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FINITE ELEMENT APPROXIMATION OF OPTIMAL CONTROL

FOR SYSTEM GOVERNED BY IMMISCIBLE DISPLACEMENT

IN POROUS MEDIA

YANZHEN CHANG, WEIDONG CAO, DANPING YANG, TONGJUN SUN, AND WENBIN
LIU

(Communicated by Yanping Lin)

Abstract. In this work, we study the finite element approximation of a model optimal control
problem governed by the system describing the two-phase incompressible flow in porous media,
with the aim to maximize production of oil from petroleum reservoirs. We first give the proof for
the existence of the solutions of the control problem. The optimality conditions are then obtained
and the existence of the solution of the adjoint equations is shown. After that we consider its
finite element approximation. We have obtained the a priori error estimates with the optimal
orders and minimum regularity requirements. Finally, we carry out some numerical tests.
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1. Motivation

The field of petroleum engineering is concerned with the search for ways to
extract more oil and gas from the earths subsurface. In a world in which an increase
in production of tenths of a percentage may result into a growth in profit of millions
of dollars, no stone is left unturned.

A common technique in oil recovery, known as “water flooding”, makes use of
two types of wells: injection and production wells. The production wells are used
to transport liquid and gas from the reservoir to the subsurface. The injection
wells inject water into the oil reservoir with the aim to push the oil towards the
production wells and keep up the pressure difference. The oil-water front progresses
toward the production wells until water breaks through into the production stream.
An increasing amount of water is used, while the oil production rate diminishes,
until at some time the recovery is no longer profitable and production is brought
to an end. Using water flooding, up to about 35 percent of the oil can be recovered
economically. Due to the strongly heterogeneous nature of oil reservoirs, the oil-
water front does not travel uniformly towards the production wells, but is usually
irregularly shaped. As a result, large amounts of oil may be still trapped within
the reservoir as water breakthrough occurs and production is brought to an end.

Recent advances in petroleum engineering allow for advanced well downhole
measurement and control devices, which expand the possibilities to manipulate
and control fluid flow paths through the oil reservoir. The ability to manipulate
the progression of the oil-water front provides the possibility to search for a con-
trol strategy that will result in maximization of oil recovery. A straightforward
approach to find such a control strategy is to use the optimal control technique to
increase recovery by delaying water breakthrough and increasing sweep, based on a
predictive reservoir model. Obviously, this problem can be described as an optimal
control problem of PDEs where the goal is to find a control q over a time interval
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[0, T ] that maximizes a certain performance measure J (q). Meantime, one realistic
way to control the flow paths through the reservoir is to manipulate the quantity
of water injected by the control valve settings.

Reservoir simulators use conservation of mass and momentum equations to de-
scribe the flow of oil, water or gas through the reservoir rock. Although oil consists
of a large number of chemical components with varying properties, in many reser-
voir modeling cases the Black Oil Model is adopted for simplicity reasons. This
model distinguishes between three phases: water, oil and gas. For further simplifi-
cation, in the oil reservoirs models used within this work no gas is assumed present,
hence reducing the number of phases to two.

In this study we carry out some initial investigations on the finite element ap-
proximation of this kind of optimal control problem, which to our best knowledge is
not much studied in the literature. In our first model we assume that the reservoir
is isolated so that with the water being injected, the remaining oil at any time
can be estimated by the integral of the concentration over the reservoir at that
time. This is of course a much simplified model, but the essential mathematical
difficulties to be dealt in this kind of control problems are clearly displayed in it.
Thus hopefully this will pave the way to the study of more complex and realistic
situations. Although our initial objective is to minimize the remaining oil by ad-
justing the amount of what injected, the water injected needs to be purified and
is expensive. Therefore the cost of water injection needs to be considered as well.
We then extend our objective functional into weighted sum of the total remaining
oil and the total water injected. Of course it is natural to consider a linear func-
tional to express the cost of oil remained and water injected. However in order to
effectively compute such a control problem, still it needs to be reglazed by adding
quadratic terms. Thus in this work we will directly consider a quadratic model.
Assume the water injection period is between [0,T]. Then in the case of 2-d, our
model is governed by a nonlinear coupled system of equations for the movement of
two-phase incompressible and completely immiscible fluids in a reservoir Ω ⊂ R2

of unit thickness:

(1) min J(q) = min
q∈K

1

2

∫

Ω

ω̃c2(T ) +
α0

2

∫ T

0

∫

Ω

Nw
∑

i=1

δw,iq
2
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subject to
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φ(x)
∂c

∂t
+ b(c)u · ∇c−∇ · (d(c)∇c) = f(c)

Nw
∑

i=1

δw,iqw,i,

∇ · u =

Nw
∑

i=1

δw,iqw,i −

No
∑

j=1

δo,jqo,j,

u = −a(c)∇p,

q =

Nw
∑

i=1

qw,i =

No
∑

j=1

qo,j ,

where Nw, No are the total numbers of the injective wells and the production wells
respectively, δw,i, δo,j are the Dirac functions located at the i−th injection well and
the j−th production well respectively, K = {q ∈ L∞[0, T ] : 0 ≤ q ≤ q̂} and q̂ is a
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positive constant. This system is subject to the following boundary conditions:

(3)

{

u · n = 0, x ∈ ∂Ω, t ∈ J,

d(c)∇c · n = 0, x ∈ ∂Ω, t ∈ J

and an initial condition

(4) c(x, 0) = c0(x), x ∈ Ω,

as well as a compatible condition

(5)

∫

Ω

p = 0.

Here a(c) = k(x)̺(c), b(c) = ̺′o(c), d(c) = d(x, c) = k(x)̺(c)̺o(c)̺w(c)p
′
c(c), f(c) =

−̺o(c),

c(x, t) the saturation of oil in the two-phase fluid,
φ(x) the porosity of the rock,
k(x) the permeability of the porous rock,
̺(c) the total mobolity of the two-phase fluid,
̺o(c) the relative mobolity of the oil,
̺w(c) the relative mobolity of the water,
u(x, t) the Darcy velocity of the mixture,
q(t) the flow rate,
pc(c) the capillary pressure,
ω̃ the price of oil,
α0 the price of water.

Moreover, we assume that 0 < a∗ ≤ a(c) ≤ a∗, Φ∗ < φ(x) < Φ∗ and 0 < d∗ ≤
d(c) ≤ d∗.

To further simplify our analysis, we here first study the case of one injection well
and one production well:

(6) (QP) : min J(q) = min
q∈K

{1

2

∫

Ω

ω̃c2(T ) +
α0

2

∫ T

0

∫

Ω

δ0q
2
}

subject to

(7)















φ(x)
∂c

∂t
+ b(c)u · ∇c−∇ · (d(c)∇c) = f(c)δ0q,

∇ · u = (δ0 − δ1)q,

u = −a(c)∇p,

where t ∈ J = [0, T ], Ω = [0, 1] × [0, 1]. We assume the location of injection well
is at the point x0 = (0, 0) and production well is at the point x1 = (1, 1). So,
δ0 and δ1 are Dirac functions at the wells respectively. Again we emphasize this
further simplified model reflects the key mathematical difficulties to be handled in
our analysis. Based on the model this work chooses the quantity of water injection
in water flooding as control in our optimal control setting.

In order to handle Dirac functions δ0, δ1 and point-wise value numerically, we
approximate the objective functional with some averages. Let Ω0,Ω1 ⊂ Ω, x0 ∈ Ω0

and x1 ∈ Ω1. Moreover, Ω0 ∩ Ω1 = φ and |Ω0| = |Ω1| = σ where 0 < σ << 1.
Then, we define

(8) ri =

{

1/σ, x ∈ Ωi,
0, x ∈ Ω\Ωi,

i = 0, 1,
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and

(9) ω(x, t) =

{

ω̃/ε, (x, t) ∈ Ω× [T − ε, T ],
0, (x, t) ∈ Ω× [0, T − ε).

Then the optimal control problem (QP) can be rewritten as:

(10) (P) : min J(q) = min
q∈K

{1

2

∫ T

0

∫

Ω

ω(x, t)c2 +
α0

2

∫ T

0

q2
}

subject to

(11)















φ(x)
∂c

∂t
+ b(c)u · ∇c−∇ · (d(c)∇c) = f(c)r0q,

∇ · u = (r0 − r1)q,

u = −a(c)∇p.

The finite element approximation of optimal control problems has been exten-
sively studied in the literature. There have been extensive studies in convergence of
the standard finite element approximation of optimal control problems, see, some
examples in [2], [3], [13], [15], [16] and [23]-[26], although it is impossible to give
even a very brief review here. For optimal control problems governed by linear
state equations, a prior error estimates of the finite element approximation were
established long ago; see, for example [13] and [15]. But it is much more difficult
to obtain such error estimates for nonlinear control problems. For some classes of
nonlinear optimal control problems, a priori error estimates were established in [4],
[18], [21],and [22]. However to our best knowledge there is little work on this opti-
mal control in the literature, where the state equations are some coupled complex
nonlinear convection-diffusion parabolic and elliptic equations. Furthermore, there
does not seem to exist systematical studies in the literature on its finite element
approximation and analysis, although there exists an extensive body of reference in
the state system and its finite element approximation, see for example, in [8], [9],
[10] and [11].

The aim of this work is to systematically investigate this simplified control prob-
lem and its finite element approximation. Even so, as to be seen below, this involves
much complex mathematical analysis and substantial computational work. One of
our main contributions to the existing literature is that we have obtained the a pri-
ori error estimates with the optimal orders and minimum regularity requirements
for its finite element approximation, which involve substantial novel mathematical
analysis.

This paper is organized as follows. Weak form and existence of the optimal
control problem are presented in Section 2. In Section 3, we study the optimali-
ty condition of the optimal control; in Sections 4,5 we present the finite element
approximation of this optimal control and derive a priori error estimate of the
approximation. In Section 6, some numerical tests are presented.

2. Weak form and existence of the solution

Throughout the paper, we adopt the standard notation Wm,s(Ω) for Sobolev
space on Ω as follows ([1]):

Wm,s(Ω) =
{

u ∈ Ls(Ω) : ∂αu ∈ Ls(Ω), |α| ≤ m
}

, m ≥ 0, 1 ≤ s ≤ ∞.

The norm in Wm,s(Ω) is denoted by ‖ · ‖m,s,Ω and defined by

‖u‖m,s,Ω =
(

∑

|α|≤m

∫

Ω

|∂αu|s
)1/s

, 1 ≤ s < ∞
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and

‖u‖m,∞,Ω = max
|α|≤m

{

ess sup
x∈Ω

|∂αu|

}

.

The Sobolev space Wm,s
0 (Ω) is the closure of the space C∞

0 (Ω) in the norm of
Wm,s(Ω). And we denote

Wm,2(Ω) = Hm(Ω), Wm,2
0 (Ω) = Hm

0 (Ω),

‖ · ‖m,2,Ω = ‖ · ‖m,Ω.

Introduce function spaces

V =
{

v ∈ H(div; Ω)| v · n = 0 on ∂Ω
}

endowed with the norm:

‖v‖V = ‖v‖H(div;Ω) =
(

‖v‖20,Ω + ‖divv‖20,Ω
)1/2

,

and

W =
{

w ∈ L2(Ω), (w, 1) = 0
}

.

We also require the following spaces which incorporate time dependence and
norms. Let [a, b] ⊂ J and X be a Sobolev space. For f(x, t) defined on Ω × [a, b],
we set

Hm(a, b;X) =
{

f :

∫ b

a

‖
∂αf

∂tα
(·, t)‖2X < ∞, |α| ≤ m

}

,

‖f‖Hm(a,b;X) =
[

∑

|α|≤m

∫ b

a

‖
∂αf

∂tα
(·, t)‖2X

]
1
2

, m ≥ 0,

Wm,∞(a, b;X) =
{

f : ess sup
[a,b]

‖
∂αf

∂tα
(·, t)‖X < ∞, |α| ≤ m

}

,

‖f‖Wm,∞(a,b;X) = max
|α|≤m

ess sup
[a,b]

‖
∂αf

∂tα
(·, t)‖X , m ≥ 0,

L2(a, b;X) = H0(a, b;X), L∞(a, b;X) = W 0,∞(a, b;X).

We also adopt the space([20])

W (0, T ) =
{

f : f ∈ L2(0, T ;H1(Ω)),
df

dt
∈ L2(0, T ;H−1(Ω))

}

,

endowed with the norm

‖f‖W (0,T ) =
(

∫ T

0

‖f(t)‖2H1(Ω)dt+

∫ T

0

‖
df

dt
‖2H−1(Ω)dt

)
1
2

.

Then following the standard references on the weak formula of the state system
(see [12]), we can recast the weak form of this control such that:

(12) min J(q) = min
q∈K

{1

2

∫ T

0

∫

Ω

ω(x, t)c2 +
α0

2

∫ T

0

q2
}

,

where c ∈ W (0, T ), u ∈ L2(0, T ;V ), q(t) ∈ K, p ∈ L2(0, T ;W ) subject to

(13)















(φ
∂c

∂t
, z) + (b(c)u · ∇c, z) + (d(c)∇c,∇z) = (f(c)r0q, z), ∀ z ∈ H1(Ω),

(∇ · u, w) = ((r0 − r1)q, w), ∀ w ∈ W,

(α(c)u,v) − (p,∇ · v) = 0, ∀ v ∈ V,

associated with an initial condition c|t=0 = c0, where α(c) =
1

a(c)
.
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Following the standard assumptions on studying this class of nonlinear equations
( see [10], [12] ), we suppose that there exists a uniform constant M0 such that

(A) :











‖f(c)‖L∞(0,T ;L∞(Ω)) ≤ M0, ‖a(c)‖L∞(0,T ;L∞(Ω)) ≤ M0,

‖b(c)‖L∞(0,T ;L∞(Ω)) ≤ M0, ‖d(c)‖L∞(0,T ;L∞(Ω)) ≤ M0,

a(c), b(c), d(c), f(c) are Lipschitz continuous functions about c.

Throughout this paper, we denote M the generic constant independent of mesh size
h defined in the following parts.

Theorem 2.1. Supposing that assumption (A) is satisfied, then problem (P) ad-

mits at least a solution.

Proof. The proof is divided into six parts.

(1) Let qn be a minimization sequence. Then it is clear that the set {
∫ T

0
q2n}

∞
n=1

is bounded and {qn}
∞
n=1 ⊂ L2(0, T ). Thus there is a subsequence, still denoted by

qn, such that

(14) qn → q̄, weakly in L2(0, T ).

(2) By the theory of partial differential equation of [7, 17] and the elliptic equa-
tion −∇ · (a(cn)∇pn) = (r0 − r1)qn, we have the regular property:

(15)

∫ T

0

‖pn(t)‖
2
H1 ≤ M

∫ T

0

q̂2‖r0 − r1‖
2
L2

and

(16)

∫ T

0

‖un(t)‖
2
L2 =

∫ T

0

‖a(cn)∇pn(t)‖
2
L2 ≤ M

∫ T

0

q̂2‖r0 − r1‖
2
L2 .

Thus {pn}
∞
n=1 ⊂ L2(0, T ; H1(Ω)) and there is a subsequence, still denoted by

pn such that pn converges weakly to p̄ in L2(0, T ;H1(Ω)) . That is to say that
there is a subsequence, still denoted by un such that un converges weakly to ū in
L2(0, T ; (L2(Ω))2).

(3) Prove the estimate

(17) ‖cn‖L2(0,T ; H1(Ω)) + ‖cn‖L∞(0,T ; L2(Ω)) ≤ M.

Noticing that if taking z = cn in (13), we get

(18) (φ
∂cn
∂t

, cn) + (b(cn)un · ∇cn, cn) + (d(cn)∇cn,∇cn) = (f(cn)r0qn, cn),

i.e

(19) (φ
∂cn
∂t

, cn) + (d(cn)∇cn,∇cn) = −(b(cn)un · ∇cn, cn) + (f(cn)r0qn, cn).

It is obvious that

−(b(cn)un·∇cn, cn) = −(un·∇̺o(cn), cn) = ((r0−r1)qn̺o(cn), cn)+(un·∇cn, ̺o(cn)).

By (15), we have

(20)
d

dt
‖
√

φcn‖
2
L2 + d∗‖∇cn‖

2
L2 ≤ Mqn‖cn‖H1 .

Integrating (20) about time from t = 0 to t = T and using the Gronwall lemma,
we can obtain

(21) max
0≤t≤T

‖cn(t)‖
2
L2 +

∫ T

0

‖∇cn(t)‖
2
L2dt ≤ M

∫ T

0

q2ndt.
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Thus (17) holds.

(4) Prove the estimate

(22) ‖
∂cn
∂t

‖L2(0,T ;H−1(Ω)) ≤ M.

By taking any z ∈ L2(0, T ;H1(Ω)), we get

(23)

∫ T

0

(φ
∂cn
∂t

, z) = −

∫ T

0

(d(cn)∇cn,∇z) +

∫ T

0

((r0 − r1)qn̺o(cn), z)

+

∫ T

0

(un · ∇z, ̺o(cn)) +

∫ T

0

(f(cn)r0qn, z).

From the embedding theorems, it is obvious that

(24)

∣

∣

∣

∫ T

0

(φ
∂cn
∂t

, z)
∣

∣

∣
≤ C

{

‖cn‖L2(0,T ;H1(Ω))‖z‖L2(0,T ;H1(Ω))

+ ‖un‖L2(0,T ;L2(Ω))‖z‖L2(0,T ;H1(Ω)) + ‖qn‖L2(0,T )‖z‖L2(0,T ;L2(Ω))

}

,

such that (22) holds.
Because

(25) ‖cn‖L2(0,T ; H1(Ω)) ≤ M

and

(26) ‖
∂cn
∂t

‖L2(0,T ; H−1(Ω)) ≤ M,

then we can extract a subsequence, again denoted by cn, such that

(27)















cn → c̄ strongly in L2(0, T ;L2(Ω)),

∂cn
∂t

→
∂c̄

∂t
weakly in L2(0, T ; H−1(Ω)),

cn → c̄ weakly in L2(0, T ; H1(Ω)).

(5) For each smooth enough w, we note that

(28)

|

∫ T

0

(

a(cn)∇pn,∇w
)

−

∫ T

0

(a(c̄)∇p̄,∇w)|

≤ |

∫ T

0

(

(a(cn)− a(c̄))∇pn,∇w
)

|+ |

∫ T

0

(

a(c̄)∇(pn − p̄),∇w
)

|

≤ ‖a(cn)− a(c̄)‖L2(0,T ;L2(Ω))‖∇pn‖L2(0,T ;L2(Ω))‖∇w‖L∞(0,T ;L∞(Ω))

+ |

∫ T

0

(

a(c̄)∇(pn − p̄),∇w
)

|.

Since a(c) is a Lipschitz continuous function about c by assumption (A), {pn}
∞
n=1

are bounded in L2(0, T ;H1(Ω)), (a(c̄)∇p,∇w) is a continuous functional about p
and pn → p̄ weakly in L2(0, T ; H1(Ω)), from (28) we know that

(29)

∫ T

0

(

a(cn)∇pn,∇w
)

→

∫ T

0

(a(c̄)∇p̄,∇w).
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Similarly we get

∫ T

0

(d(cn)∇cn,∇z) →

∫ T

0

(d(c̄)∇c̄,∇z),

∫ T

0

(f(cn)r0qn, z) →

∫ T

0

(f(c̄)r0q̄, z),

∫ T

0

((r0 − r1)qn̺o(cn), z) →

∫ T

0

((r0 − r1)q̺̄o(c̄), z),

∫ T

0

(un̺o(cn),∇z) →

∫ T

0

(ū̺o(c̄),∇z).

(30)

At the meantime, since

(31)

∫ T

0

(b(cn)un · ∇cn, z) = −

∫ T

0

((r0 − r1)qn̺o(cn), z)−

∫ T

0

(un̺o(cn),∇z),

we know that

(32)

∫ T

0

(b(cn)un · ∇cn, z) →

∫ T

0

(b(c̄)ū · ∇c̄, z).

(6) By choosing z, w arbitrarily and using the above convergence results, we
have

(33)















(φ
∂c̄

∂t
, z) + (b(c̄)ū · ∇c̄, z) + (d(c̄)∇c̄,∇z) = (f(c̄)r0q̄, z), ∀ z ∈ H1(Ω),

(a(c̄)∇p̄,∇w) = ((r0 − r1)q̄, w), ∀ w ∈ H1(Ω),

and by continuity and convexity of the objective founctional

(34)
1

2

∫ T

0

∫

Ω

ωc̄2 dt+
α0

2

∫ T

0

q̄2 dt ≤ lim
n→∞

{1

2

∫ T

0

∫

Ω

ωc2n +
α0

2

∫ T

0

q2n

}

.

This implies that (c̄, p̄, ū, q̄) is a solution of the control problem. �

3. Optimality conditions

3.1. The first-order optimality conditions. In this section, we derive the co-
state equations and the first-order optimality conditions. Besides above assump-
tions, we assume that there exists a uniform constant M1 such that

(B) :

{

‖u‖L∞([0,T ];L∞) 6 M1, ‖∇c‖L∞([0,T ];L∞) 6 M1,

‖α′(c)‖L∞([0,T ];L∞) 6 M1, ‖d′(c)‖L∞([0,T ];L∞) 6 M1.

This assumption is again usually used in the study of this state system in the
literature, see [10] and [12].

Theorem 3.1. Suppose that Assumptions (A) and (B) hold. If (c, q,u, p) ∈
W (0, T )×K × L2(0, T ;V ) ×L2(0, T ;W ) is a solution of the control problem (10)
then there exists a co-state (c∗,u∗, p∗) ∈ W (0, T )× L2(0, T ;V )× L2(0, T ;W ) such
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that (c, c∗, q,u,u∗, p, p∗) satisfies the following system:

(35)



















































































(φ
∂c

∂t
, z) + (b(c)u · ∇c, z) + (d(c)∇c,∇z) = (f(c)r0q, z), ∀ z ∈ H1(Ω),

(∇ · u, w) = ((r0 − r1)q, w), ∀ w ∈ W,

(α(c)u,v) − (p,∇ · v) = 0, ∀ v ∈ V,

(−φ
∂c∗

∂t
, z)− ((b(c)u− d′(c)∇c) · ∇c∗, z) + (d(c)∇c∗,∇z)

+ (α′(c)u∗ · u, z) + (r1qb(c)c
∗, z) = (ωc, z), ∀ z ∈ H1(Ω),

(c∗b(c)∇c+ α(c)u∗,v) − (p∗,∇ · v) = 0, ∀ v ∈ V,

(∇ · u∗, w) = 0, ∀ w ∈ W,
∫ T

0

∫

Ω

(f(c)r0c
∗ − (r0 − r1)p

∗ + α0q)(q̃ − q) ≥ 0, ∀ q̃ ∈ K,

associated with the initial conditions:

(36) c|t=0 = c0, c∗|t=T = 0.

Proof. Firstly, it is clear that the direction derivative of the objective functional
reads

(37) J ′(q)(δq) =

∫ T

0

∫

Ω

ω(x, t)cδc+ α0

∫ T

0

qδq,

where q̃ ∈ K, δq = q̃ − q denoting the direction, and δc = c′(q)(q̃ − q).
We differentiate the equations of the weak formula at q in a direction of δq to

obtain:
(38)






















































∫ T

0

[(φ
∂δc

∂t
, z) + (b(c)δu · ∇c, z) + (b(c)u · ∇δc, z) + (b′(c)δcu · ∇c, z)

+ (d(c)∇δc,∇z) − (d′(c)δc∇c,∇z)] =

∫ T

0

[(f(c)r0δq, z) + (f ′(c)r0qδc, z)],

∫ T

0

(∇ · δu, w) =

∫ T

0

((r0 − r1)δq, w),

∫ T

0

[(α(c)δu,v) + (α′(c)δcu,v) − (δp,∇ · v)] = 0,

where δu = u′(q)(q̃ − q), δp = p′(q)(q̃ − q).
Taking z = c∗,v = u∗, w = p∗, letting c∗(x, T ) = 0, d(c)∇c∗ · n|∂Ω = 0 and

integrating by parts, it follows

(39)



































































∫ T

0

[−(φ
∂c∗

∂t
, δc) + (c∗b(c)∇c, δu) + (c∗b′(c)u · ∇c, δc)− (b(c)u · ∇c∗, δc)

− (∇ · (b(c)u)c∗, δc)− (∇ · (d(c)∇c∗), δc) + (d′(c)∇c · ∇c∗, δc)]

=

∫ T

0

[(f(c)r0c
∗, δq) + (f ′(c)r0qc

∗, δc)],

∫ T

0

(p∗,∇ · δu) =

∫ T

0

((r0 − r1)p
∗, δq),

∫ T

0

[(α(c)u∗, δu) + (α′(c)u∗ · u, δc)− (∇ · u∗, δp)] = 0.
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Summing above all, we can have:

(40)

∫ T

0

[(−φ
∂c∗

∂t
− (b(c)u− d′(c)∇c) · ∇c∗ −∇ · (d(c)∇c∗) + (b′(c)u · ∇c

−∇ · (b(c)u)− f ′(c)r0q)c
∗ + α′(c)u∗ · u, δc)

+ (c∗b(c)∇c+ α(c)u∗, δu)− (p∗,∇ · δu)− (∇ · u∗, δp)]

=

∫ T

0

(f(c)r0c
∗ − (r0 − r1)p

∗, δq).

Let us define (c∗,u∗, p∗) to be the co-state which satisfies the equations following:
(41)


























(−φ
∂c∗

∂t
− (b(c)u− d′(c)∇c) · ∇c∗ −∇ · (d(c)∇c∗)

+ (b′(c)u · ∇c−∇ · (b(c)u)− f ′(c)r0q)c
∗ + α′(c)u∗ · u, z) = (ωc, z), ∀ z ∈ H1(Ω),

(c∗b(c)∇c+ α(c)u∗,v)− (p∗,∇ · v) = 0, ∀ v ∈ V,

(∇ · u∗, w) = 0, ∀ w ∈ W.

Now, if take z = δc, w = δp,v = δu in (41), we obtain:
(42)


























(−φ
∂c∗

∂t
− (b(c)u− d′(c)∇c) · ∇c∗ −∇ · (d(c)∇c∗)

+ (b′(c)u · ∇c−∇ · (b(c)u) − f ′(c)r0q)c
∗ + α′(c)u∗ · u, δc) = (ω(x, t)c, δc),

(c∗b(c)∇c+ α(c)u∗, δu)− (p∗,∇ · δu) = 0,

(∇ · u∗, δp) = 0.

By (40) it is obviously to see that (ω(x, t)c, δc) = (f(c)r0c
∗ − (r0 − r1)p

∗, δq).

Furthermore, the optimality condition reads

(43)

∫ T

0

∫

Ω

(f(c)r0c
∗ − (r0 − r1)p

∗ + α0q)(q̃ − q) ≥ 0.

It is well-known that the solution of this inequality reads:

(44) q(t) = min
{

max
{

0,−
1

α0

∫

Ω

(f(c)r0c
∗ − (r0 − r1)p

∗)
}

, q̂
}

.

From the definition of coefficients, we know that b′(c)u ·∇c−∇·(b(c)u)−f ′(c)r0q =
r1qb(c), and if we let u∗·n|∂Ω = 0, the adjoint system can be the following equivalent
form:
(45)














− φ
∂c∗

∂t
− (b(c)u− d′(c)∇c) · ∇c∗ −∇ · (d(c)∇c∗) + α′(c)u∗ · u+ r1qb(c)c

∗ = ωc,

c∗b(c)∇c+∇p∗ + α(c)u∗ = 0,

∇ · u∗ = 0.

The existence of the solution of adjoint system will be presented below. Now, the
proof completes. �

3.2. Existence of the solution of adjoint problem.

Theorem 3.2. Suppose that assumptions (A) and (B) are satisfied, then adjoint

equations (45) admit at least a solution.
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Proof. First of all, we present the weak formula for the system (45):
(46)



































− (φ
∂c∗

∂t
, z)− ((b(c)u− d′(c)∇c) · ∇c∗, z) + (d(c)∇c∗,∇z)

+ (α′(c)u∗ · u, z) + (r1qb(c)c
∗, z) = (ωc, z), ∀ z ∈ H1(Ω),

(α(c)u∗,v) − (p∗,∇ · v) = −(c∗b(c)∇c,v), ∀ v ∈ V,

(∇ · u∗, w) = 0, ∀ w ∈ W.

Then the last two equations of (46) are equivalent to the time-parametrized
saddle-point problem of finding a map (u∗, p∗) : (0, T ] → V ×W , such that

(47)

{

A(c;u∗,v) −B(v, p∗) = −(c∗b(c)∇c,v), ∀ v ∈ V,

B(u∗, w) = 0, ∀ w ∈ W,

where
{

A(c;u,v) = (α(c)u,v), ∀ c ∈ H1(Ω), u ∈ V, v ∈ V,

B(v, p) = (p,∇ · v), ∀ v ∈ V, p ∈ W.

Let Ṽ ⊂ V , W̃ ⊂ W be Raviart-Thomas mixed finite element spaces. Further-
more let

Z = {v ∈ V : B(v, φ) = 0, φ ∈ W}

and

Z̃ = {v ∈ Ṽ : B(v, φ) = 0, φ ∈ W̃}.

Note that the boundary condition v ·n = 0 for v ∈ Ṽ implies div · Ṽ ⊂ W̃ . Hence
v ∈ Z̃ implies div · v = 0, and since Z = H(div; Ω) ∩ {div · v = 0 in Ω and v · n =

0 on ∂Ω}, it follows that Z̃ ⊂ Z. Thus

‖v‖V = ‖v‖L2(Ω), v ∈ Z̃.

So, if v ∈ Z̃

A(c;v,v) =

2
∑

i=1

(
1

a(c)
vi, vi) >

1

a∗
‖v‖2V .

Next from the standard properties of Raviart-Thomas elements [27], we have

sup
v∈Ṽ /{0}

B(v, φ)

‖v‖V
> θ‖φ‖W , ∀ φ ∈ W̃ .

Hence, it follows from the standard results of the mixed element approximation
( [27, 28] ), for any fixed C∗, there exists a generic constant M independent of h
such that any solution (U∗, P ∗) of (48) below satisfies:

‖U∗‖V + ‖P ∗‖W ≤ M‖C∗‖L2(Ω).

where the map {U∗, P ∗} : (0, T ] → Ṽ × W̃ satisfies:

(48)







A(c, U∗, v)−B(v, P ∗) = −(C∗b(c)∇c, v), ∀ v ∈ Ṽ ,

B(U∗, w) = 0, ∀ w ∈ W̃ .
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Let M̃ ⊂ H1(Ω) be a standard Galerkin finite element space. Define C∗ :

(0;T ] → M̃ and {U∗, P ∗} : (0;T ] → Ṽ × W̃ to satisfy:

(49)































− (φ
∂C∗

∂t
, z)− ((b(c)u− d′(c)∇c) · ∇C∗, z) + (d(c)∇C∗,∇z)

+ (α′(c)U∗ · u, z) + (r1qb(c)C
∗, z) = (wc, z), ∀z ∈ M̃,

(α(c)U∗, v)− (P ∗,∇ · v) = −(C∗b(c)∇c, v), ∀v ∈ Ṽ ,

(∇ · U∗, w) = 0, ∀w ∈ W̃ .

We first prove that for homogeneous problem (i.e. wc = 0), the above finite
element system has and only has trivial zero solution. The equation for C∗ reads

(50)
−(φ

∂C∗

∂t
, z)− ((b(c)u − d′(c)∇c) · ∇C∗, z) + (d(c)∇C∗,∇z)

+(α′(c)U∗ · u, z) + (r1qb(c)C
∗, z) = 0, ∀z ∈ M̃.

Obviously C∗ = 0, U∗ = 0, P ∗ = 0 are solutions of this homogeneous problem, so
we only need to prove the uniqueness.

Suppose there exists another solution C∗ 6= 0 which satisfies (50). It follows
from (48) that

(51) ‖U∗‖V + ‖P ∗‖W ≤ M‖C∗‖L2(Ω).

Choosing z = C∗ in (50), we have

(52)
−(φ

∂C∗

∂t
, C∗)− ((b(c)u − d′(c)∇c) · ∇C∗, C∗) + (d(c)∇C∗,∇C∗)

+(α′(c)U∗ · u,C∗) + (r1qb(c)C
∗, C∗) = 0.

It follows from (51) that

(53) −φ∗
‖C∗‖2L2(Ω)

dt
+

d∗
2
‖∇C∗‖2L2(Ω) ≤ M‖C∗‖2L2(Ω).

Integrating time from T to t, noting that C∗(T ) = 0 and using Gronwall inequality,
we can derive

(54) φ∗‖C∗‖2L2(Ω) +
d∗
2

∫ T

t

‖∇C∗‖2L2(Ω) ≤ 0.

It can be seen from (54) that C∗ = 0, which conflicts with our former supposition.
So the uniqueness of the zero-solutions have been validated.

Since the finite element problem (49) is linear and full rank, we obtain the
existence of its solution directly from the uniqueness of the zero-solution of its
corresponding homogeneous problem.

Now let {C∗, P ∗, U∗} satisfy (49). We still have (51) holds. Taking z = C∗ in
the first equation of (49), and using the same techniques as above, we can obtain

(55) φ∗‖C∗‖2L2(Ω) +
d∗
2

∫ T

t

‖∇C∗‖2L2(Ω) ≤ M‖wc‖2L2(Ω).

Therefore,
(56)
‖C∗‖L2(0,T ;H1(Ω)) ≤ M, ‖C∗‖L∞(0,T ;L2(Ω)) ≤ M, ‖U∗‖V ≤ M, ‖P ∗‖W ≤ M.

Similarly, we have

‖
∂C∗

∂t
‖L2(0,T ;H−1(Ω)) ≤ M.
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Hence we may extract a subsequence denoted by {C∗
n, P

∗
n , U

∗
n} such that

(57)











C∗
n → c∗ strongly in L2(0, T ;L2(Ω)),

U∗
n → u∗ weakly in V,

P ∗
n → p∗ weakly in W.

Then, it holds
(58)



























− (φ
∂c∗

∂t
, z)− ((b(c)u− d′(c)∇c) · ∇c∗, z) + (d(c)∇c∗,∇z)

+ (α′(c)u∗ · u, z) + (r1qb(c)c
∗, z) = (ωc, z), ∀ z ∈ H1(Ω),

(α(c)u∗, v)− (p∗,∇ · v) + (c∗b(c)∇c, v) = 0, ∀ v ∈ V,

(∇ · u∗, w) = 0, ∀ w ∈ W.

Now the proof completes. �

4. Finite element approximation

We are now able to introduce a finite-element based approximation of the optimal
control problem. Let us note that the finite element approximation of the state and
the co-state system is widely studied in the literature, see e.g., [10], [12], [20] and
[21], on which our approximation is based. To this end, we consider a family of
triangulations (Th), h > 0, of Ω̄. With each element τ ∈ Th, we associate two
parameters ρ(τ) and σ(τ), where ρ(τ) denotes the diameter of the set τ and σ(τ)
is the diameter of the largest ball contained in τ . The mesh size of the grid is
defined by h = max

τ∈Th

ρ(τ). We suppose that triangulations (Th) satisfy the following

regularity assumption:
(H1) There exist two positive constants ρ and σ such that

ρ(τ)

σ(τ)
≤ σ,

σ(τ)

ρ(τ)
≤ ρ

hold for all τ ∈ Th and all 0 < h ≤ 1. Now we can see Ω = Ωh =
⋃

τ∈Th
.

Introduce finite element spaces as follows:

Zh = {yh ∈ H1(Ω) : yh|τ ∈ Pl(τ), τ ∈ Th},

where l ≥ 1 and denotes by Pl function space of polynomials of degree less or equal
than l.

Next we introduce the k-order R-T mixed finite element spaces: Vh×Wh ⊂ V×W
such that for a positive constant β0, the following inf-sup condition satisfies ( [27, 28]
):

(59) inf
06=qh∈Wh

sup
0 6=vh∈Vh

(∇ · vh, qh)

‖vh‖V ‖qh‖L2

≥ β0.

Then the possible semi-discrete finite dimensional approximation of the optimal

control problem is to seek (ch, qh,uh, ph) ∈
(

H1(0, T ;Zh) ∩L2(0, T ;Zh)
)

× K ×

L2(0, T ;Vh)× L2(0, T ;Wh) such that

(60) min Jh(qh) = min
qh∈K

{1

2

∫ T

0

∫

Ω

ωc2h +
α0

2

∫ T

0

q2h

}
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subject to















(φ
∂ch
∂t

, zh) + (b(ch)uh · ∇ch, zh) + (d(ch)∇ch,∇zh) = (f(ch)r0qh, zh), ∀ zh ∈ Zh,

(∇ · uh, wh) = ((r0 − r1)qh, wh), ∀ wh ∈ Wh,

(α(ch)uh,vh)− (ph,∇ · vh) = 0, ∀ vh ∈ Vh,

associated with the initial condition:

(61) ch|t=0 = c0,h.

where c0,h ∈ Zh is an approximation of c0.

Similarly, we know (ch, qh,uh, ph) is the solution of (60) if there is a co-state
(c∗h,u

∗
h, p

∗
h), such that

(62)


















































































(φ
∂ch
∂t

, zh) + (b(ch)uh · ∇ch, zh) + (d(ch)∇ch,∇zh) = (f(ch)r0qh, zh), ∀ zh ∈ Zh,

(∇ · uh, wh) = ((r0 − r1)qh, wh), ∀ wh ∈ Wh,

(α(ch)uh,vh)− (ph,∇ · vh) = 0, ∀ vh ∈ Vh;

(−φ
∂c∗h
∂t

, zh)− ((b(ch)uh − d′(ch)∇ch) · ∇c∗h, zh) + (d(ch)∇c∗h,∇zh)

+ (α′(ch)u
∗

h · uh, zh) + (r1qhb(ch)c
∗

h, zh) = (ωch, zh), ∀ zh ∈ Zh,

(c∗hb(ch)∇ch,vh) + (α(ch)u
∗

h,vh)− (p∗h,∇ · vh) = 0, ∀ vh ∈ Vh,

(∇ · u∗

h, wh) = 0, ∀ wh ∈ Wh,
∫ T

0

∫

Ω

(f(ch)c
∗

h − p∗h + α0qh)(q̃ − qh) ≥ 0, ∀ q̃ ∈ K,

associated with the initial conditions:

(63) ch|t=0 = c0,h, c∗h|t=T = 0.

It can also be shown the solution of the variational inequality reads:

(64) qh = min
{

max
{

0,−
1

α0

∫

Ω

(f(ch)r0c
∗
h − (r0 − r1)p

∗
h)
}

, q̂
}

.

For easy of presentation, we only consider a priori error estimates for the semi-
discrete finite dimensional approximation of the optimal control problem in the
following section.

5. A priori error estimate

In this section, we will give the a priori error estimates about the solution
(ch, qh,uh, ph, c

∗
h,u

∗
h, p

∗
h) of scheme (62). Moreover, in this part, we need assume
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l ≥ 1, k ≥ 1, and that there exists a uniform constant M2 such that:
(65)

(C) :







































































































‖α′(c)‖L∞(0,T ;L∞) + ‖b′(c)‖L∞(0,T ;L∞) + ‖d′(c)‖L∞(0,T ;L∞) ≤ M2;

‖α′′(c)‖L∞(0,T ;L∞) + ‖b′′(c)‖L∞(0,T ;L∞) + ‖d′′(c)‖L∞(0,T ;L∞) ≤ M2;

‖u‖L∞(0,T ;L∞) + ‖
∂u

∂t
‖L∞(0,T ;L∞) ≤ M2;

‖p‖L∞(0,T ;Hk+3) ≤ M2;

‖c‖L∞(0,T ;Hl+1) + ‖
∂c

∂t
‖L∞(0,T ;Hl+1) ≤ M2;

‖c‖L∞(0,T ;W 1,∞) + ‖
∂c

∂t
‖L∞(0,T ;W 1,∞) ≤ M2;

‖u∗‖L∞(0,T ;L∞) + ‖
∂u∗

∂t
‖L∞(0,T ;L∞) ≤ M2;

‖p∗‖L∞(0,T ;Hk+3) ≤ M2;

‖c∗‖L∞(0,T ;Hl+1) + ‖
∂c∗

∂t
‖L∞(0,T ;Hl+1) ≤ M2.

Now, let us define the intermediate functions (ĉh, ûh, p̂h, ĉ
∗
h, û

∗
h, p̂

∗
h) satisfying the

following system:
(66)


































































(φ
∂ĉh
∂t

, zh) + (b(ĉh)ûh · ∇ĉh, zh) + (d(ĉh)∇ĉh,∇zh) = (f(ĉh)r0q, zh), ∀ zh ∈ Zh,

(∇ · ûh, wh) = ((r0 − r1)q, wh), ∀ wh ∈ Wh,

(α(ĉh)ûh,vh)− (p̂h,∇ · vh) = 0, ∀ vh ∈ Vh,

(−φ
∂ĉ∗h
∂t

, zh)− ((b(ĉh)ûh − d′(ĉh)∇ĉh) · ∇ĉ∗h, zh) + (d(ĉh)∇ĉ∗h,∇zh)

+ (α′(ĉh)û
∗

h · û, zh) + (r1qb(ĉh)ĉ
∗

h, zh) = (ωĉh, zh), ∀ zh ∈ Zh,

(ĉ∗hb(ĉh)∇ĉh,vh)− (p̂∗h,∇ · vh) + (α(ĉh)û
∗

h,vh) = 0, ∀ vh ∈ Vh,

(∇ · û∗

h, wh) = 0, ∀ wh ∈ Wh,

associated with the initial conditions:

(67) ĉh|t=0 = c0,h, ĉ∗h|t=T = 0.

Assume that the initial approximation satisfies the error estimate:

(68) ‖c0 − c0,h‖L2 ≤ Mhl+1‖c0‖Hl+1 .

We firstly derive the estimate of ‖q− qh‖L2(0,T ). To this end, we need the following
convexity assumption:

(69) c0‖q − qh‖
2
L2(0,T ) ≤ (J ′

h(q)− J ′
h(qh), q − qh),

where c0 is a positive constant, and h is small enough. Although it is no-trivial to
prove such an assumption for nonlinear system ( see [29, 30] for the relevant work
on the flow control governed by the Navies-Stokes equations), it is widely assumed
in error analysis of the finite element approximation of nonlinear optimal control.
So, we assume (69) in this initial stage.

Lemma 5.1. If Assumptions (A), (B) and (C) mentioned above hold, there holds

the estimate:

(70)

‖q− qh‖L2(0,T ) ≤ M
{

‖ĉh− c‖L2(0,T ;L2)+ ‖ĉ∗h− c∗‖L2(0,T ;L2)+ ‖p̂∗h− p∗‖L2(0,T ;W )

}

.
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Proof. It follows from the convexity assumption that

c0‖q − qh‖
2
L2(0,T )

≤ (J ′

h(q)− J ′

h(qh), q − qh)

=

∫ T

0

∫

Ω

(r0f(ĉh)ĉ
∗

h + (r0 − r1)p̂
∗

h + α0q)(q − qh)

−

∫ T

0

∫

Ω

(r0f(ch)c
∗

h + (r0 − r1)p
∗

h + α0qh)(q − qh)

≤

∫ T

0

∫

Ω

(r0f(ĉh)ĉ
∗

h − r0f(c)c
∗ + (r0 − r1)(p̂

∗

h − p∗))(q − qh)

≤ M
{

‖ĉh − c‖L2(0,T ;L2) + ‖ĉ∗h − c∗‖L2(0,T ;L2) + ‖p̂∗h − p∗‖L2(0,T ;W )

}

‖q − qh‖L2(0,T ).

Then (70) is derived. The proof of Lemma 5.1 is completed. �

Let us show two useful lemmas about the error estimate of intermediate states
variables.

Lemma 5.2. Suppose the regularity assumption (C) holds. Let (c,u, p) and
(ĉh, ûh, p̂h) be the solutions of (35) and (66) respectively. There hold the a priori

error estimates

(71)
(a) ‖c− ĉh‖L∞(0,T ;L2) ≤ M

{

hl+1 + hk+1
}

,

(b) ‖u− ûh‖L∞(0,T ;V ) + ‖p− p̂h‖L∞(0,T ;W ) ≤ M
{

hl+1 + hk+1
}

,

where M is independent of h.

Proof. To obtain optimal L2-norm error estimate, define the auxiliary function
(ũh, p̃h) such that

(72)

{

(α(c)ũh,vh)− (p̃h,∇ · vh) = 0, ∀ vh ∈ Vh,

(∇ · ũh, w) = ((r0 − r1)q, wh), ∀ wh ∈ Wh.

It is clear that

(73)

{

(α(c)(u− ũh),vh)− (p− p̃h,∇ · vh) = 0, ∀ vh ∈ Vh,

(∇ · (u− ũh), wh) = 0, ∀ wh ∈ Wh

and
(74)
{

(α(ĉh)(ûh − ũh),vh)− (p̂h − p̃h,∇ · vh) = ((α(c) − α(ĉh))ũh,vh), ∀ vh ∈ Vh,

(∇ · (ûh − ũh), wh) = 0, ∀ wh ∈ Wh.

It follows from the results of [9] that

(75) ‖u− ũh‖V + ‖p− p̃h‖W ≤ Mhk+1‖p‖Hk+2

and

(76) ‖ûh − ũh‖V + ‖p̂h − p̃h‖W ≤ M‖c− ĉh‖L2 .

Next, let c̃h be the projection of c given by

(77) (d(c)∇(c− c̃h),∇zh))+(b(c)u ·∇(c− c̃h), zh)+λ(c− c̃h, zh) = 0, ∀ zh ∈ Zh,
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where the λ > 0 is chosen to assure the coercivity of the bilinear form on the left-
hand side of the above equality. Standard arguments show that, for any t ∈ [0, T ],

(78)







‖c− c̃h‖L2 ≤ Mhl+1‖c‖Hl+1 ,

‖
∂

∂t
(c− c̃h)‖L2 ≤ Mhl+1

{

‖c‖Hl+1 + ‖
∂c

∂t
‖Hl+1

}

,

where M is a generic constant depending on the L∞-norm of
∂u

∂t
and u.

We bound c− ĉh. Let ξ = ĉh − c̃h and η = c− c̃h. It follows from (10) and (60)
that
(79)

(φ
∂ξ

∂t
, zh) + (b(ĉh)u · ∇ξ, zh) + (d(ĉh)∇ξ,∇zh)

= (φ
∂η

∂t
, zh)− λ(η, zh)− (b(ĉh)(ûh − u) · ∇ĉh + (b(ĉh)− b(c))u · ∇c̃h, zh)

− ((d(ĉh)− d(c))∇c̃h,∇zh) + ((f(ĉh)− f(c))r0q, zh).

Letting zh = ξ, we estimate (79) term by term.

(80) |(b(ĉh)u · ∇ξ, ξ)| ≤ ‖b(ĉh)u‖L∞‖∇ξ‖L2‖ξ‖L2.

In order to estimate the next nonlinear items, we follow the standard induction
technique that is widely used in the error analysis of the mixed finite elemen-
t approximation of the state equations, see [9, 10]. Firstly make the induction
assumption that there exits a constant h0 such that:

(81) h−1‖ξ‖L∞(0,T ;L2) ≤ 1, 0 < h ≤ h0.

Then using the inverse inequality ( [7], [31] ), we see
(82)

|((b(ĉh)ûh − b(ĉh)u) · ∇ĉh, ξ)|
≤ |(b(ĉh)(ûh − u) · ∇(ĉh − c̃h), ξ)|+ |(b(ĉh)(ûh − u) · ∇c̃h, ξ)|

≤ M‖b(ĉh)‖L∞‖∇ξ‖L2‖u− ûh‖L2‖ξ‖L∞ +M‖b(ĉh)‖L∞‖∇c̃h‖L∞‖u− ûh‖L2‖ξ‖L2

≤ M‖∇ξ‖L2‖u− ûh‖V h−1‖ξ‖L2 +M‖∇c‖L∞‖u− ûh‖V ‖ξ‖L2 ,

Further, we have

(83) |((b(ĉh)− b(c))u · ∇c̃h, ξ)| ≤ M‖b′(c)u‖L∞‖∇c̃h‖L∞‖c− ĉh‖L2‖ξ‖L2 ,

(84) |((d(c) − d(ĉh))∇c̃h,∇ξ)| ≤ M‖d′(c)∇c̃h‖L∞‖c− ĉh‖L2‖∇ξ‖L2

and

(85) |((f(c) − f(ĉh))r0q, ξ)| ≤ M‖q‖L∞‖c− ĉh‖L2‖ξ‖L2 .

By using ε-inequality and Sobelov inequality, we have the inequality

(86)
d

dt
(φξ, ξ) + ‖∇ξ‖2L2 ≤ M

{

‖ξ‖2L2 + ‖u− û‖2V + ‖η‖2L2 + ‖
∂η

∂t
‖2L2

}

.

Using the Gronwall lemma gives

(87) ‖ξ‖L∞(0,T ;L2) ≤ M
{

hl+1 + hk+1
}

.

Now we turn to proving the induction hypothesis (81) for 0 < h ≤ h0, where h0

is the sufficiently small so that M(hk
0 + hl

0) < 1. Noting that ξ(0) = 0, we have
‖ξ(0)‖L2 = 0. Thus, there exist some 0 < t∗ ≤ T , such that

h−1‖ξ‖L∞(0,t∗;L2) ≤ 1.
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Let T ∗ = max{t∗;h−1‖ξ‖L∞(0,t∗;L2) ≤ 1}. We will prove T ∗ = T , which implies the
induction hypothesis (81) to be true. Assume T ∗ < T . It follows from the proof of
(87) that

‖ξ‖L∞(0,T∗;L2) ≤ M
{

hl+1 + hk+1
}

such that

h−1‖ξ‖L∞(0,T∗;L2) ≤ M
{

hl + hk
}

≤ M
{

hl
0 + hk

0

}

< 1, 0 < h ≤ h0.

Particularly, h−1‖ξ(T ∗)‖L2 < 1. Thus there exist some T ∗ < t∗ ≤ T such that

h−1‖ξ‖L∞(0,t∗;L2) ≤ 1, 0 < h ≤ h0,

which conflicts with the definition of T ∗. So the assumption T ∗ < T is false. �

Lemma 5.3. Let (c∗,u∗, p∗) and (ĉ∗h, û
∗
h, p̂

∗
h) be the solutions of (35) and (66)

respectively. There exits a constant h0 > 0 such that for 0 < h ≤ h0,

(88)
(a) ‖c∗ − ĉ∗h‖L∞(0,T ;L2) ≤ M

{

hl+1 + hk+1
}

,

(b) ‖u∗ − û∗
h‖L∞(0,T ;V ) + ‖p∗ − p̂∗h‖L∞(0,T ;W ) ≤ M

{

hl+1 + hk+1
}

,

where M is independent of h.

Proof. Introduce (ũ∗
h, p̃

∗
h) such that

(89)

{

(α(c)ũ∗
h,vh)− (p̃∗h,∇ · vh) = −(c∗b(c)∇c,vh), ∀ vh ∈ Vh,

(∇ · ũ∗
h, wh) = 0, ∀ wh ∈ Wh.

It follows from the results of [9] that

(90) ‖ũ∗
h − u∗‖V + ‖p̃∗h − p∗‖W ≤ M

{

inf
vh∈Vh

‖u∗ − vh‖V + inf
wh∈Wh

‖p∗ − wh‖W

}

.

From (89), we see

(91)











((ũ∗
h − û∗

h)α(ĉh),vh)− (p̃∗h − p̂∗h,∇ · vh) = (ĉ∗hb(ĉh)∇ĉh − c∗b(c)∇c,vh)

+ ((α(ĉh)− α(c))ũ∗
h,vh),

(∇ · (ũ∗
h − û∗

h), wh) = 0.

Noting that

(ĉ∗hb(ĉh)∇(ĉh − c),vh) = −((ĉh − c)∇(ĉ∗hb(ĉh)),vh)− (ĉ∗hb(ĉh)(ĉh − c),∇ · vh)

such that

(92)

|(ĉ∗hb(ĉh)∇ĉh − c∗b(c)∇c,vh)| ≤ |(ĉ∗hb(ĉh)∇(ĉh − c),vh)|

+ |(ĉ∗h(b(ĉh)− b(c))∇c,vh)|+ |((ĉ∗h − c∗)b(c)∇c,vh)|

≤ M
(

‖b′(ĉh)∇ĉh‖L∞‖ĉ∗h‖L∞ + ‖b(ĉh)‖L∞‖ĉ∗h‖W 1,∞

)

‖ĉh − c‖L2‖vh‖V

+M‖ĉ∗h‖H1‖b′(c)∇c‖L∞‖c− ĉh‖L2‖vh‖L2

+M‖b(c)∇c‖L∞‖c∗ − ĉ∗h‖L2‖vh‖L2 ,

and from the result of [9], we have

(93) ‖ũ∗
h − û∗

h‖V + ‖p̃h − p̂∗h‖W ≤ M
{

‖c− ĉh‖L2 + ‖c∗ − ĉ∗h‖L2

}

.
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Now, let us turn to estimating ĉ∗h − c∗. Here we recast the adjoint system:
(94)


























− (φ
∂ĉ∗h
∂t

, zh)− ((b(ĉh)ûh − d′(ĉh)∇ĉh) · ∇ĉ∗h, zh) + (d(ĉh)∇ĉ∗h,∇zh)

+ (α′(ĉh)û
∗

h · û, zh) + (r1qb(ĉh)c
∗, zh) = (ωĉh, zh), ∀ zh ∈ Zh,

(ĉ∗hb(ĉh)∇ĉh,vh)− (p̂∗,∇ · vh) + (α(ĉh)û
∗

h,vh) = 0, ∀ vh ∈ Vh,

(∇ · û∗

h, wh) = 0, ∀ wh ∈ Wh.

Similar to the proof in Lemma 5.2, we also define c̃∗h which satisfies
(95)
− ((b(c)u− d′(c)∇c) · (∇c∗ −∇c̃∗h), zh) + (d(c)(∇c∗ −∇c̃∗h),∇zh) + λ(c∗ − c̃∗h, zh) = 0,

where the λ > 0 is chosen to ensure the coercivity too. Then, we can also obtain

(96)







‖c∗ − c̃∗h‖L2 ≤ Mhl+1‖c∗‖Hl+1 ,

‖
∂

∂t
(c∗ − c̃∗h)‖L2 ≤ Mhl+1

{

‖c∗‖Hl+1 + ‖
∂c∗

∂t
‖Hl+1

}

.

Furthermore, letting ξ = ĉ∗h − c̃∗h and η = c∗ − c̃∗h, we derive that
(97)

− (φ
∂ξ

∂t
, zh)− ((b(ĉh)u− d′(ĉ)∇c) · ∇ξ, zh) + (d(ĉh)∇ξ,∇zh) + (r0qb(ĉh)ξ, zh)

= −(φ
∂η

∂t
, zh)− (λη, zh) + ((b(ĉh)ûh − b(ĉh)u) · ∇ĉ∗h, zh)

+ ((b(ĉh)u− b(c)u) · ∇c̃∗h, zh)− ((d′(ĉh)∇ĉh − d′(ĉh)∇c) · ∇ĉ∗h, zh)

− ((d′(ĉh)∇c− d′(c)∇c) · ∇c̃∗h, zh)− ((d(ĉh)− d(c))∇c̃∗h,∇zh)

+ (ω(ĉh − c), zh) + (α′(c)u∗ · u, zh)− (α′(ĉh)û
∗
h · ûh, zh)

+ (r0q(b(ĉh)− b(c))c̃∗h, zh), ∀ zh ∈ Zh.

Choosing zh = ξ, we can carry out the estimates term by term. Assuming that
there exists a constant h0 > 0 such that

(98) h−1‖ξ‖L∞(0,T ;L2) ≤ 1, 0 < h ≤ h0.

Similarly as the proofs of (80)-(85), we obtain
(99)

|((b(ĉh)u− d′(ĉ)∇c) · ∇ξ, ξ)| ≤ ‖(b(ĉh)u− d′(ĉ)∇c)‖L∞‖∇ξ‖L2‖ξ‖L2 ,

|((b(ĉh)ûh − b(ĉh)u) · ∇ĉ∗h, ξ)|

≤ M‖∇ξ‖L2‖u− ûh‖V h
−1‖ξ‖L2 +M‖∇c∗‖L∞‖u− ûh‖V ‖ξ‖L2 ,

|((b(ĉh)u− b(c)u) · ∇c̃∗h, ξ)| ≤ M‖b′(c)u‖L∞‖∇c∗‖L2‖c− ĉh‖H1‖ξ‖H1 ,

|((d′(ĉh)∇c− d′(c)∇c) · ∇c̃∗h, ξ)| ≤ M‖d′′(c)∇c‖L∞‖∇c∗‖L2‖c− ĉh‖H1‖ξ‖H1

and
(100)
|((d′(ĉh)∇ĉh − d′(ĉh)∇c) · ∇ĉ∗h, ξ)|

≤ |(∇(d(ĉh)− d(c)) · ∇ĉ∗h, ξ)|+ |((d′(ĉh)− d′(c))∇c · ∇ĉ∗h, ξ)|

≤ |((d(ĉh)− d(c))∆ĉ∗h, ξ)|+ |((d(ĉh)− d(c))∇ĉ∗h,∇ξ)|+ |((d′(ĉh)− d′(c))∇c · ∇ĉ∗h, ξ)|

≤ M‖c− ĉh‖L2‖ξ‖H1 .
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Moreover, we get

(101)

|(α′(c)u∗ · u, ξ)− (α′(ĉh)û
∗
h · ûh, ξ)|

≤ |((α′(c)− α′(ĉh))u
∗ · u, ξ)|+ |(α′(ĉh)(u

∗ − û∗
h) · u, ξ)|

+ |(α′(ĉh)û
∗
h · (u− ûh), ξ)|

≤ M
{

‖u‖V ‖u
∗‖V ‖ĉh − c‖L2‖ξ‖H1 + ‖u‖V ‖û

∗
h − u∗‖V ‖ξ‖L2

+ ‖ûh − u‖V ‖ξ‖H1‖û∗
h‖L2

}

.

Treating other terms as in the proofs in Lemma 5.2, then we also obtain that

(102)

−
d

dt
(φξ, ξ) + (d∗∇ξ,∇ξ)

≤ M
{

‖ξ‖2L∞‖c− ĉh‖
2
L2 + ‖ξ‖2L2 + ‖u∗ − û∗

h‖
2
V + ‖η‖2L2 + ‖

∂η

∂t
‖2L2

}

≤ M
{

(1 + h−2‖ξ‖2L2)‖c− ĉh‖
2
L2 + ‖ξ‖2L2 + h2l+2 + h2k+2

}

.

It follows from (102) and the Gronwall lemma that

(103) ‖ξ‖L∞(0,T ;L2) ≤ e2MT
{

M(h2l+2 + h2k+2) + ‖ξ(T )‖2L2

}

,

and thus

(104) ‖ĉ∗h − c∗‖L∞(0,T ;L2) ≤ M
{

hl+1 + hk+1
}

.

Then, it leads to

(105) ‖û∗
h − u∗‖L2(0,T ;V ) ≤ M

{

hl+1 + hk+1
}

.

The proof of the induction hypothesis (98) is similar to that in Lemma 5.2. �

Applying Lemmas 5.1 - 5.3, we have the following convergence results.

Theorem 5.1. Assume that all the assumptions in Lemmas 5.1 − 5.3 hold for

sufficient small h. There holds the a priori error estimate

(106) ‖q − qh‖L2(0,T ) ≤ M
{

hl+1 + hk+1
}

.

Theorem 5.2. Let (c, q,u, p, c∗,u∗, p∗) and (ch, qh,uh, ph, c
∗
h,u

∗
h, p

∗
h) be the solu-

tion of (35) and (62) respectively. Suppose that all the assumptions in Lemmas

5.1− 5.3 hold. There exists a constant h0 > 0 such that for 0 < h ≤ h0, there hold

the following estimates

(107)

‖c− ch‖L∞(0,T ;L2) + ‖u− uh‖L∞(0,T ;V ) + ‖p− ph‖L∞(0,T ;W ) ≤ M
{

hl+1 + hk+1
}

and

(108)

‖c∗− c∗h‖L∞(0,T ;L2)+‖u∗−u∗
h‖L∞(0,T ;V )+‖p∗−p∗h‖L∞(0,T ;W ) ≤ M

{

hl+1+hk+1
}

.

Proof. Standard arguments show the following estimates

‖c− ch‖L∞(0,T ;L2) ≤ ‖c− c̃h‖L∞(0,T ;L2) + ‖c̃h − ch‖L∞(0,T ;L2)

and

‖c∗ − c∗h‖L∞(0,T ;L2) ≤ ‖c∗ − c̃∗h‖L∞(0,T ;L2) + ‖c̃∗h − c∗h‖L∞(0,T ;L2).
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As to u and p, the similar estimates also hold, so we omit the details to avoid
repeating.

Now, based on the results above, we only need to estimate ‖c̃h − ch‖L∞(0,T ;L2)

and ‖c̃∗h − c∗h‖L∞(0,T ;L2). Define ξ = ch − c̃h, η = c− c̃h. It follows from (10), (60)
and (77) that we have
(109)

(φ
∂ξ

∂t
, zh) + (b(ch)u · ∇ξ, zh) + (d(ch)∇ξ,∇zh)

= (φ
∂η

∂t
, zh)− (ηλ, zh)− ((b(ch)uh − b(ch)u) · ∇ch + (b(ch)u− b(c)u) · ∇c̃h, zh)

−((d(ch)− d(c))∇c̃h,∇zh) + ((f(ch)− f(c))r0q, zh) + (f(ch)r0(qh − q), zh).

Similarly as (93), we can obtain the following estimates:

(110) ‖u− uh‖V + ‖p− ph‖W ≤ M
{

‖c− ch‖L2 + |q − qh|
}

.

Following the proof of Lemma 5.2, we have
(111)

d

dt
(φξ, ξ) + (d∗∇ξ,∇ξ) ≤ M

{

‖ξ‖2L2 + ‖u− uh‖
2
V + ‖η‖2L2 + ‖

∂η

∂t
‖2L2 + |q − qh|

2
}

,

where we used the induction hypothesis

(112) h−1‖ξ‖L∞(0,T ;L2) ≤ 1,

whose proof is similar to that in Lemma 5.2.
Combining (111) with the result of Theorem 5.1 and using the Gronwall Lemma,

we have

(113) ‖ξ‖L∞(0,T ;L2) ≤ M
{

hl+1 + hk+1
}

.

Then (107) can be proved.
Similarly, we can obtain the second estimate (108) of Theorem 5.2. �

6. Numerical Simulations

In this section, we present some numerical experiments to have some initial
understanding on the optimal water injection plans. The numerical experiments
simulate immiscible displacement within a horizontal reservoir of one unit thickness.

We first recall the object functional as below:

J(q) =
1

2

∫ T

0

∫

Ω

ω(x, t)c2 +
α

2

∫ T

0

q2.(114)

Without losing generality, we suppose the domain is Ω = [0, 1] × [0, 1], the
injection well is located at the upper right corner (1,1), and the production well is
located at the lower left corner (0, 0). In our computations we assume the porosity
of the rock is a constant, which means the porous medium is homogeneous. The
parameters are re-scaled ( see [32] and [33] ) from a real problem to have similar
characterizations compared with real situations. For example these parameters
show the convection dominated property of the concentration equation. In summary
we set the parameters as follows:

the initial concentration of the oil is c0(x) = 0.6,
the permeability of the porous rock k(x) = 0.5,
the porosity of the rock is supposed to be φ(x) = 0.3,
the viscosity of the oil and the water in the reservoir are 16 and 0.5 respectively,
the derivative of the capillary pressure is 0.1,
the water price index is taken as α = 0.01,
let ω̃/ε = w: the oil price index changes from w = 4 to w = 4.0e+ 03.
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It is clear that a (relatively) lower price of water will cause a larger amount of water
injection, which makes the flow very convection-dominated and thus causes much
computational difficulty.

Example 1. In this example, we try to find out the regular pattern of the
optimal water injection curves with different price fraction w/α when the injection
period T is fixed ( T = 1, 3, 5, 8, 10). The optimal injection curves are shown in
the following figures (x-axis indicates time, and y-axis presents water injection rate)
.
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Figure 1. The optimal injection curves with fixed injection period for T = 1, 3, 5, 8, 10

From Figure 1 it is interesting to observe that when the price fraction is low,
the optimal injection curves are very flat like a quasi-constant water injection plan
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that is widely used in practice. This may explain its popularity. However when the
fraction is higher, the curves fluctuated more.

For a fixed injection period T , the higher the price fraction, the higher the
optimal injection curves go. This indeed agrees with the rules used in real practice.
This is clear sensible when water is more expensive than oil there is no need to
inject any water. In practical, this case does exist, such as in the period of the
global financial crises in 2009, the international oil price greatly dropped, many
wells in China stopped injecting water from economic benefit consideration.

From Figure 1 we also observe that during a very short period at the beginning
of injection, the injection rate of the optimal injection plan rapidly increases from a
lower value to a high one. The possible explanation is that the initial concentration
of oil is high, and the relative permeability of water is low, so that the water flow
has a poor translation. As some water is injected into the injection well, the relative
permeability of water near the injection well goes up rapidly, and consequently more
water is allowed to be injected.

There is another interesting phenomenon in Figure 1. As we can see when the
price fraction w/α = 4.0e+ 05, the pattern of the optimal injection curve changes
compared with the other cases the curve slowly rises after a slow falling. After
comparing the concentration’s changes at different time, we found the slowly rising
started when the water injected in the injection well flowed out from the production
well.

From Figure 2, we know as the decrease of the oil’s concentration, the convection
diffusion becomes definite.
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Figure 2. The oil concentration distribution at an early time and an later time.

Below we also present some corresponding concentration distributions for T=5,10
as shown in the following figures.
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Figure 3. The final concentration distributions with different price fractions when T=5
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Figure 4. The final concentration distributions with different price fractions when T=10

Example 2. In this numerical experiment, we compare the optimal water
injection plans we obtained with other water injection plans. Since in practice
often a quasi-constant rate injection plan is used, here we just compare the objective
functional values of the optimal injection plans, and the constant injection plans.
The results are shown in the following graphs for a fix the price fraction w/α:
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Figure 5. The functional comparisons for T = 3, 5, 10 when w/α = 4.0e+ 02

In these graphs the horizontal line indicates the optimal value of the objective
functional for the given the price fraction w/α, while the curves above the line
indicate the functional values for a constant injection plan at the given water in-
jection rate on the x-axis. It is clear that a suitable constant water injection plan
could achieve a very good approximation to the optimal value for some cases. That
may explain the wide use of quasi-constant water injection plans, besides its simple
operation benefit. However the non-global-convex nature of the underlying optimal
control does appear from time to time, when there are multi-minimizers, and gaps
between the objective values of the optimal and a constant water injection plans.
Let us note that for such applications, even very marginal improvement over the
minimum functional values, could bring huge economic benefit.

From the results shown in Figure 5, it is clear that when we fix the price fraction
w/α, the longer the injection period T is, the lower value of the functional J is.
The possible reason is that when we have a longer T , obviously we can inject the
water slowly to sweep the oil out of the oil reservoir more completely. Otherwise,
we may need to keep a large water injection for the case of shorter T , then water
channeling would happen, and that will greatly reduce effectiveness of the water
injection.
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