INTERNATIONAL JOURNAL OF (© 2014 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 11, Number 4, Pages 657-687

CONVERGENCE ANALYSIS OF YEE SCHEMES FOR
MAXWELL’S EQUATIONS IN DEBYE AND LORENTZ
DISPERSIVE MEDIA

V. A. BOKIL AND N. L. GIBSON

Abstract. We present discrete energy decay results for the Yee scheme applied to Maxwell’s
equations in Debye and Lorentz dispersive media. These estimates provide stability conditions for
the Yee scheme in the corresponding media. In particular, we show that the stability conditions are
the same as those for the Yee scheme in a nondispersive dielectric. However, energy decay for the
Maxwell-Debye and Maxwell-Lorentz models indicate that the Yee schemes are dissipative. The
energy decay results are then used to prove the convergence of the Yee schemes for the dispersive
models. We also show that the Yee schemes preserve the Gauss divergence laws on its discrete
mesh. Numerical simulations are provided to illustrate the theoretical results.
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energy decay, convergence analysis.

1. Introduction

The Yee scheme is a finite difference time domain (FDTD) numerical technique
for the discretization of Maxwell’s equations in a non-dispersive medium such as
free space. It was first presented in [35]. The Yee scheme was extended to discretize
Maxwell’s equations in linear dispersive media and analyzed in a series of papers
[4,9, 13, 18, 19, 20, 31] involving dispersive media models such as the Debye [14, 20],
Lorentz [18, 30], cold plasma [13, 36] and Cole-Cole [9, 12] models among others.
Fourier analysis of the Yee scheme in such dispersive media (see for e.g. [4, 31])
indicate that the Yee scheme is stable under the same stability condition as that in
a corresponding (having the same relative permittivity) non-dispersive dielectric.
However, the Yee scheme in dispersive media is dissipative, unlike its counterpart in
a non-dispersive, non-conductive medium, and in addition is more dispersive [5, 32].
The time step in the Yee scheme needs to be chosen to resolve all the time scales
associated with a particular dispersive medium such as relaxation times, resonance
times, and incident wave periods [32]. Maxwell’s equations in such media have been
shown to constitute a stiff problem and the time step needed to resolve waves in
the numerical grid can be extremely small [32]. Research on the construction and
analysis of Yee type finite difference time domain methods for Maxwell’s equations
in dispersive media is an area of active interest. We refer the reader to the book
[33] and the numerous references therein for an introduction to the Yee scheme and
its properties.

In this paper we present for the first time an analysis of the Yee scheme in
Debye (Maxwell-Debye) and Lorentz (Maxwell-Lorentz) media by deriving ener-
gy decay results that indicate the conditional stability and dissipative nature of
the schemes. We also present a full convergence analysis of the Yee schemes for
the Maxwell-Debye and Maxwell-Lorentz models using the derived energy decay
results. Energy methods based on variational techniques for analyzing stability

Received by the editors May 7, 2013.
2000 Mathematics Subject Classification. 65M06, 65M12, 65Z05.

657



658 V. BOKIL AND N. GIBSON

and convergence properties of the Yee scheme in a lossy non-dispersive medium
and operator splitting FDTD techniques have recently been published in the litera-
ture, see for example [7, 10, 15]. Finite element methods (FEM) and discontinuous
Galerkin (DG) methods for Maxwell’s equations in various dispersive media have
also recently been published, for example see [1, 16, 21, 22, 23, 24, 25, 26, 34] and
references therein.

We construct exact solutions based on numerical dispersion relations for the
Maxwell-Debye and Maxwell-Lorentz models which are useful in understanding the
decay of discrete energies in numerical methods for these models. We use these
exact solutions to illustrate our stability and convergence analyses in our numerical
simulations of the Yee schemes.

The outline of the paper is as follows. In Section 2 we present two dispersive
media models and construct the Maxwell-Debye model and Maxwell-Lorentz mod-
el in two dimensions. We recall energy decay results for these models from the
literature [23]. In Section 3 we outline the discrete meshes and spaces that the
electric, magnetic and polarization fields are discretized on and establish discrete
curl operators and their properties. In Sections 4 and 5 we recall the Yee schemes
for the Maxwell-Debye and the Maxwell-Lorentz models, respectively. For both
models we show that the corresponding Yee schemes are second-order accurate in
time, establish discrete energy decay results and prove the conditional convergence
of the corresponding Yee schemes. In addition, we show that these schemes satisfy
the Gauss divergence laws on the discrete Yee mesh. Numerical simulations based
on exact solutions are presented in Sections 6 and 7 that illustrate the stability and
convergence analyses. Finally, conclusions are made in Section 8.

2. Maxwell’s Equations in Dispersive Dielectrics

We consider Maxwell’s equations which govern the electric field E and the mag-
netic field H in a domain Q C R3 from time 0 to T given as

(2.1a) %—?—VxH=Oian(0,T},
(2.1b) %§+VXE:0mQx@jL
(2.1c) V-D=0=V-Bin Qx (0,7),
(2.1d) nxE=0on0dQx(0,7T),

(2.1e) E(0,x) = Eo; H(0,x) = Hy in Q.

The fields D, B are the electric and magnetic flux densities respectively. On the
boundary, 9f2, we impose a perfect conducting (PEC) boundary condition (2.1d),
where the vector n is the outward unit normal vector to 0f2. Lastly, we add initial
conditions (2.1e) to the system.

Within the dielectric medium we have constitutive relations that relate the flux
densities D, B to the electric and magnetic fields, respectively, as

(2.2a) D = ¢ye o E + P,
(2.2b) B = joH,

where the constants €y and pg are the permittivity and permeability of free space,
and are connected to the speed of light in vacuum, c¢g, by ¢g = 1/,/éomg. The
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quantity P is called the electric (macroscopic) relaxation polarization, and the
coeflicient e is called the infinite frequency relative permittivity.

The constitutive law (2.2a) incorporates the effects of electric polarization, which
is defined as the electric field induced disturbance of the charge distribution in a
region [2]. This polarization may have an instantaneous component as well as
ones that do not occur instantaneously. The relaxation polarization P is the non-
instantaneous part of the electric polarization and usually has associated time con-
stants [2]. The presence of instantaneous polarization is accounted for by the coef-
ficient €, in the constitutive relation (2.2a). We neglect any additional magnetic
effects and assume that the magnetic constitutive relation (2.2b) for free space is
also valid in the dispersive medium.

To describe the behavior of the media’s macroscopic electric polarization P, a
general integral equation model is employed in which the polarization explicitly
depends on the past history of the electric field [2]. The resulting constitutive law
can be given in terms of a convolution involving a displacement susceptibility kernel
g as

(2.3) P(t,x) = /0 g(t — s,x)E(s,x)ds,

inside the dielectric. Here, we consider polarization mechanisms for which, in the
time domain, the convolution (2.3) describing the polarization can be converted to
an ordinary differential equation (ODE) or systems of ODEs governing the evolution
of the relaxation polarization driven by the electric field [2]. In particular, we
consider two popular models: the Debye model [14] for orientational polarization
and the Lorentz model [30] for electronic polarization.

2.1. Debye Media: Model and Energy estimates. To model wave propaga-
tion in polar materials, like water, we use the single-pole Debye model in which the
susceptibility kernel in (2.3) is

(2.4) g(t,x) = Me—t/f.
T
This gives a model for orientational polarization [2, 14]. Using this form of the
susceptibility kernel, equation (2.3) can be re-written as an ODE in time forced by
the electric field
oP .

(2.5) Tor +P =cepen(eg —1)E, in Q x (0,7).

In equation (2.5) the parameter €, is called the static relative permittivity. The

ratio of static to infinite permittivities is denoted as ¢, := ==. The parameter 7 is

oo

the relazation time associated with the polarization mechanism [2]. In general T,
€00, and €4 can be functions of space, but we assume here that all parameters are
constant within the medium, €, > €, i.e. ¢, > 1 and 7 > 0.

To construct a model for electromagnetic wave propagation in a polar material
in two dimensions, we make the assumption that no fields exhibit variation in the z
direction, i.e. all partial derivatives with respect to z are zero. The electric field and
polarization then have two components each, E = (E,, E,)T,P = (P, P,)T and the
magnetic field has one component H, = H. Combining (2.5) with the constitutive
relations (2.2a) and (2.2b), and substituting in the Maxwell curl equations (2.1a)
and (2.1b) we get the following system of partial differential equations which we
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call the 2D TE Maxwell-Debye model :

OH 1
(2.6a) — =—— curl E,
ot o
E -1 1
(2.6b) o8 _ curl 7 — e~ Vg, P
ot €0€00 T €0€c0T
OP  €peoc(eg — 1) 1
2.6 = 2\ e P
(2.6c) ot T T
where for a vector field, U = (U,, Uy)T, the scalar curl operator is curl U := 88%‘ -
T
a(;J;7 and for a scalar field, V', the vector curl operator is curl V := (%7 —%—Z)

[28]. All the fields in (2.6) are functions of position x = (z,y)7 and time t.

We first show that system (2.6) along with the PEC boundary conditions (2.1d)
and initial conditions E(x,0) = E(x), P(x,0) = Po(x) and H(x,0) = Hy(x) for
x € 1 C R? is well-posed. To this end, we define the following two function spaces:

(2.7) H(curl, Q) = {u € (L3(9))* | curl u € L2(Q)},
(2.8) Hy(curl, ) = {u € H(cwrl, ) | n x u=0 on 9Q}.
Let (-,-) denote the L? inner product and || - ||z the corresponding norm. Mul-

tiplying (2.6a) by pov € L?(R), (2.6b) by egesou € Hy(curl,§2), and (2.6¢c) by
(€0€oo(eq — 1)) tw € (LQ(Q))27 integrating over the domain Q2 C R? and applying
Green’s formula for the curl operator

(2.9) (curl H,u) = (H,curl u), Yu € Hy(curl, Q),

we obtain the weak formulation for the 2D Maxwell-Debye system of equations
(2.6) as follows

(2.10a) (uoaafj,v> = (—curl E,v),V v € L*(Q),
(2.10b) (eoeoan,u> = (H,curl u) — (q’e‘x’(eq_l)Eu> T <1P,u> :
ot T T

YV u € Hy(curl,Q),

1 oP 1 1
(2.10c) <eoem<eq - 1>at’w> - (EW) - <eoem<eq - 1>TP’W) ’

Vwe (L3(Q)°.

The following theorem shows the stability of the 2D Maxwell-Debye model (2.6) by
showing that the model exhibits energy decay.

Theorem 2.1 (Maxwell-Debye Energy Decay). Let Q C R? and suppose that
the solutions of the weak formulation (2.10) for the 2D Mazwell-Debye system

of equations (2.6) satisfy the regularity conditions P € C'(0,T; (LQ(Q))z), E e
C(0,T; Ho(curl, Q)) N CL(0,T; (L3(2))?), and H € C*(0,T; L*()). Then the sys-
tem exhibits energy decay,

(2.11) gD(t) < ED(O), Vit >0,

where the energy Ep(t) is defined as

222 euto = (|vim 0+ v m [ eef)
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Proof. See [6, 21, 23]. O

In [23], it is also shown that the Gauss laws are satisfied by the Maxwell-Debye
system if the initial fields are divergence free.
The 2D Maxwell-Debye TE scalar equations derived from (2.6) are given

as
(2.138) OH _ 1 (0B, O,
' ot po \ Oy oxr )’
OE, 1 0H (ej—1) 1
2.13b _ 91 _ =g P,
(2.13b) ot €0€c0 OY T €0€o0T
OF 1 9H (ej—1) 1
2.1 =Y _ _ - 4 E, — P
(2.13¢) ot €0€co OT T ut €0€ooT
P -1 1
(2.13d) 0P _ ME/I; — 2P,
ot T T
0P,  €peco (€ — 1) 1

2.2. Lorentz Media: Model and Energy estimates. For Lorentz Media, the
choice of the kernel function in equation (2.3) is
60(,02

(2.14) g(t,x) = Tpe*t/% sin(vot),
0

where w), := wgy/€; — € is the plasma frequency, wy is the resonant frequency of
1
the medium, A := > is a damping constant, and vy := /w3 — A\2. We assume that

the parameters ¢, €5, wo and 7 (hence also w, and A) are constants. The Lorentz
model for electronic polarization in differential form is represented with the second
order ODE forced by the electric field given as

o’P  10P

a2 T ror T

Rewriting the above second order ODE as a system of two first order ODE’s by
introducing a new variable Jp = %—Pt’, the 2D TE Maxwell-Lorentz model is

(2.15) P = ¢uw E.

(2.16a) aa—]t{ = —i curl E,

(2.16b) aa—}f = 60100 curl H — 60100 Jp,
(2.16¢) 8;—; = —%Jp —wiP + eowiE7
(2.16d) %1; = Jp.

All the fields in (2.16) are functions of position x = (z,y)” and time ¢. For the
Maxwell-Lorentz system (2.16) we obtain the weak formulation

(2.17a) <;Loaai[,v) = —(curl E,v), Yo € L*(Q),

(2.17b) (eoeoo%]f, u) = (H,curl u) — (Jp,u), Yu € Hy(curl, ),
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1 9 1 1
2.1 =2 = (—73 = P
(2.17¢) (eowg ot ’W> (60(.012]7' p,w) (eoeoo(eq -1) 7w>

+ (B, w), Yw € (L*(Q))°,

(2.17d) (Wz_l)a;;,q> - (Wz_l);lp,q) . Vaq e (L3(9)”.

The following theorem shows the stability of the 2D Maxwell-Lorentz model (2.16)
by showing that the model exhibits energy decay (also see [5, 23]).

Theorem 2.2 (Maxwell-Lorentz Energy Decay). Let Q C R? and suppose that the
solutions of the weak formulation (2.17) for the Mazwell-Lorentz system of equations
(2.16) satisfy the regularity conditions E € C(0,T; Ho(curl, Q)) N C1(0,T; (L?(Q2))?),
P,Jp € CY(0,T; (LQ(Q))Q), and H(t) € C1(0,T; L3()). Then the system exhibits
energy decay,

(2.18) Er(t) < EL(0), V>0,

where the energy Er,(t) is defined as

2

2

219, 220 = (v 0]+ s w0

1 2 1 2 5
v@ﬁm&q_l)Pﬁﬂt*HV@w@Jf@WL>

Proof. See [6, 23]. O

|

In [23], it is also shown that the Gauss laws are satisfied by the Maxwell-Lorentz
system if the initial fields are divergence free.

The 2D Maxwell-Lorentz TE scalar equations derived from system (2.16)
on which the Yee scheme is based are:

(2.20a) %—Ij = i <8£m — %%) ,
(2.20b) a;;’” = 60100 (%I; - Jg) )
(2.20c) aaEty = —60; (Eg;f + pr> ;
(2:20d) b — B~ 10, ~ 3P,
(2.20¢) agfy = eongy — =Jp, —wi Py,
(2.20f) 661? = Jp,,

(2.20g) % = Jp,.

3. The Yee scheme: Discretization in Space and Time

In this section we consider the finite difference time domain (FDTD) Yee scheme
for discretizing the 2D Maxwell-Debye model (2.6) or (2.13) and 2D Maxwell-
Lorentz models (2.16) or (2.20).
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Consider the spatial domain Q = [0,a] x [0,b] C R? and time interval [0, T] with
a, b, T > 0, and spatial step sizes Az > 0 and Ay > 0 and time step At > 0.
The discretization of the intervals [0, al, [0,0], and [0,7] is performed as follows
[7]. Define L = a/Ax, J =b/Ay and N = T/At. For ¢,j,n € N we consider the
discretizations

(3.1) O=zg<z1 < <zp<---<zxp, = a,
(3.2) O=yo<y<--<y; <---<yy=b,
(3.3) 0=t'<t!<...<t"<...<tN =T,

where zy = (Ax, y; = jAy, and t" = nAt for 0 < ¢ < L, 0 < j < J, and
0<n<N. Deﬁne (Taryp,t7) = (aAzx, BAy,yAt) where « is either £ or £+ 2, Ié;
is either j or j + 2, and + is either n or n + % with £, 7,n € N. The Yee scheme
staggers the electric and magnetic fields in space and time. Fields E,, E,, and H
are staggered in the z and y directions. We define the discrete meshes

(34) = (v [0 L-10< )< T},
(3.5) 7 ::{(xg,yj+%>|OSKSL,OSjSJ—l},
(3.6) Tf::{(w@+%7yj+%)]0§€§L—1,0§j§J—1},

to be the sets of spatial grid points on which the E,, E,, and H fields, respectively,
will be discretized. The components P, and Jp, are discretized at the same spatial
locations as the field £, while the components P, and Jp, are discretized at the
same spatial locations as the field F,. For the time discretization, the components
E.,Ey, Py, Py, Jp, and Jp, are all discretized at integer time steps ¢" for 0 <n <
N. In the Yee scheme, the magnetic field, H, is staggered in time with respect to
E, and E, and discretized at time t"+3 for 0 <n<N-1.
Let U be one of the field variables H, Ew, Ey,, Py, Py, Jp, or Jp,, let (z4,yp) €

T}{{, Tf or Th , and 7 be either n or n+ with n € N. We define the grid functions

or the numerlcal approximations
Uy s = U(za,yp,17).

We will also use the notation U(t7) to denote the continuous solution on the domain
Q at time t7, and the notation U” to denote the corresponding grid function on its
discrete spatial mesh at time 7.

We define in a standard way (see for e.g. [3, 10]) the centered temporal difference
operator and a discrete .time averaging operation, respectively, as

Y3 _ 773
(3.7) b7 5 o= el LV
@h At ’
1
Ul Ul e
(3.8) Ul = —2F 5 :

and the centered spatial difference operators in the x and y direction, respectively,
as

Ul -0,
3.9 U7 = 2P Tem3f
( ) aﬁ AZL’ bl

PR
(3.10) N AS SERLE Y

Ay
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Next, we define the following staggered discrete [? normed spaces (see also [11])
(3.11)
Vy = {U = Uy 41) @ey 3 9543) €7 10N < 00}7
(3.12)

T E, ., By

Vii={F= (Fapoy Py ) @rgow) X @ yjep) €70 X7, [Fll < <},
(3.13)
Veo={FeVp|Fu , =Fo , =F, ,=F —0,

e+i0 e+d.0 T T Yo5+3 ri+i
0<(<L0<j<J},
where the discrete grid norms are defined as

L-1J-1

(3.14) IF% = Azay 3 S (|F$H%’j 2+ 15y, |2),v FevVp,
=0 j=0
L—-1J-1

(315) HU”%I = AJUAZU Z Z ‘Ug+%7j+%|2,v U e VH,
£=0 j=0

with corresponding inner products

(3.16)
L-1J-1
(F.G)p = DaBy Y3 (Fup,y oy, +Fo, 0y Gy )V FLG €V,
£=0 j=0
(3.17)
L-1J-1
UV)g =D2y > > Upis jp1Vipr 41,V UV €V,
£=0 j=0

Finally, we define discrete curl operators on the staggered {2 normed spaces as

(3.18) curly : Vg o — Vg, curlhy F := 0, F, — 6, F,
and
(3.19) curl, : Vg — Vg, curl, U := (§,U, —6,U)".

The discrete differential operators mimic properties that are satisfied by their con-
tinuous counterparts. In particular, if the PEC conditions (2.1d) are satisfied on
the discrete Yee mesh,

2

+1.0 e+i,g Yo,j+1 Lj+

ie. VF € Vg, discrete integration by parts (also see [3, 10]) yields,
(3.21) (curly E, H) ;; = (E, curly, H)g.

Thus, the discrete versions of the curl operators remain adjoint to each other, which
is essential for obtaining discrete energy estimates [3].

In the rest of the paper we assume a uniform mesh, i.e. Az = Ay = h. In
Sections 4 and 5 we prove discrete energy estimates for the Yee scheme applied to
the Maxwell Debye model (2.13) and the Maxwell-Lorentz model (2.20), respec-
tively. In addition, we show that the Yee schemes for these media retain the second
order accuracy in space and time that the scheme enjoys in a non-dispersive medi-
um. However, our energy decay results indicate the dissipative nature of the Yee
schemes in Debye and Lorentz media, as opposed to the non-dissipative nature of
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the Yee scheme in a non-dispersive dielectric (also see [4, 31]). Our energy analysis
shows that the Yee schemes for the Maxwell-Debye and Maxwell-Lorentz models
are conditionally stable with the stability condition.

2c2_ At?

0272<1, or 202 —1 <0,

where the Coumnt number v 1= 222t Then the stability condition (3.22) implies
that v < E’ and we prove convergence of the Yee schemes under this criteria.

(3.22)

4. Yee Scheme for the Maxwell-Debye System

4.1. Discretization. To discretize the 2D TE Maxwell-Debye system (2.13), in
addition to staggering electric and magnetic components in space and time, the
lower order terms are discretized using averaging. Using the operators defined in
(3.7), (3.8), (3.9), and (3.10), the Yee scheme for the 2D TE Maxwell-Debye system
(2.13) consists of the following discrete equations:

1
41a 5. H f(a E" S, E" )
( ) t [+27]+2 ,uO Y $é+lj+% x y£+%,j+% )
n+% n+4 €g— l—=n+l 1 —nytl
(4.1b) 6the+21 = —0 H“_ 2 — = 21 ) z 21 )
2J €0€c0 257 T 5,7 TE€NEco Lt+5,7
n+1l 1 nt1 €q — 1—ntl 1 —n+t
(4.1¢c) 6tEy£ il = —7(5sz ._1_21 — Eu 2 L Pu 2 s
T €0€oco T3 T Tei+g T€)€oo “Lit3
+ €0€co (€g — 1) —=n+1 1—nt+l
(4.1d) 6Py f,:io‘)(q )ET > P
Tery T Yerda T T+
n+ €0€o0 (€g — 1) —=n+1 1—nytt
(4.1e) 01 Py QI:ME 21—7P 21.
Lity T Yejvs 1 Yei+i

Re-writing system (4.1) in vector form we consider the problem of solving the
discrete Maxwell-Debye system given by the Yee scheme as
Given E° € VE,07 PY ¢ Vg and H_% € Vy, find E"t! € VE,Oa Ptl ¢ Vg and
H™3 € Vy that satisfy

1
(4.2a) 0 H™ + % (curl, E)" =0,
(4.2b) SEME — 1 (cwrl,m)tE - a1 L prtd
€0€c0 T T€QEco
—1)=n+1 1—ntl
(4.2¢) 5,PTE = ME ty _ lpnts
T T

4.2. Accuracy: Truncation Error Analysis. Similar to the Yee scheme in free
space, the Yee scheme for the Maxwell-Debye system is also second-order accurate
in both time and space.

Lemma 4.1 (Yee Scheme Truncation Errors for Maxwell-Debye). Suppose that the
solutions to the two-dimensional Mazwell-Debye equations (2.6) or (2.13) satisfy
the regularity conditions E € Cg([O TY; [Cd( )] ), P e C3([0,T; [C(Q)] Jand H €

C3 ([0, T);[C3(Q)]). Let & ,§n+2,£n+2,§n+2,§}j2 be the truncation errors for
the Yee scheme for the Mazwell-Debye model (4. 1) Then

(4.3)  maz {[&]. |emrs

where Cp = Cp (€, [0, €ccs €q, T) does not depend on the mesh sizes Az, Ay, and
At.

n-i-2 n-&-%

E:‘J

n—i—%
Py

} < Cp (Az” + Ay? + AL?),
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Proof. We perform Taylor expansions and substitute the exact solution to obtain
the truncation errors for (4.1a) - (4.1e). We have

(4.4)
‘ S Ay? PPE,
(£H>Z+%vj+% = ﬂﬁ(‘rkF%’yj‘F%vtll) + MTy?’(meré’yll’tn)
Az? O°F
BT R ISR
(4.5)
A0 E At? 03P,
(gEm)€+%2xj - ﬂw(xﬁé’yjatm) + mw(xfr%ayj»tﬂ)
Ay? 9°H .
T Degew ByF Trrp ven ),
(4.6)
i _ACOE At? 93P
(r.)0,0y = 51 g oy tan) + 5o — o 0y t2)
Az? 9°H 1
J,-,
* 24€0€00 W(m3lvyj+%,t” 2),
(4.7)
nti At2 93P, At?egeno(eg — 1) O?E,
(£Pm)£+%21j = HW(I'K-Q—%??JJ',LM) — = q e (xe+%7yj’t42)
At? 9%P,
3 g Pk Yiitas),
(4.8)
n+i At2 93P, At2€06 (6 _ 1) 92E
(gpy)&jf% ) ﬂaT;j(xe’yH%’tM) - 0807 : 8t2y (%6, Yj115152)
At? 9P,
S o @Y tos),

where ¢ < w11 <@g, g5 <y < i, 073 <t <O, Ty 1 S 31 STy,
Yj—1 S Y21 S Yip1, 11 S taisls < "t for i = 1,2, and " < tg5,t5 < t"F! for
i=1,2,3. 0

4.3. Discrete Energy Estimates for Debye media. In this section we prove
a discrete version of the energy decay property given in Theorem 2.1 for the 2D
Maxwell-Debye model (2.6). Theorem 4.1 proves the conditional stability of the
2D Yee scheme for discretizing the Maxwell-Debye model by showing the decay of
a discrete energy in time. To prove the decay of a discrete energy we will need the
following lemma.

Lemma 4.2. The operator Ay, : Vg o — Vi defined as

2 t2
(4.9) ARF = (I — C°°4 curly curlh> F, VF € Vg,.
satisfies the inequality
(4.10) (A F,F)p > (1 —20%)||F||%,V F € Vg .
where v := CwTAt is the Courant number, and h is the (uniform) mesh step size.
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Proof. In two dimensions, with a uniform space mesh step size Az = Ay = h, we
have for all F € Vg ¢ the inequality ([3]),

2 3 2
(.11 Jeush, P < - ¥

from which we have VF € Vg

2 2

Cs

(AF,F)g = (F,F)g —
AN

(curly Fycurl, F) gy

(4.12) =IFll% - || curl, F|%

8c2 At?

> ||F|1% - T

IFIIE = (1 20°)[F[%.

Theorem 4.1 (Energy Decay for Maxwell-Debye). If the stability condition,

(4.13) 1—20% > >0,

for the Courant number v := C‘X’hAt , and constant vy s satisfied, then the Yee scheme

for the Mazwell-Debye System (4.2) satisfies the discrete identity

-1 —ntl

7.”_’_%
lleocoe (g = DET > = P72 ||,

n+3
(4.14) & p’ = —"
Enp Teo€oo(€q — 1)
for all n > 0 where
(4.15)
23
Pn

n n+3 n—% ni2
gh,D = 4 po(H tiH 2)u + ||Veoe B HE+
€0€c0(€g — 1)

E

defines a discrete energy.

Proof. We consider the average of (4.2a) at n and n+1, multiply with poAxzAyH ntg
and sum over all spatial nodes on T}{{ to get

I § 1 R S 1
(4.16) o (6:H +2,H"+§)H+(curlhE +2,H"+§)H:0.

We can rewrite (4.16) as

& 1 1 1 —_—Nn 1 1
(4.17) 2’"‘7& (H™ 3 H""3)y — (H™ 3 H" %)y} + (B 2, H" )y = 0.

ot l
We multiply equation (4.2b) with eoeooAszEn+2 and sum over all spatial nodes
on Tfl' X ThEy to get

(4.18)

1 i %) -1 1 1 1 —nt+l —pyl
coen (0B B )y ¢ el T D ek gredy L prts gray
T T

1 =ntj
= (curl, H" 2 B"" %),
which can be re-written as

(4.19)
1

€0€c0 12 n2 60600(611 - 1) =n+3 2 n+3 —=n+i
E™* —||E ——||E ——(P E =
o g - ) + O ety e g,

(curl, H" "2 B )
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1

Finally, we multiply equation (4.2c) by AzAy 71)Fn+2 and sum over all

€0€oo (e

spatial nodes on TET X Ty, B to get

(4.20)
7(5tPn+2 Pn+2) :l(ﬁn-‘r% ETL-F%)E_;HP +2H
€0€s0(€g — 1) T ’ €0€o0(€q — 1)T m
which can be re-written as
(4.21)
1 -0—l —=n+3 1 —=n+i
Pn+1 —||P"™ _ Q’E 2 _ P 2012 .
€0€oo(€q {H HE || HE} 7_ )E 60600(6(1—1)7'” HE

Adding equatlons (4.17), (4.19), and (4.21), and using the definition (4.15) we
have
1

1 =n+1
n+1y2 n 20 _ _ 21|12
onr {ED) = € =~ P

1 1
Sn+3 =nti

—n+1i
~2eoeac(eq — D" HE )+ (cormleq ~ DPIE"F |}

We can rewrite this equation in the form
(4.23)

5}7;—51 —&'p 2 1 =n+3 Sn+s3
Zp Cho __ ~leoeler - DE"E BT,

(4.22)

S"'H +&p €0€co(€q — 1)T

which on utilizing the deﬁnltlons of the time differencing and averaging operators in
(3.7), and (3.8), respectively, gives us the discrete identity (4.14) for Debye media.
What is left to prove is that the quantity defined in (4.15) is a discrete energy, i.e.,
a positive function of the solution to the system (4.1).

Using the parallelogram law [3] we have
Hn+% _ ané

(424)  (H™ 3, H" %)y = ||H" "z 4 H" 3

=il ol
Using (4.2a) and the definitions of the time differencing operator in (3.7) we can
rewrite the second term in (4.24) as

" .

1

T, o1 At? " At? "
(4.25) Tt || = Sl = S llewta B,

Substituting equations (4.24) and (4.25) into the definition (4.15), and using the
definition of the time averaging operator given in (3.8), we can re-write the discrete
energy (4.15) as

1
2 3
1

€0€c0(€g — 1)

n
)

(4.26) &p= pol [ (|3 + eoeoo (B, ALE™) 5 +

E

with the operator Ay, as defined in (4.9). If the stability condition (4.13) is satisfied,
then 1—2v2 > 1y > 0, the operator Ay, is positive definite, i.e. (4,F,F)>0,VF €
VE,0, and &} ; defines a discrete energy. We note that this stability condition is
the same for the Yee scheme applied to a non-dispersive dielectric with the same
infinite frequency relative permittivity e, [31, 33]. O

Remark: For a nonuniform mesh the stability condition is again the same as for
the non-dispersive case, i.e. v <1 [33], with the Courant number

1 1

(427) vV = COOAt Ang Ty2
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4.4. Convergence Analysis of the Yee scheme for the Maxwell-Debye
Model. The technique to prove convergence of the Yee schemes is a classical one
(see for e.g. [3, 17] and references therein) and employs the energy approach. To
prove the convergence of the Yee scheme for the 2D Maxwell-Debye system for
0 < n < N we define the error quantities

(4.28a) H" =H" - H(t"),
(4.28b) E"=E" - E(t"),
(4.28¢) P =P" — P(t").

As was done for the discrete energy estimate in the proof of Theorem 4.1, we obtain
the following identities for the Yee scheme for the Maxwell-Debye model in (4.2).

(429&) ,u05t7-[n —+ Curlhé'" = 5?[,

1 1 —1)=n+l 1—n+t nt
(4.29b) €060 0:E™"T2 — curl, H" 2 + epeno (¢q )5 r _ 2pite E+27
T T
1 1 1 sty landd  ntd
4.29 -  spntip__ -0 ptTeE_ gttt 2
(4.29¢) €0€col€q — 1) ¢ + €0€oo(€q — 1)T T P

1 1
where £7;, and §n+2 =( ;jz, ;;rz )T, for F = E, P are the local truncation errors
for the Maxwell-Debye system as discussed in Lemma 4.1. We have the following
result:

Theorem 4.2 (Convergence of Yee Scheme for 2D Maxwell-Debye). Suppose that
the solutions to the two-dimensional Mazwell-Debye equations (2.6) or (2.13) sat-
isfy the regularity conditions E € C3([0,T); [C3(Q)]?), P € C3([0,T); [C(Q)]?) and
H e 3 ([0,T);[C*()]). Forn >0, let H"*2 € V, E* € Vo and P" € Vg
be the solution to the Yee scheme for the Mazwell-Debye system (4.2). Also,

+3 )
let fH 7§n+2, e ;:2,§TI+Z be the truncation errors for the Yee scheme for

Mazwell-Debye (4.1) or (4.2) satisfying the conditions of Lemma 4.1. Assume that
the stability condition (4.13) is satisfied, then for any fixzed T > 0,3 a positive
constant Cp = Cp(ep, to, €xos €q, V) depending on the medium parameters and the
Courant number v, but independent of the mesh parameters At, Ax, Ay, such that

(4.30) Jmax {ER} b} < ERY p +TCpleo, po, €sos €g, V) (A2? + Ay? + At?)

where the energy of the error at time t" = nAt, ERy, p, is defined as
(4.31)

2\ 3
Pn

ERE p = po(H"™ 3 H" 2y + ||\ /eoeml™ |3 +
€0€xo(€g — 1)

E

Proof. We first note, based on the proof of Theorem 4.1, that the energy of the
error (4.31) can be equivalently written in the form

1
2 2
1

(4.32) ER} p =< |IVioH |3 + €0€oe (™ ARE™)E + || ———om—
€0€c0(€g — 1)

PTL

E

with the operator A, as defined in equation (4.9).

Next, we follow a similar procedure to that done in the proof of Theorem 4.1.
Multiplying the average of (4.29a) at n and n + 1 by AzAy H"+2 and summing
+}

over all spatial nodes on 7/7, multiplying (4.29b) by AzAy £""? and summing over
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gl
all spatial nodes on sz X Tfy, multiplying (4.29¢) by AzAy P2 on Tf’” X Tfy

and summing over all spatial nodes, and finally adding all the results we obtain
(4.33)

ntlo—e—n4l —1 —n+1

#ERY p ERpp 7 = 7)Heoeoo(eq -nE

—n+1i 2
_prTe
T€pEso(€q — 1 bz

FE Ty (TR E T ) 4 (P

Dropping the first negative term we have

(4.34)

SERIIER D < |8

n n+2 n n
el H +2HH+*H£ e (€ + 1€ IE)

4\5”*2 e (1P| + [P g) -

From (4.32) we have the following bounds

(4.352) 17" |1 < (o) 2ER} b,

(4.35D) €7 < (eocon(l — 202)) 2 ERY
(4.35¢) 1P| < (eoemo(eq — 1)) ER}L

The inequalities in (4.35) give us bounds for the averaged electric and polarization
terms as

1 -3 s+

(4.363) 3 UIE"IE + 11" 1) < (coroe(1 = 20%) * ERLD"™,
1 1——nt+i

(1.36D) 5 (P15 4 1P lg) < (oese(eg — 1)* ERwD ™"

=N

For a bound on ||H""2||y we note that since H"+tz =" + SL6,H™, we have

na1 —n At n
(4.37) [H" 2 ||g < |[H e + <110 |-

Under the assumption of the stability condition (4.13) and the form of the (non-
negative) energy of the error in (4.31) we have the inequality

2

an

€0€c0(€g — 1)

_1 1 n
(4.38)  —(H"HE Hn D < - | IVees 1%+

E
Next, since ATRH&H"H%[ = |[H"|% — (H"2, 1" %) i we have from (4.38)
At?
(4.39) = [loH"|[7 <
. 2
’Pn
€0€c0(€g — 1)

1 —n ni2
o Vo [|F + [|Veoes 1 +

E

Substituting inequalities (4.35) (4.36), (4.37) and (4.39) in (4.34) we have

(140) (ER; ) ERD" <

+3 +3 n+ n+3
Cp (€0, 10, €nor €q, ¥) max {657 [l 1657 Il €572 1 } ERp™ 2,
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where Cp = Cp(ep, to, €c0; €q, V) is a constant that depends on the medium pa-
rameters and the Courant number v, but is independent of the mesh parameters
1
At, Az, Ay. Dividing by (‘,'72;“13“—’_2 £ 0, we get
(4.41)
—n+1 +1 +1
ERGYY < ERG b+ At Cp(eos o, oo ey v) max {I1E5" 2 11,1165 1, 1521}

Recursively applying the inequality (4.41) from n + 1 to 1 we have
(4.42) ERJYY <ER) p+

n
—k+3 k+1 k+1
At Cp (o, 1o, s €4 ) (} e {|[€* 1,165 1€5 2||E}> .
k=0

Using At = T/N and 0 < n < N — 1, and noting that the sum in the second term
on the right in (4.42) from Lemma 4.1 is O(At? + Az? + Ay?), we get

(4.43) ERNY < ER) b+ TCpl(co, fos €ocr €g, V) (AL + Ay® + Az?).

Note, we use C'p as a generic constant absorbing all constants that arise in the
above inequalities. Finally taking the maximum for n from 0 to N — 1 in (4.43) we
obtain (4.30). O

Remark 4.1. We note that the convergence result in Theorem 4.2 does not hold at
the stability limit v = % (see also [17]). It is shown in [27] that the Yee scheme in
a non-dispersive dielectric need not be stable at the stability limit. However, (4.13)

provides a necessary and sufficient criteria for the stability of the Yee scheme. (Also
see [15]).

4.5. Discrete Divergence for the Maxwell-Debye Model. If the initial fields
satisfy the Gauss divergence laws

(4.44a) V-D = p,
(4.44b) V.B =0,

where p is the electric charge density, then one can show from the Maxwell curl
equations that the Gauss divergence laws are satisfied for all time [29]. This is done
by applying the divergence operator to the Maxwell curl equations, using the fact
that the divergence of the curl is zero and utilizing the continuity equation (assume
there are no sources, i.e. the source current density Js = 0), to get

(4.45) % +V-J. =0,

where J. is the conduction current density. (Note: we have assumed in (2.1a) that
the current density J = J.+ Js = 0). It is well known that the Yee scheme for the
Maxwell equations in free space (linear media) preserves the divergence property
of the solution at the discrete level [8]. We now show that this remains true for the
Yee scheme applied to the Maxwell-Debye system (with p = 0).

4.5.1. Discrete Divergence Operator. To define the discrete divergence oper-
ator, we define the discrete mesh of interior vertices

(4.46) = {(ze,y;)) 1 << L—-1,1<j<J—1},

to be the set of spatial grid points on which the discrete divergence of an electric
field, will be defined. On the mesh 77, we define the staggered [? normed space

(4.47) Vo = {V = (Vo) (e, 95) € 7, IVI[§ < o0},
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where the discrete grid norm || - ||o is defined as
L-1J-1

(4.48) IVIE = Azay 3 > (IVisl?). ¥ V €V,
=1 j=1

with corresponding inner product
L-1J-1

(4.49) (V,W)o = Azay S Y (Vz,ng’j),v V,W € Vo,
=1 j=1

We define the discrete divergence operator on Vg o as
(450) divy, : VE‘,O — V07 (dth F)Zyj = ((5mFm)g,j + (5yFy)g7j,
VI<i<L-1,1<j<J-1.
Lemma 4.3 (Discrete Divergence for the Maxwell-Debye System). For the Yee

scheme applied to the Mazwell-Debye system given in (4.2) the discrete divergence
of the initial grid functions is preserved for alln > 0, i.e. we have the identity

(4.51) div, D" = div, D°, on 7.

Proof. We note that the discrete derivative operators d;, 6, and §, commute. From

the Yee equations (4.2b) and (4.2c) we have on the mesh 7,7* x T}?y,

(4.52) §;D"7 = §,(epen BT + P™T3) = curly, H.

Therefore divy, curly H = 0,6,H — 6,6,H = 0. Thus, applying the discrete diver-
gence operator divy, to (4.52) we obtain
(4.53)

8, div, D3 = §,(€9€no divy E"H2 + divy, P"7) = divy, curl, H = 0, on 70.

We finally have
(4.54) div, D" = divy, D", on 7.
Applying the identity (4.54) recursively in discrete time we obtain (4.51). O

Remark 4.2. We note that for the 2D TE Mazwell model, the divergence of the
magnetic flux density is not defined. Thus, the divergence free or solenoidal nature
of the magnetic flux density is lost in the two dimensional model [28].

5. Yee Scheme for the Maxwell-Lorentz System

5.1. Discretization. The discrete approximation of the 2D Maxwell-Lorentz sys-
tem (2.16) by the Yee scheme is

1
5.1a Ol s s = (0,2 N o )
( ) el +3 Lo y Toylird x Yorl i+l ;
n+l 1 n+i —n+1
(5.1b) 6,5Exe 1. =— 5yH£+f —Jp, 2 ,
29 €p€xo 2:J 43
n+1 1 n+i —n+1
(5.1c) (5,5Ey2 2 == (5xHé '_,_21 +Jp ? ,
Jt3 €0€00 T3 Yo+
+1 —n+i 1_n+l —=n+i
(5.1d) §iJp 2 =ewiB, % —=Jp > —wiP, ? |
Foetdi thgd T T Tl ttgd
n+1 —n+i ].f’n—i-l —n+1i
(5.1e) §Jp 2 =ewiBE,  —=Jp* —wpP, 7,
Yo j+d Lity T Yei+d tity
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— 1
(5.1f) 5, P ";ﬁ =Tn
2+2,J

n+2 7L+2
(51g) (St Yy, +1 J EJ+1 .

Re-writing system (5.1) in vector form we consider the problem of solving the
discrete Maxwell-Lorentz problem given by the Yee scheme as

Given E0 € Vg, P°,J% € Vg and H™2 € Vy, find E" € Vo, Pt Jntl ¢
Vg and H"F3 € Vg that satisfy

1
(5.2a) 0:H" + — (curl, E)" =0,
Ho
(5.2b) SE T = (curth)"+1 N s
€0€xo
(5.2¢) (5th+ = eowZE JnJr2 - w%?n+§
(5.2d) 5P — 3t

5.2. Accuracy: Truncation Error Analysis. The Yee scheme for the Maxwell-
Lorentz system is also second-order accurate in both time and space.

Lemma 5.1 (Yee Scheme Truncation Errors for Maxwell-Lorentz). Suppose that

the solutions to the two-dimensional Mazwell-Lorentz equations (2.16) or (2.20) sat-

isfy the regularity conditions E € C3([0,T]; [03(7)] ), P.Jp € C3([O T [C(ﬁ)]Q)
2% n n 1 n n n n

and H € C3([0,T]; [C*()])). Let &; &5 2, E“‘,g *2,5 *2, *2,5,3*2 be the

truncation errors of the Yee scheme for the Mazwell- Lorentz model (5.1). Then

} <

Cr (Aw2 + Ay? + At2) ,

n+2 n+2

Ey

n+2 n+2 n+2 n+%
N P

(5.3) max {|§H |,

where Cp, = C, (€, [0, €cos €q, T, wo) does not depend on the mesh sizes Az, Ay,
and At.

Proof. We perform Taylor expansions and substitute the exact solution to obtain
the truncation errors for the equations in system (5.1). We have

N A2 93 H Ay? BE, .
5.4) (gH)iJr%,jJr% = ﬂw@u%vyﬁ_%vtll) + m@iy?’(%ﬁ’yll’t )
: 2 93
- iioaaf;(“”“’yj+;’t")>
- (EEw)Z:fj = %%@H%»yﬁtﬂ) + Zﬁi@ﬁ?(ﬂ?u;#ﬁ tas)
| B 2i(?)f %SyH (mu 1,Y21,1 +%)7
. 2 93 2 93
56) (SEy)Z;rf% - %j&zz@,yj+é7tgl) + Miﬁ%(w,yfr%,tgg)
x

m 03 ($31,yj+17t )a
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+l t2 83JPJC t2 62
(ngz);L+§7j = 24 at3 ( Z+%7yjat41) EowWp —5— 3 8t2 (xé+ 7y]7t42)
(5.7) At? 9% Jp, WAt 0P,
o oz @erhoirtas) + = s (T g, i, taa),
nts  At? 0°Jp, , At? 9%E,
(5.38) () 11y = 2 g (05w to0) — 0 T T vy 1)
' At 9*Jp, WIAPR 9P,
?Tgy(x2+%ayj7t53) + 08 W;(xuéa%,tm)’
ntl At? 93P At? 82me
(5.9) (ép, ) L= ﬂaT;(x”%’yj’tM) - 7@(95“%,%%62),
ntd At? 93P, At? 9% Jp
(5.10) (£P )f]—il = ﬂﬁ(ﬁbypr%vt?l) - Tﬁ(xé»yyréatm)v

where zp < 211 < 2y, Y5 < Y11 < Yjq1, and =3z < t11 < s Next, Ty 1
T30 S Tpy 1, Y1 S o1 Sy, 10 Sty < tn*t! for i € {1,2}, and £ = 2,3, ...,
and t" < ty; <"t for i € {3,4}, and £ = 4,5

O SV IA

5.3. Discrete Energy Estimates for Lorentz media.

Theorem 5.1 (Energy Decay for Maxwell-Lorentz). If stability condition (4.13)
is satisfied, then the Yee scheme for the Mazwell-Lorentz System (5.2) satisfies the
discrete identity

1

snts3 !
gh .- T€owg

n —n+i
(5.11) SETE = — (e

for all n >0, where
(5.12) &y = {uow“%,m%m + ||Vt B[,

2
+

bl

1 1
S — - U | P
Veoeso(eg—1) || H\/%Wp r

defines a discrete energy.

Proof. The proof is similar to the proof of Theorem 4.1 for the Yee scheme for the

Maxwell-Debye system. We point out the differences here. We multiply equation

ol
(5.2b) with eoeooAxAyEn+2 and sum over all spatial nodes on Tf“ X Tf” to get

(5.13)  eoen(GEMEE ) g+ N2 E ), = (curl, H'ELE TR,
which can be re-written as

€0€c0 n n
(6-14) S {IEIE — 1B} + Tp

n+2

ol el
E")p = (curl, B2 B ).

ATAyJ %

Next, we multiply equation (5.2¢) by and sum over all spatial nodes

eow?
on Tf’” X T, v to get,
(5.15) (5tJ”+2 T ), =
Gowp
—n+i —n+l 1 —n+i —=n+l 1 n+s —n+
E 2 Jp *)p——=Up *Jp *)u - (r 5P g,
Teqw? €0€oo(€g — 1)
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which we re-write as

oz (7 — W) ~

(5.16)

—n+41 1 —nt+i —nti
TR+ ————— @ AP ) p =0
H ‘|E+€O€oo(€q*1)( P ’ )E

T€0w2

AzAy ?”Jr%
€0€co (€g—1)

Finally, we multiply equation (5.2d) by and sum over all spatial
nodes on Tf”” X T}?y to get

1
€0€o0(€g — 1)
which can be re-written as
(5.18)

1

—n+i —n+i
@ P =0
60€oo(€q_1)( P ) )E ;

—ntl
(5.17) (6P, P —

1
Pn+1 2 Pn 2 _
2Atepe (€ — 1) dl I — IIP"Ilz} €0€x0(€g — 1)

Adding equations (4.17), (5.14), (5.16), and (5.18), and using the definition (5.12)
we have

TP e =0

1 n 1 -—n+
(5.19) sag LG = (€0} = —— (I 1R}
P
We can rewrite this equation in the form
gn+1 - gn 2 1 —-—n
(5.20) 1 5 [
At 5”"’ +E&8p ) o Tw?

which on utilizing the definitions of the time differencing and averaging operators
n (3.7), and (3.8), respectively, gives us the discrete identity (5.11) for Lorentz
media. As for the case of Debye media, if the stability condition (4.13) is satisfied,
the quantity defined in (5.12) is a discrete energy, i.e. a nonnegative function of
the solution to the system (5.2). The rest of the proof is similar to the proof of
Theorem 4.1 for the case of Debye media. O

5.4. Convergence Analysis of the Yee scheme for the Maxwell-Lorentz
Model. For 0 < n < N, define the error quantities

(5.21a) H" = H" — H(t"),
(5.21b) &" = E" — B(t"),
(5.21c) Th =% — Ip(th),
(5.21d) P =P" — P(t").

From the Yee scheme for the Maxwell-Lorentz model (5.2), we obtain the iden-
tities

(5.22a) fodi 1™ + (curly€)" = €,
1
(5.22b) coeasdi €7 — (curly 1) + T = gt
e 1 —nst I
(5.22¢) IV A Iy (o R S— L
eowp €oWaT €0€co(€q — 1)
1 1 ]_ *n'ﬁ'l n+l
5.22d SR A — o A
( ) €0€oo(€q — 1) P €0€co(€q — 1)jP P

For the Maxwell-Lorentz system we have the following result:
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Theorem 5.2 (Convergence of Yee Scheme for 2D Maxwell-Lorentz). Suppose that
the solutions to the two-dimensional Mazwell-Lorentz equations (2.16) satisfy the
regularity conditions E € C3([0,T];[C3(Q)]?), P,Jp € C3([0,T); [C(2))?) and H €
c? ([O,T}; [03(5)}) Forn >0, let H"t2 € Vy, E" € VEeo, J% € Vg and P™ €
Vg be the solution to the Yee scheme for the Mazwell-Lorentz system (5.2), and let
fH ,§n+2, n+2,§n+2 be the truncation errors with &% = (§§E,£§y)T,F =FE,J P,
satisfying the conditions of Lemma 5.1. If the stability condition (4.13) is satisfied,
then for any firzed T > 0,3 a positive constant Cr, = Cp(€o, o, €co, €g, T, Wo, V)
depending on the medium parameters and the Courant number v, but independent
of the mesh parameters At, Ax, Ay, such that

(5.23) Jmax {ERY 1} < SR?L’L + TCy (€0, o, €00s €gs w0, V) (A + Ay? + Az?)

where the energy of the error at time t" = nAt, ERy, 1, is defined as
2

ERLL = no(H™ 2 H ™ 3) i + || Veoesl" || + P

1 2
+ Jp
‘ ' V €oWp F E }
Proof. We follow a similar procedure to the convergence analysis for the Yee scheme
for the Maxwell- Debye model in Theorem 4.2. We multiply the average of (5.22a)

at n and n+1 by AmAy’H”"‘% and sum over all spatial nodes on T}{{, multiply (5.22b)

gl
by AxAy5n+2 and sum over all spatial nodes on sz X Tfy, multiply (5.22¢) by

€0€co(€g — 1
(5.24) ol bl

[SE

Asz?}lj and sum over all spatial nodes on Tf” X Tf v multiply (5.22d) by

AmAyﬁm_Q and sum over all spatial nodes on Tf”” X Tf Y and add the results to
obtain

ntis—=—mn % ]. —n+3 —n+3 n+l
SERER L = [T+ €

(5.25) T0w;
(é_n-"—2 gn+2)E+( n+2 7;—"-5) (£n+2 n-ﬁ-Q)E7

Expanding (5.25) we have
(5.26)
05—tz Zn+3 n n n n
SER T ER L < (€3 M +2||H+*||§ 5 e (€715 + 1™ 15)

*HSJ“IIE (1781l + 1175 Is) + ||£p+2||E (1Pl + IP" ) -

Substituting inequalities (4.35), (4.36), (4.37) and (4.39) in (5.26) and using the
bound

1

n n o5 nt3
(5.27) (178Nl + 1178 |8) < cowp€RAL

DN | =

we have
(5.28)

n+3 3 n+t3 n+3 nt3 n+g n+3g
(3ERE? ) ERur™™* < Comar {1 1L 152 1 N2 11 N2 11} €Rn ™,

where Cr, = Cfr (€, 1o, €co, €¢, T, w0, V) is a constant that depends on the medium
parameters and the Courant number v, but is independent of the mesh parameters
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a1

At, Az, Ay. Dividing by ERp, 1, Tz # 0, using recursion in time from n + 1 to 1,
At = T/N, the results of Lemma 5.1, and taking the maximum for n from 0 to
N — 1 we finally obtain

(5.29) 573221 < S’R?L,L + T'Cr(€o, 1o, €c0, €qy W05 Ty V) (At2 + Ay? + Ax2) )
U

Remark 5.1. As noted in Remark 4.1 for the convergence result in Theorem 4.2
for the 2D Yee Maxwell-Debye scheme, the convergence result in Theorem 5.2 for
the 2D Yee Maxwell-Lorentz scheme does not hold at the stability limit v =

S

5.5. Discrete Divergence for the Maxwell-Lorentz Model.

Lemma 5.2 (Discrete Divergence for the Maxwell-Lorentz System). For the Yee
scheme applied to the Mazwell-Lorentz system given in (5.2) the discrete divergence
of the initial grid functions is preserved for alln > 0, i.e. we have the identity

(5.30) divy, D™ = div, D, on 7).
Proof. The proof is the same as the proof of Lemma 4.3 for Debye media. a

6. Numerical Simulations of the Yee Scheme for the Maxwell-Debye
Model

We perform numerical simulations of system (4.2) on the domain Q = [0, 1] x
[0,1]. For our simulation we assume a uniform mesh with Az = Ay = h. We use
T = 1, parameter values po =1, g = 1 (l.e. g =1), €0 = 1,¢4 =2 (5 = 2), and
T=1

6.1. An Exact Solution for the Maxwell-Debye Model. We use an exact
solution, introduced in [7], to the Maxwell-Debye system (2.13) along with PEC
boundary conditions (2.1d), which we use to initialize our simulations. We define
the wave vector as k = (ky, k)T, where k, = ks, ky = 71'l~€y7 and the corresponding

wave number is |k| = | /k2 + k2. We also define the function ap (6, [k|) := 6% — 6 +
k|*. The exact solution to the Maxwell-Debye system (2.13) with (2.1d) is

2
(6.1a) H= %e*m cos(kgx) cos(kyy),
E, fgkye*‘% cos(kqx) sin(kyy)
o ee(E) [ |
;kwe sin(kqx) cos(kyy)
P, %al)(e, k|)e™% cos(k,x) sin(k,y)

—~Zap(0,|k|)e” " sin(k,x) cos(k,y)
T

where the parameter 6 is a real number. We note that for k, and l;y integers,
the exact solution (6.1) satisfies the perfect conductor conditions (2.1d) on the
boundary of the domain €2, and the electric and polarization fields are divergence
free on (2.

The wave number |k| and parameter 6 are related by the equation

(6.2) 0% — 20% + |k|° 0 — |k|* = 0.
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The energy defined in (2.12) for the exact solution (6.1) can be computed to be

—ot

(63 ep(t) = X1 e a0 ).

In our simulations we use various values of the Courant number v, defined in (4.13),

and various values of k, = k, = k. The real root of equation (6.2) depends on the

value of the wave number |k| = v/2k. In particular, for k=ky = k~y =1,0 ~ 1.0532.
The exact dispersion relation for Debye media [5, 31] relating the wave number

|k| to the angular frequency w is

w [€s — iwTeEs
6.4 kl=—/—/——F.
(64) [k Co 1—-iwr

Thus, using the chosen values for the parameters co =7 =€ =1, and €, = ¢, = 2
in (6.4) and squaring both sides, the dispersion relation can be written as

(6.5) (iw)® — 2(iw)? + [k* iw — [k|* = 0.

As noted in [7], comparing the dispersion relation (6.5) to the relation (6.2) for real
6, we note that the exact solution (6.1) corresponds to a solution for the Maxwell-
Debye system (2.13) for a purely imaginary angular frequency w = —if.

6.2. Relative and Energy Errors. For the discrete solution produced we com-
pute relative errors defined as

66)  Erp(t") = (JBE) — B3 + | H@) - T3 + [P - P13

t'ﬂ
(6.7) relative error = max Erp(t") ,
0<n<N-1\_ Ep(t")
where the grid norms || - || g, and ||- ||z are defined in (3.14) and (3.15), respectively.
We also define the energy error for the discrete solutions as

L0 1) sy
(6.8) energy error = = max i ;
— ()

where the discrete energy &, is defined in (4.15) and ds—tD (t"*é) is the time

derivative of the exact energy (6.3) computed at the time point e,

Table 1 presents the relative errors (6.7) and confirms the second order accuracy
of the Yee scheme for various values of At, h, k and v. The variable N € N is the
number of time steps performed, thus NAt = T. We note that the largest value
of At chosen (0.02) is such that At/7 (7 =1 in this example) is O(1072) or lower.
This is in agreement with results obtained in [31] which indicate that to resolve
all time scales in the problem we must choose At = O(10727) for Debye media.
Table 2 presents the energy errors (6.8). The results in this table indicate that the
energy error decreases in a second order accurate manner, and provides another
confirmation of the second order accuracy of the Yee scheme.

In Figures 1 and 2 we plot the relative errors (6.6) and the energy errors (6.8),
respectively, for the various values of N, v and k as presented in the corresponding
tables. An O(h?) reference is provided to visually confirm the second order accuracy
of the Yee scheme.
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TABLE 1. Relative Errors for the 2D Yee Maxwell-Debye scheme.

k=1n

N v=0.3 v=20.5 v=0.7
Error Rate Error Rate Error Rate

50 | 1.20 x 1073 457 x 1077 2.53 x 1072

100 | 2.99 x 107* [ 2.01 [ 1.14x107% | 2.01 [ 6.30 x 107" | 2.00

200 | 7.46 x 107° [ 2.00 | 2.84 x 107 | 2.00 | 1.57 x 10> | 2.00

400 | 1.86 x 107° | 2.00 | 7.10 x 10°° [ 2.00 | 3.93 x 10~° | 2.00

800 | 4.65 x 107% ] 2.00 [ 1.77 x 1075 | 2.00 | 9.83 x 10~" | 2.00

k=5m

N v=0.3 v=0.5 v=0."7
Error Rate Error Rate Error Rate

50 | 5.39 x 1073 2.01 x 1073 1.02 x 1073

100 | 1.39 x 107* | 1.96 [ 4.97 x107% | 2.02 | 2.54 x 10~ | 2.01

200 | 3.44x107%] 201 [1.24x107* | 2.01 [ 6.34 x10~° | 2.00

400 | 857 x107° | 2.00 [ 3.09 x 107> | 2.00 | 1.58 x 10~° | 2.00

800 | 2.14 x 107" | 2.00 | 7.72x 107 ° | 2.00 | 3.95 x 10°° | 2.00

k=107

N v=0.3 v=05>5 v=20.7
Error Rate Error Rate Error Rate

50 | 1.23 x 1072 4.08 x 1073 2.02x10°°

100 | 2.79x 1073 | 2.14 [ 9.75 x 10~% | 2.06 | 4.94 x 10~* | 2.03

200 | 6.74x107% [ 2.05 | 241 x107* | 2.02 [ 1.23x 107% | 2.02

400 | 1.67 x 107% | 2.01 [ 6.00 x 107° | 2.00 | 3.06 x 10~° | 2.00

800 | 4.16 x 107> | 2.00 | 1.50 x 10> | 2.00 | 7.66 x 10~ ° | 2.00

TABLE 2. Energy Errors for the 2D Yee Maxwell-Debye scheme.

kE=1n

N v=0.3 v=20.5 v=0.7
Error Rate Error Rate Error Rate

50 | 1.67 x 1073 6.44 x 1077 3.60 x 1072

100 | 4.16 x 107* | 2.01 [ 1.60 x 107% | 2.01 | 8.97 x 10> | 2.01

200 | 1.04 x 1072 [ 2.00 | 4.00 x 1077 | 2.00 | 2.24 x 10> | 2.00

400 [ 259 x 107° | 2.00 [ 9.99 x 107° [ 2.00 | 5.59 x 10~% | 2.00

800 | 6.48 x 107 %] 2.00 [ 2.50 x 107° | 2.00 | 1.40 x 10°° | 2.00

k=5m

N v=0.3 v=0.5 v=0.7
Error Rate Error Rate Error Rate

50 | 6.68 x 1073 2.32x10°° 1.20 x 1073

100 | 1.61 x 1073 | 2.06 | 5.79 x 10~* | 2.01 [ 2.99 x 10~* | 2.00

200 [ 3.98 x 1073 [ 2.02 | 144 x107* [ 2.01 | 744 x107° | 2.01

400 [ 9.91 x 1075 | 2.00 [ 3.60 x 107° | 2.00 | 1.86 x 10~° | 2.00

800 | 2.47 x107° [ 2.00 | 9.89 x 10°° | 2.00 | 4.64 x 10~ ° | 2.00

k=107

N v=20.3 v=20.5 v=20.7
Error Rate Error Rate Error Rate

50 | 1.46 x 1072 5.24 x 10°° 252 x10°°

100 | 3.53x 1073 [ 2.05 | 1.23x 1073 | 2.09 | 6.30 x 10~% | 2.00

200 [ 855 x107% [ 2.04 | 3.06 x107* [ 2.01 | 1.56 x 107 % | 2.01

400 [ 212 x107% | 2.01 [ 7.62x107° | 2.00 | 3.90 x 10~° | 2.00

800 | 5.27 x 107> | 2.00 | 1.90 x 10=° | 2.00 | 9.75 x 10~ ° | 2.00

679
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FIGURE 1. Relative errors for different wave numbers (k, = k&,
k) in the 2D Yee Maxwell-Debye scheme for Courant numbers v =
0.3, 0.5 and 0.7.
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FIGURE 2. Energy errors for different wave numbers (k, = k, = k)
in the 2D Yee Maxwell-Debye scheme for Courant numbers v = 0.3,
0.5 and 0.7.
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6.3. Convergence Analysis of the Discrete Divergence. We verify the
identity in (4.51) by computing the maximum absolute grid error in the discrete
divergence as follows

(6.9) max || divy, D" — divy, D°|Jo,

0<n<N

where the grid norm || - || is defined in (4.48). Table 3 presents the absolute errors
(6.9) of the 2D Yee Maxwell-Debye scheme for various values of At, h, k and v.
Again, N € N, with NAt = T, refers to the number of time steps performed. All
errors are sufficiently small to suggest that they are due to roundoff.

TABLE 3. Discrete Divergence Errors for the 2D Yee Maxwell-
Debye scheme.

k=1nr

N v =0.3 v=0.5 v=0.7
50 [ 947 x 107 [ 1.26 x 1073|225 x 10713
100 [ 243 x 107 [ 4.05 x 107 [ 5.82 x 10713
200 [ 7.12x 107 [ 1.15x 1072 [ 1.61 x 10712
400 [ 204 x 1072 [ 324 x 1072 [ 4.70 x 1012
800 | 5.76 x 1072 [ 9.66 x 1072 | 1.34 x 10~ 7
k =57

N v=20.3 v=20.5 v=0."7
50 | 4.66 x 1072 [ 1.68 x 10711 | 1.47 x 10711
100 [ 2.99 x 1071 [ 548 x 10711 [ 7.16 x 10~ ¢
200 [ 7.29 x 10711 [ 1.30x 1070 [ 1.98 x 10~ 1°
400 [ 231 x 10719 3.83x 107 [ 6.19 x 10710
800 [ 6.86 x 1070 [ 1.17x107% | 1.71 x 107°
k=107

N v =0.3 v=0.5 v=0.7
50 [ 6.99x 107 [ 1.14 x 10719 [ 1.89 x 10~
100 [ 1.15 x 1079 [ 248 x 107 1° [ 5.40 x 10~ 1°
200 [ 391 x 10710 [ 1.09x 1077 | 1.31 x 107°
400 | 1.71x 1077 | 335 x107Y | 491 x 107°
800 | 6.44 x 1077 | 873 x107Y | 1.25 x 107 %

7. Numerical Simulations of the Yee Scheme for the Maxwell-Lorentz
Model

We perform numerical simulations of system (5.2) on the domain Q = [0, 1] x[0, 1]
using exact solutions for which ey = 1o = €0 =wo =1,7=0.4, and €; = ¢, = 2.

7.1. An Exact Solution for the Maxwell-Lorentz Model. We define the
functions ar, (0, |k|) := 62 + 20 + [k|* — 1, and S.(6, [k|) := 6% + |k|>. We consider
the following exact solution to the Maxwell-Lorentz system (2.16) along with PEC
boundary conditions (2.1d)

B, —gkye_et cos(kzx) sin(kyy)
(7.1a) E= < E, ) = 0 ,
—kye™ " sin(kyx) cos(kyy)
™
2
(7.1b) H= ﬁe*m cos(kyx) cos(kyy),
71'
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_ky

P, TQL(G, k|)e™% cos(k,) sin(kyy)
(7.1c) P= p | = 4 ,
Y “Lap (0, |k e sin(k,x) cos(k,y)
™
—k
—Y31.(8, |k|)e~? cos(kx) sin(k,y)
']PI ™ Y
(7.1d) Jp = I, = 4
Py 2 B1(0, [k|)e™ " sin(k,x) cos(k,y)
™
In the above, the wave number and parameter 6 are related by the equation
1 k|?
(7.2) 0 = —0° + 2+ |K*)0” - %9 +[k|* = 0.

As in the Debye model, for k, and l;:y integers, the exact solution (7.1) satisfies
the perfect conductor conditions on the boundary of the domain 2, and the electric
and polarization fields are divergence free on €. The energy defined in (2.19) for
the exact solution (7.1) can be computed to be

k e—at
A Ry AR AT
The real root of equation (7.2) depends on the value of the wave number |k|. In
particular, for k =1, 6 ~ 0.5087.

The exact dispersion relation for Lorentz media [5, 31] relating the wave number
|k| to the angular frequency w for the chosen values of parameters is

(7.3) (t)

(w? = 2)7 + iw

w
A4 kl=—/ ———F7F——F—.
(74) k] co | (w? — 1)1+ iw

Squaring both sides, the dispersion relation can be written as
1 k|?
(7.5) ()" = —(iw)” + (2 + k| (1w)® — %(iw) +[k|* =0.

Comparing the disersion relation (7.5) to the relation (7.2) for real 8, we note that
the exact solution (7.1) corresponds to a solution for the Maxwell-Lorentz system
(2.16) for a purely imaginary angular frequency w = —i6.

7.2. Relative and Energy Errors. For the discrete solution produced we com-
pute relative errors defined as

(7.6) Err(t") =

=

(||E(t")—E"||%+||H(t")—F"||%,+||P(t")—P"||?;+||Jp(t")— %II%) )

5R,L (t") )
En(tr) )’

where the grid norms || -|| g, and || - ||z are defined in (3.14) and (3.15), respectively.

We also define the energy error for the discrete solutions as

Cr ity sy
(7.8) CLergy error = max €E; .
e (t"z)

where the discrete energy &' is defined in (5.12) and ‘%L (t"*%) is the time

(7.7) relative error = max <
0<n<N

derivative of the exact energy (7.3) computed at the time point nts,
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Table 4 presents the relative errors (7.7) and confirms the second order accuracy
of the Yee scheme for various values of At, h, k and v. The number of time steps

performed is N € N with NAt = T. Table 5 presents the energy errors (7.8).

TABLE 4. Relative Errors for the 2D Yee Maxwell-Lorentz scheme.

k=1n

N v=20.3 v=20.5 v=0.7
Error Rate Error Rate Error Rate

50 | 4.43x 10 % 1.62 x 10 ¢ 845 x 1077

100 | 1.11 x 10~ % | 2.00 | 4.04 x 107° | 2.00 [ 2.11 x 107° | 2.00
200 | 2.76 x 107" | 2.00 | 1.01 x 10=° | 2.00 | 5.27 x 10~° | 2.00
400 [ 6.90 x 107° | 2.00 | 2.52x 107% | 2.00 | 1.32 x 10~ ° | 2.00
800 | 1.72x 107% [ 2.00 | 6.30 x 107% | 2.00 | 3.29 x 10~7 | 2.00

k=b5n

N v=20.3 v=20.5 v=0.7
Error Rate Error Rate Error Rate

50 [ 242 x 1073 8.89 x 107 * 449 x 10°*

100 | 6.14 x 107* [ 1.98 [ 219 x 1072 | 2.02 [ 1.12x 10~ % | 2.00
200 [ 1.52x 1072 ] 2.01 | 547 x107° | 2.00 | 2.79 x 10> | 2.00
400 [ 3.79x107° | 2.00 [ 1.37 x 107° | 2.00 | 6.97 x 10~° | 2.00
800 | 9.47x107% [ 2.00 | 341 x107% | 2.00 | 1.74 x 107 % | 2.00

k=107

N v=20.3 v=20.5 v=0.7
Error Rate Error Rate Error Rate

50 | 5.45 x 1073 1.81x 1073 8.97 x 1077

100 | 1.24 x 107 | 2.14 [ 434 x107% | 2.06 | 2.20 x 10~ % | 2.03
200 [ 3.00x 1073 ] 2.04 | 1.07x107% [ 2.01 | 547 x107° | 2.01
400 | 745 x107° | 2.01 | 268 x 107 | 2.00 | 1.37 x 10~° | 2.00
800 | 1.86 x 107° | 2.00 | 6.68 x 10~ ° | 2.00 | 3.41 x 107° | 2.00

The results in this table indicate that the energy error decreases in a second order
accurate manner, and provides another confirmation of the second order accuracy
of the Yee scheme.

In Figures 3 and 4 we plot the relative errors (7.6) and the energy errors (7.8),
respectively, for the various values of N, v and k as presented in the corresponding
tables. An O(h?) reference is provided to visually confirm the second order accuracy
of the Yee scheme.

7.3. Convergence Analysis of Discrete Divergence. Finally, we verify the
identity in (5.30) by computing the maximum absolute grid error in the discrete
divergence as defined in (6.9). Table 6 presents the absolute errors in the discrete
divergence of solutions to the 2D Yee Maxwell-Lorentz scheme for various values
of At, h, k and v. Again, N € N, with NAt = T, refers to the number of time
steps performed. All errors are sufficiently small to suggest that they are due to
roundoff.

8. Conclusions

In this paper, we have presented an accuracy, stability and convergence analysis
of the Yee scheme for Maxwell’s equations in Debye and Lorentz dispersive media
using energy techniques. This research fills an important gap in the literature on
Yee methods for dispersive media models by explicitly computing energy decay
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TABLE 5. Energy Errors for the 2D Yee Maxwell-Lorentz scheme.

k=1n

N v=0.3 v=20.5 v=0.7
Error Rate Error Rate Error Rate

50 | 2.00 x 10~* 6.59 x 1077 3.55 x 10°°

100 | 4.97 x107° | 2.01 | 1.64x107° | 2.01 [ 9.14x 107% ] 1.96

200 [ 1.24 x107° [ 2.00 | 410 x107% | 2.00 | 2.32x 107 ° | 1.98

400 [ 310 x 107% ] 2.00 [ 1.02x 107% | 2.00 | 5.84 x 10~ " | 1.99

800 | 7.74 x 1077 | 2.00 | 2.56 x 10~7 | 2.00 | 1.47 x 10~" | 2.00

k=5m

N v=0.3 v=0.5 v=0."7
Error Rate Error Rate Error Rate

50 | 3.37 x 10772 1.20 x 1077 6.43 x 107°

100 [ 799 x 107° [ 2.08 [ 299 x10°° | 2.01 | 1.63x 107° | 1.98

200 [ 1.97 x107° [ 2.02 | 744 x 107% | 2.00 | 4.07 x 10~ ° | 2.00

400 [ 492 x107%] 2.00 [ 1.86 x 107% | 2.00 | 1.02 x 107° | 2.00

800 | 1.23 x 107 %] 2.00 | 4.65 x 10~7 | 2.00 | 2.55 x 10~" | 2.00

k=107

N v=0.3 v=05>5 v=20.7
Error Rate Error Rate Error Rate

50 | 4.29 x 1072 1.21 x 10~ 7% 6.91 x 10°°

100 | 8.86 x 107° | 2.28 [ 3.31x107° | 1.87 [ 1.75 x 10~° | 1.98

200 [ 2.23x107° [ 1.99 | 822 x107% | 2.01 [ 444 x107°% | 1.98

400 | 550 x 107 | 2.02 [ 2.06 x 107 [ 2.00 | 1.11 x 10~% | 2.00

800 [ 1.37x107% [ 2.01 [ 513 x 1077 | 2.00 | 2.78 x 10~ " | 2.00

TABLE 6. Discrete Divergence Errors for the 2D Yee Maxwell-

Lorentz scheme.

k —

17

v=0.3

v=20.5

v=0."7

1.71 x 10713

2.96 x 1073

3.59 x 10~ 13

410x 10713

6.91 x 10~ 1°

1.02 x 10~ 2

1.22 x 10~ 12

2.05 x 10712

2.83 x 10712

3.34 x 10712

5.78 x 10712

8.06 x 10~ 12

0.82 x 10712

1.62 x 10~ 11

2.30 x 10711

51

v=20.3

v=20.>5

v=0.7

9.59 x 10~ 12

2.35 x 10~ 11

437 x 10~

3.39 x 10711

7.80 x 10711

1.11 x 10710

1.61 x 10~ 1

2.32x 1071

3.61x10°1°

5.19 x 10~

8.36 x 10~ 1°

90.91 x 10°1°

1.18 x 1077

1.96 x 1077

2.77 x 1077

k=

107

N

v=20.3

v=20.5

v=0."7

50

1.18 x 10~

2.25 x 10710

2.66 x 10710

100

3.62 x 10~

3.83x10°1°

8.60 x 10~ 1°

200

1.18 x 1077

1.64 x 107°

2.63 x 1077

400

2.85 x 1077

5.09 x 1077

8.09 x 107°

800

9.96 x 107°

1.55 x 1078

229x10°°
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FIGURE 3. Relative errors for different wave numbers (k, = k, =
k) in the 2D Yee Maxwell-Lorentz scheme for Courant numbers
v =20.3,0.5 and 0.7.
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FIGURE 4. Energy errors for different wave numbers (k, = k, =
k) in the 2D Yee Maxwell-Lorentz scheme for Courant numbers
v =10.3, 0.5 and 0.7.

inequalities for these methods which aid in a convergence analysis of the numerical

schemes.

Our analysis assumes dispersive media parameters that are constant.

However, the generality of the energy analysis will allow an extension of our results
to the case of parameters that are functions of space and/or time.
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We have constructed novel exact solutions for the Maxwell-Debye and Maxwell-
Lorentz models that illustrate our analytical results. These exact solutions will also
be helpful to illustrate analyses of other numerical techniques.
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