistent penalty parameter, which leads to a formulation
with no pressure at all.

Lemma 3.1 (Continuity). The IPM bilinear form, a
(

., .
)

, defined in (7a) is con-
tinuous. That is

(13) |a(u,v)| ≤ C 9 u 9 9v 9 ∀u,v ∈ V
h +

[

[H1(Ω)]nsd ∩H(div0; Ω)
]

for some constant C > 0 independent of the mesh size, where H(div0; Ω) = {v ∈
[L2(Ω)]

nsd | ∇·v = 0 in Ω}.
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Proof. Using the Schwarz inequality, we have

(14)
∣

∣a
(

u,v
)∣

∣

2
≤
(

2ν‖∇su‖Ω‖∇
sv‖Ω +

γ

h
‖Jn⊗ uK‖Γ∪ΓD

‖Jn⊗ vK‖Γ∪ΓD

+ 2ν
(

‖{∇su}‖Γ∪ΓD
‖Jn⊗ vK‖Γ∪ΓD

+ ‖Jn⊗ uK‖Γ∪ΓD
‖{∇sv}‖Γ∪ΓD

)

)2

= 4ν2
(

‖∇su‖2Ω‖∇
sv‖2Ω+‖{∇su}‖2Γ∪ΓD

‖Jn⊗vK‖2Γ∪ΓD
+‖Jn⊗uK‖2Γ∪ΓD

‖{∇sv}‖2Γ∪ΓD

+ 2
(

‖{∇su}‖Γ∪ΓD
‖Jn⊗ vK‖Γ∪ΓD

‖Jn⊗ uK‖Γ∪ΓD
‖{∇sv}‖Γ∪ΓD

)

)

+
γ2

h2
‖Jn⊗ uK2‖Γ∪ΓD

‖Jn⊗ vK2‖Γ∪ΓD

+8ν2‖∇su‖Ω‖∇
sv‖Ω

(

‖{∇su}‖Γ∪ΓD
‖Jn⊗vK‖Γ∪ΓD

+‖Jn⊗uK‖Γ∪ΓD
‖{∇sv}‖Γ∪ΓD

)

+
4νγ

h
‖Jn⊗ uK‖Γ∪ΓD

‖Jn⊗ vK‖Γ∪ΓD

(

‖∇su‖Ω‖∇
sv‖Ω

+ ‖{∇su}‖Γ∪ΓD
‖Jn⊗ vK‖Γ∪ΓD

+ ‖Jn⊗ uK‖Γ∪ΓD
‖{∇sv}‖Γ∪ΓD

)

Each one of the terms in the right hand side of (14) can then be bounded by
c 9 u 92 9v92, for some constant c, applying several times the inequality
2ab < a2ǫ + b2/ǫ, which is true for any arbitrary constant ǫ. For example, one of
the terms from (14) is bounded as follows

4νγ

h
‖∇su‖Ω‖∇

sv‖Ω‖Jn⊗ uK‖Γ∪ΓD
‖Jn⊗ vK‖Γ∪ΓD

≤
2νγ

h

(

1

ǫ
‖∇su‖2Ω‖∇

sv‖2Ω + ǫ‖Jn⊗ uK‖2Γ∪ΓD
‖Jn⊗ vK‖2Γ∪ΓD

)

≤ c9u929v92,

where c = 2νγ/hmax(1/ǫ, ǫ), for any constant ǫ. �

Lemma 3.2 (Inverse inequality). For all f ∈ V
h, and any mesh parameter h

(defined in (8)), the following inverse inequality holds

(15) ‖h1/2{f}‖2Γ∪ΓD
≤ C‖f‖2Ω

for some constant C > 0 independent of the mesh size.

Proof. Following finite element dimensionality and scaling from a unit reference
element, see [11], we have

(16) ‖h1/2f‖2∂Ωi
≤ C‖f‖2Ωi

,

for some constant C > 0 independent of the mesh size. Thus,

‖h1/2{f}‖2Γ∪ΓD
≤ 2‖h1/2{f}‖2Γ + ‖h1/2f‖2ΓD

=

nel
∑

i=1

‖h1/2f‖2∂Ωi

≤ C

nel
∑

i=1

‖f‖2Ωi
= C‖f‖2Ω.

�

Lemma 3.3 (Coercivity). For γ > 0 large enough, the IPM bilinear form a
(

., .
)

defined in (7a) is coercive. That is, there exists a constant m > 0 such that

(17) m 9 v92 ≤ a
(

v,v
)

∀v ∈ V
h.
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Proof. In fact, we will prove that given any m > 0, there exists a γ(m) > 0 such
that (17) is verified. From definitions (7a) and (11), we have

(18) a
(

v,v
)

−m 9 v92 = (2ν −m)‖∇sv‖2Ω + (γ −m)‖h−1/2Jn⊗ vK‖2Γ∪ΓD

−m‖h1/2{∇sv}‖2Γ∪ΓD
− 2
(

2ν{∇sv}, Jn⊗ vK
)

Γ∪ΓD

.

for any constant m > 0.
The third term in the right-hand-side of (18) is bounded using Lemma 3.2. That

is,

(19) ‖h1/2{∇sv}‖2Γ∪ΓD
≤ C‖∇sv‖2Ω,

for some constant C > 0 independent of the mesh size.
On the other hand, the last term in (18) is bounded using the Cauchy-Schwarz

inequality and (19)
(

2ν{∇sv}, Jn⊗ vK
)

Γ∪ΓD

≤ 2ν‖h1/2{∇sv}‖Γ∪ΓD
‖h−1/2Jn⊗ vK‖Γ∪ΓD

≤ 2νC‖∇sv‖Ω‖h
−1/2Jn⊗ vK‖Γ∪ΓD

.

Thus, using the inequality 2ab < a2ǫ+ b2/ǫ for an arbitrary constant ǫ, the last
term in (18) is bounded by

(20)
(

2ν{∇sv}, Jn⊗ vK
)

Γ∪ΓD

≤
νC

ǫ
‖∇sv‖2Ω + νCǫ‖h−1/2Jn⊗ vK‖2Γ∪ΓD

.

Substituting (20) and (19) in (18) finally leads to

a
(

v,v
)

−m 9 v92 ≥

(

2ν

(

1−
C

ǫ

)

−m(1 + C)

)

‖∇sv‖2Ω

+ (γ −m− 2νCǫ)‖h−1/2Jn ⊗ vK‖2Γ∪ΓD
.

Thus, the coercivity is ensured if (2ν (1− C/ǫ)−m(1 + C)) ≥ 0 and
γ−m−2νCǫ ≥ 0. The first condition is satisfied if the arbitrary constant ǫ is taken
ǫ ≥ 2νC/(2ν −m(1 + C)). The second condition is verified when γ ≥ m + 2νCǫ,
that is for γ big enough, which completes the proof of the coercivity. �

The properties of continuity and coercivity of the bilinear form a
(

., .
)

are used
in the derivation of the error bounds for velocity and interior pressure coming next.

Theorem 3.4 (Velocity error bound). Let u ∈ [H1+α(Ω)]nsd , 1 ≤ α ≤ k, be the

exact velocity of the Stokes problem (1), and uh ∈ S
h the numerical velocity of the

IPM system (10), then

(21) 9u− uh9 ≤ Khα|u|[H1+α(Ω)]nsd

for some constant K > 0, independent of the mesh size h and the exact solution u.

Proof. This result has been proved in [13], under the assumption of coercivity and
continuity of a

(

., .
)

, see Lemma 3.1 and Lemma 3.3. �

Lemma 3.5 (Equivalent norms). The 9 ·9-norm used in this work and the norm
used in [4], that is

(22) 9v92
1,h = ‖∇v‖2Ω + ‖h−1/2Jn⊗ vK‖2Γ∪ΓD

are equivalent for v ∈ V
h.
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Proof. Clearly ‖v‖1 ≤ 9v9. On the other hand, using Lemma 3.2, and the in-
equality ‖∇sv‖Ω ≤ ‖∇v‖Ω

9v92 ≤ (1 + C)‖∇v‖2Ω + ‖h−1/2Jn⊗ vK‖2Γ∪ΓD
≤ D 9 v92

1,h

for D = max(1 + C, 1). �

Lemma 3.6 (inf-sup condition for pressure). The spaces of velocities Vh and pres-
sures Qh satisfy

(23) sup
v∈Vh∩H0(div;Ω)

b
(

v, q
)

9v9
≥ β‖PQhq‖L2(Ω)/R ∀q ∈ L2(Ω),

for some constant β > 0, independent of the characteristic mesh size h, where PQh

is the L2-projection onto Qh, the norm ‖.‖L2(Ω)/R is defined as

‖q‖L2(Ω)/R = inf
c∈R

‖q − c‖Ω

and H0 (div; Ω) = {v ∈ [L2(Ω)]
nsd | ∇·v ∈ L2(Ω),v ·n = 0 on ∂Ω}.

A proof of this Lemma for 2D triangles can be found in Section 6.2 in [4]. The
‖·‖1-norm is considered in [4], which is equivalent to the 9 ·9-norm as noted in
Lemma 3.5. The extension of the proof to tetrahedra is straight-forward. The
proof in [4] is based on the existence of a field ṽ ∈ [H1

0(Ω)]
nsd , such that

b
(

ṽ, PQhq
)

≥ ‖PQhq‖L2(Ω)/R ∀q ∈ L2(Ω), 9ṽ9 ≤ C,

which is proved in Section I.5.1 in [8], and on the identity

b
(

ṽ, PQhq
)

= b
(

v, PQhq
)

∀q ∈ L2(Ω)

where v is the BDM projection of ṽ. The last identity can be derived, following the
steps in [4], using integration by parts and the properties of the BDM projection
for tetrahedra, which can be found in Section III.3.3 in [3].

Theorem 3.7 (Interior pressure error estimate). Let u ∈ [H1+α(Ω)]nsd , 1 ≤ α ≤ k,
and p ∈ Hα(Ω) be the exact solution of the Stokes problem (1), p̃ = {p} on Γ∪ ∂Ω,

and (uh, p̃h, ph) ∈ S
h×P h/R×Qh the numerical solution of the IPM system (10),

then

(24) ‖p− ph‖L2(Ω)/R ≤ Khα
(

|u|[H1+α(Ω)]nsd + ‖p‖Hα(Ω)

)

for some constant K > 0, independent of the mesh size h and the exact solution
(u, p).

Proof. The exact velocity and interior pressure (u, p) ∈ [H1+α(Ω)]nsd ×Hα(Ω) so-
lution of the Stokes problem verifies (6), that is

b
(

v, p
)

= l
(

v
)

− a
(

u,v
)

−
(

p̃, Jn · vK
)

Γ∪ΓD

∀v ∈ V
h,

and the numerical solution (uh, ph) ∈ S
h ×Qh also verifies

b
(

v, ph
)

= l
(

v
)

− a
(

uh,v
)

−
(

p̃h, Jn ·vK
)

Γ∪ΓD

∀v ∈ V
h.

Thus, subtracting these two equations, we have

b
(

v, p− ph
)

= −a
(

u− uh,v
)

−
(

p̃− p̃h, Jn ·vK
)

Γ∪ΓD

∀v ∈ V
h.

In particular,

b
(

v, p− ph
)

= −a
(

u− uh,v
)

∀v ∈ V
h ∩H0 (div; Ω) ,
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and using the inf-sup condition (23), we get

‖PQhp− ph‖L2(Ω)/R ≤
β

9v9

∣

∣a
(

u− uh,v
)∣

∣ for some v ∈ V
h ∩H0 (div; Ω) .

Now, using the continuity property of a
(

., .
)

in Lemma 3.1

‖PQhp− ph‖L2(Ω)/R ≤ c 9 u− uh9

for some constant c > 0 independent of the mesh size, and using the velocity error
bound (21) we obtain

(25) ‖PQhp− ph‖L2(Ω)/R ≤ c′hα|u|[H1+α(Ω)]nsd .

for some constant c′ > 0 independent of the mesh size. Eventually, given that

‖p− ph‖L2(Ω)/R ≤ ‖p− PQhp‖L2(Ω)/R + ‖PQhp− ph‖L2(Ω)/R,

and given the approximation result

‖p− PQhp‖L2(Ω)/R ≤ chα‖p‖Hα(Ω)

for some constant c > 0 independent of the mesh size, see [4], it leads to the interior
pressure error bound (24). �

4. Validating analytical examples

In this section, 2D and 3D examples with analytical solution are considered to
validate the theoretical analysis from the previous section. Note that more 2D
numerical examples validating the DG-IPM formulation with solenoidal approxi-
mations can also be found in [13, 16]. Here these examples are completed by a
3D study. Also, though the case with non-empty Neumann boundary conditions
is not covered in the theoretical analysis, it is considered in these numerical tests,
exhibiting the same behavior and optimal convergence properties. To that end,
n ·σ = t on ΓN , is added to the system (1), t corresponding to the boundary trac-
tions, and in this case, ∂Ω = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅. This results in the
following change for the right-hand-side definition in (7b)

l
(

v
)

:=
(

f ,v
)

+
(

t,v
)

ΓN

+
γ

h

(

uD,v
)

ΓD

−
(

n⊗ uD, 2ν∇sv
)

ΓD

.

The incompressible Stokes equations with ν = 1 are solved in a 2D square
domain Ω =]0, 1[×]0, 1[ with Dirichlet boundary conditions on three sides, and
a Neumann boundary condition on the fourth side {y = 0}, and in a 3D cubic
domain Ω =]0, 1[×]0, 1[×]0, 1[ with Dirichlet boundary conditions on the six faces.
The boundary conditions and the body force f are set to have the polynomial exact
solution

u =

(

x2(1− x)2(2y − 6y2 + 4y3)

−y2(1 − y)2(2x− 6x2 + 4x3)

)

in 2D, or

u =









4x2(x− 1)2y(2y − 1)(y − 1)z(2z − 1)(z − 1)

−2y2(y − 1)2x(2x− 1)(x− 1)z(2z − 1)(z − 1)

−2z2(z − 1)2y(2y − 1)(y − 1)x(2x− 1)(x− 1)









in 3D, and

p = x(1− x) in 2D and 3D.

Figure 1 shows the convergence under h-refinement, for uniform triangle and tetra-
hedral meshes. The consistent penalty parameter γ is computed using the condition
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(a) 2D DG-IPM convergence results with ve-
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(b) 3D DG-IPM convergence results with ve-
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Figure 1. Error convergence under h-refinement for 2D and 3D
examples, with 9.9-norm for velocity and L2-norm for pressure.

proposed in [18] to ensure the coercivity of the bilinear form, that is

(26) γ ≈ aνk2

where a is a positive constant, determined by solving an eigenvalue problem, see [9]
for more details, and k is the degree of the velocity approximation. Here a = 2.5
for the 2D test and a = 10 for the 3D test.

Both for 2D and 3D problems, the observed convergence rates of velocity and
interior pressure are optimal, that is, u converges to uh with order k for the
9.9-norm, and p converges to ph with order k for the L2-norm.

5. Conclusion

This paper presents the analysis of the discontinuous Galerkin Interior Penalty
Method derived for the incompressible Stokes equations and applied to 2D problems
in [13]. All demonstrations in this paper are proved for any spatial dimension
(either triangles in 2D or tetrahedra in 3D), except for the unique solvability of the
IPM problem, which is only considered for the 2D case. Standard continuity and
coercivity of the bilinear form are proved, velocity bound is recalled and a new
a priori error estimate for interior pressures is derived, in the case of pure Dirichlet
boundary conditions. Theoretical convergence rates are optimal for velocity and
interior pressure. 2D and 3D numerical experiments validate these results.
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