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CONVERGENCE ANALYSIS OF YEE SCHEMES FOR

MAXWELL’S EQUATIONS IN DEBYE AND LORENTZ

DISPERSIVE MEDIA

V. A. BOKIL AND N. L. GIBSON

Abstract. We present discrete energy decay results for the Yee scheme applied to Maxwell’s

equations in Debye and Lorentz dispersive media. These estimates provide stability conditions for
the Yee scheme in the corresponding media. In particular, we show that the stability conditions are

the same as those for the Yee scheme in a nondispersive dielectric. However, energy decay for the

Maxwell-Debye and Maxwell-Lorentz models indicate that the Yee schemes are dissipative. The
energy decay results are then used to prove the convergence of the Yee schemes for the dispersive

models. We also show that the Yee schemes preserve the Gauss divergence laws on its discrete

mesh. Numerical simulations are provided to illustrate the theoretical results.
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1. Introduction

The Yee scheme is a finite difference time domain (FDTD) numerical technique
for the discretization of Maxwell’s equations in a non-dispersive medium such as
free space. It was first presented in [35]. The Yee scheme was extended to discretize
Maxwell’s equations in linear dispersive media and analyzed in a series of papers
[4, 9, 13, 18, 19, 20, 31] involving dispersive media models such as the Debye [14, 20],
Lorentz [18, 30], cold plasma [13, 36] and Cole-Cole [9, 12] models among others.
Fourier analysis of the Yee scheme in such dispersive media (see for e.g. [4, 31])
indicate that the Yee scheme is stable under the same stability condition as that in
a corresponding (having the same relative permittivity) non-dispersive dielectric.
However, the Yee scheme in dispersive media is dissipative, unlike its counterpart in
a non-dispersive, non-conductive medium, and in addition is more dispersive [5, 32].
The time step in the Yee scheme needs to be chosen to resolve all the time scales
associated with a particular dispersive medium such as relaxation times, resonance
times, and incident wave periods [32]. Maxwell’s equations in such media have been
shown to constitute a stiff problem and the time step needed to resolve waves in
the numerical grid can be extremely small [32]. Research on the construction and
analysis of Yee type finite difference time domain methods for Maxwell’s equations
in dispersive media is an area of active interest. We refer the reader to the book
[33] and the numerous references therein for an introduction to the Yee scheme and
its properties.

In this paper we present for the first time an analysis of the Yee scheme in
Debye (Maxwell-Debye) and Lorentz (Maxwell-Lorentz) media by deriving ener-
gy decay results that indicate the conditional stability and dissipative nature of
the schemes. We also present a full convergence analysis of the Yee schemes for
the Maxwell-Debye and Maxwell-Lorentz models using the derived energy decay
results. Energy methods based on variational techniques for analyzing stability
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and convergence properties of the Yee scheme in a lossy non-dispersive medium
and operator splitting FDTD techniques have recently been published in the litera-
ture, see for example [7, 10, 15]. Finite element methods (FEM) and discontinuous
Galerkin (DG) methods for Maxwell’s equations in various dispersive media have
also recently been published, for example see [1, 16, 21, 22, 23, 24, 25, 26, 34] and
references therein.

We construct exact solutions based on numerical dispersion relations for the
Maxwell-Debye and Maxwell-Lorentz models which are useful in understanding the
decay of discrete energies in numerical methods for these models. We use these
exact solutions to illustrate our stability and convergence analyses in our numerical
simulations of the Yee schemes.

The outline of the paper is as follows. In Section 2 we present two dispersive
media models and construct the Maxwell-Debye model and Maxwell-Lorentz mod-
el in two dimensions. We recall energy decay results for these models from the
literature [23]. In Section 3 we outline the discrete meshes and spaces that the
electric, magnetic and polarization fields are discretized on and establish discrete
curl operators and their properties. In Sections 4 and 5 we recall the Yee schemes
for the Maxwell-Debye and the Maxwell-Lorentz models, respectively. For both
models we show that the corresponding Yee schemes are second-order accurate in
time, establish discrete energy decay results and prove the conditional convergence
of the corresponding Yee schemes. In addition, we show that these schemes satisfy
the Gauss divergence laws on the discrete Yee mesh. Numerical simulations based
on exact solutions are presented in Sections 6 and 7 that illustrate the stability and
convergence analyses. Finally, conclusions are made in Section 8.

2. Maxwell’s Equations in Dispersive Dielectrics

We consider Maxwell’s equations which govern the electric field E and the mag-
netic field H in a domain Ω ⊂ R3 from time 0 to T given as

∂D

∂t
−∇×H = 0 in Ω× (0, T ),(2.1a)

∂B

∂t
+∇×E = 0 in Ω× (0, T ),(2.1b)

∇ ·D = 0 = ∇ ·B in Ω× (0, T ),(2.1c)

n×E = 0 on ∂Ω× (0, T ),(2.1d)

E(0,x) = E0; H(0,x) = H0 in Ω.(2.1e)

The fields D,B are the electric and magnetic flux densities respectively. On the
boundary, ∂Ω, we impose a perfect conducting (PEC) boundary condition (2.1d),
where the vector n is the outward unit normal vector to ∂Ω. Lastly, we add initial
conditions (2.1e) to the system.

Within the dielectric medium we have constitutive relations that relate the flux
densities D,B to the electric and magnetic fields, respectively, as

D = ε0ε∞E + P,(2.2a)

B = µ0H,(2.2b)

where the constants ε0 and µ0 are the permittivity and permeability of free space,
and are connected to the speed of light in vacuum, c0, by c0 = 1/

√
ε0µ0. The
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quantity P is called the electric (macroscopic) relaxation polarization, and the
coefficient ε∞ is called the infinite frequency relative permittivity.

The constitutive law (2.2a) incorporates the effects of electric polarization, which
is defined as the electric field induced disturbance of the charge distribution in a
region [2]. This polarization may have an instantaneous component as well as
ones that do not occur instantaneously. The relaxation polarization P is the non-
instantaneous part of the electric polarization and usually has associated time con-
stants [2]. The presence of instantaneous polarization is accounted for by the coef-
ficient ε∞ in the constitutive relation (2.2a). We neglect any additional magnetic
effects and assume that the magnetic constitutive relation (2.2b) for free space is
also valid in the dispersive medium.

To describe the behavior of the media’s macroscopic electric polarization P, a
general integral equation model is employed in which the polarization explicitly
depends on the past history of the electric field [2]. The resulting constitutive law
can be given in terms of a convolution involving a displacement susceptibility kernel
g as

(2.3) P(t,x) =

∫ t

0

g(t− s,x)E(s,x)ds,

inside the dielectric. Here, we consider polarization mechanisms for which, in the
time domain, the convolution (2.3) describing the polarization can be converted to
an ordinary differential equation (ODE) or systems of ODEs governing the evolution
of the relaxation polarization driven by the electric field [2]. In particular, we
consider two popular models: the Debye model [14] for orientational polarization
and the Lorentz model [30] for electronic polarization.

2.1. Debye Media: Model and Energy estimates. To model wave propaga-
tion in polar materials, like water, we use the single-pole Debye model in which the
susceptibility kernel in (2.3) is

(2.4) g(t,x) =
ε0(εs − ε∞)

τ
e−t/τ .

This gives a model for orientational polarization [2, 14]. Using this form of the
susceptibility kernel, equation (2.3) can be re-written as an ODE in time forced by
the electric field

(2.5) τ
∂P

∂t
+ P = ε0ε∞(εq − 1)E, in Ω× (0, T ).

In equation (2.5) the parameter εs is called the static relative permittivity. The
ratio of static to infinite permittivities is denoted as εq := εs

ε∞
. The parameter τ is

the relaxation time associated with the polarization mechanism [2]. In general τ ,
ε∞, and εs can be functions of space, but we assume here that all parameters are
constant within the medium, εs > ε∞, i.e. εq > 1 and τ > 0.

To construct a model for electromagnetic wave propagation in a polar material
in two dimensions, we make the assumption that no fields exhibit variation in the z
direction, i.e. all partial derivatives with respect to z are zero. The electric field and
polarization then have two components each, E = (Ex, Ey)T ,P = (Px, Py)T and the
magnetic field has one component Hz = H. Combining (2.5) with the constitutive
relations (2.2a) and (2.2b), and substituting in the Maxwell curl equations (2.1a)
and (2.1b) we get the following system of partial differential equations which we
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call the 2D TE Maxwell-Debye model :

∂H

∂t
= − 1

µ0
curl E,(2.6a)

∂E

∂t
=

1

ε0ε∞
curl H − (εq − 1)

τ
E +

1

ε0ε∞τ
P,(2.6b)

∂P

∂t
=
ε0ε∞(εq − 1)

τ
E− 1

τ
P,(2.6c)

where for a vector field, U = (Ux, Uy)T , the scalar curl operator is curl U :=
∂Uy

∂x −
∂Ux

∂y , and for a scalar field, V , the vector curl operator is curl V :=
(
∂V
∂y ,−

∂V
∂x

)T
[28]. All the fields in (2.6) are functions of position x = (x, y)T and time t.

We first show that system (2.6) along with the PEC boundary conditions (2.1d)
and initial conditions E(x, 0) = E0(x), P(x, 0) = P0(x) and H(x, 0) = H0(x) for
x ∈ Ω ⊂ R2 is well-posed. To this end, we define the following two function spaces:

H(curl,Ω) = {u ∈
(
L2(Ω)

)2 | curl u ∈ L2(Ω)},(2.7)

H0(curl,Ω) = {u ∈ H(curl,Ω) | n× u = 0 on ∂Ω}.(2.8)

Let (·, ·) denote the L2 inner product and || · ||2 the corresponding norm. Mul-
tiplying (2.6a) by µ0v ∈ L2(Ω), (2.6b) by ε0ε∞u ∈ H0(curl,Ω), and (2.6c) by

(ε0ε∞(εq − 1))−1w ∈
(
L2(Ω)

)2
, integrating over the domain Ω ⊂ R2 and applying

Green’s formula for the curl operator

(curl H,u) = (H, curl u) , ∀u ∈ H0(curl,Ω),(2.9)

we obtain the weak formulation for the 2D Maxwell-Debye system of equations
(2.6) as follows (

µ0
∂H

∂t
, v

)
= (−curl E, v) ,∀ v ∈ L2(Ω),(2.10a) (

ε0ε∞
∂E

∂t
,u

)
= (H, curl u)−

(
ε0ε∞(εq − 1)

τ
E,u

)
+

(
1

τ
P,u

)
,(2.10b)

∀ u ∈ H0(curl,Ω),(
1

ε0ε∞(εq − 1)

∂P

∂t
,w

)
=

(
1

τ
E,w

)
−
(

1

ε0ε∞(εq − 1)τ
P,w

)
,(2.10c)

∀ w ∈
(
L2(Ω)

)2
.

The following theorem shows the stability of the 2D Maxwell-Debye model (2.6) by
showing that the model exhibits energy decay.

Theorem 2.1 (Maxwell-Debye Energy Decay). Let Ω ⊂ R2 and suppose that
the solutions of the weak formulation (2.10) for the 2D Maxwell-Debye system

of equations (2.6) satisfy the regularity conditions P ∈ C1(0, T ;
(
L2(Ω)

)2
), E ∈

C(0, T ;H0(curl,Ω))∩ C1(0, T ; (L2(Ω))2), and H ∈ C1(0, T ;L2(Ω)). Then the sys-
tem exhibits energy decay,

ED(t) ≤ ED(0), ∀t ≥ 0,(2.11)

where the energy ED(t) is defined as

ED(t) =

(∥∥∥√µ0 H(t)
∥∥∥2

2
+
∥∥∥√ε0ε∞ E(t)

∥∥∥2

2
+
∥∥∥ 1√

ε0ε∞(εq − 1)
P(t)

∥∥∥2

2

) 1
2

.(2.12)
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Proof. See [6, 21, 23]. �

In [23], it is also shown that the Gauss laws are satisfied by the Maxwell-Debye
system if the initial fields are divergence free.

The 2D Maxwell-Debye TE scalar equations derived from (2.6) are given
as

∂H

∂t
=

1

µ0

(
∂Ex
∂y
− ∂Ey

∂x

)
,(2.13a)

∂Ex
∂t

=
1

ε0ε∞

∂H

∂y
− (εq − 1)

τ
Ex +

1

ε0ε∞τ
Px,(2.13b)

∂Ey
∂t

= − 1

ε0ε∞

∂H

∂x
− (εq − 1)

τ
Ey +

1

ε0ε∞τ
Py,(2.13c)

∂Px
∂t

=
ε0ε∞ (εq − 1)

τ
Ex −

1

τ
Px,(2.13d)

∂Py
∂t

=
ε0ε∞ (εq − 1)

τ
Ey −

1

τ
Py.(2.13e)

2.2. Lorentz Media: Model and Energy estimates. For Lorentz Media, the
choice of the kernel function in equation (2.3) is

(2.14) g(t,x) =
ε0ω

2
p

ν0
e−t/2τ sin(ν0t),

where ωp := ω0
√
εs − ε∞ is the plasma frequency, ω0 is the resonant frequency of

the medium, λ :=
1

2τ
is a damping constant, and ν0 :=

√
ω2

0 − λ2. We assume that

the parameters εs, ε∞, ω0 and τ (hence also ωp and λ) are constants. The Lorentz
model for electronic polarization in differential form is represented with the second
order ODE forced by the electric field given as

(2.15)
∂2P

∂t2
+

1

τ

∂P

∂t
+ ω2

0P = ε0ω
2
pE.

Rewriting the above second order ODE as a system of two first order ODE’s by
introducing a new variable JP = ∂P

∂t , the 2D TE Maxwell-Lorentz model is

∂H

∂t
= − 1

µ0
curl E,(2.16a)

∂E

∂t
=

1

ε0ε∞
curl H − 1

ε0ε∞
JP ,(2.16b)

∂JP
∂t

= −1

τ
JP − ω2

0P + ε0ω
2
pE,(2.16c)

∂P

∂t
= JP .(2.16d)

All the fields in (2.16) are functions of position x = (x, y)T and time t. For the
Maxwell-Lorentz system (2.16) we obtain the weak formulation(

µ0
∂H

∂t
, v

)
= − (curl E, v) , ∀v ∈ L2(Ω),(2.17a) (

ε0ε∞
∂E

∂t
,u

)
= (H, curl u)− (JP ,u) , ∀u ∈ H0(curl,Ω),(2.17b)
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1

ε0ω2
p

∂Jp
∂t

,w

)
= −

(
1

ε0ω2
pτ

Jp,w

)
−
(

1

ε0ε∞(εq − 1)
P,w

)
(2.17c)

+ (E,w) , ∀w ∈
(
L2(Ω)

)2
,(

1

ε0ε∞(εq − 1)

∂P

∂t
,q

)
=

(
1

ε0ε∞(εq − 1)
Jp,q

)
, ∀q ∈

(
L2(Ω)

)2
.(2.17d)

The following theorem shows the stability of the 2D Maxwell-Lorentz model (2.16)
by showing that the model exhibits energy decay (also see [5, 23]).

Theorem 2.2 (Maxwell-Lorentz Energy Decay). Let Ω ⊂ R2 and suppose that the
solutions of the weak formulation (2.17) for the Maxwell-Lorentz system of equations
(2.16) satisfy the regularity conditions E ∈ C(0, T ;H0(curl,Ω)) ∩ C1(0, T ; (L2(Ω))2),

P,JP ∈ C1(0, T ;
(
L2(Ω)

)2
), and H(t) ∈ C1(0, T ;L2(Ω)). Then the system exhibits

energy decay,

EL(t) ≤ EL(0), ∀ t ≥ 0,(2.18)

where the energy EL(t) is defined as

(2.19) EL(t) =

(∥∥∥√µ0 H(t)
∥∥∥2

2
+
∥∥∥√ε0ε∞ E(t)

∥∥∥2

2

+
∥∥∥ 1√

ε0ε∞(εq − 1)
P(t)

∥∥∥2

2
+
∥∥∥ 1
√
ε0ωp

JP (t)
∥∥∥2

2

) 1
2

.

Proof. See [6, 23]. �

In [23], it is also shown that the Gauss laws are satisfied by the Maxwell-Lorentz
system if the initial fields are divergence free.

The 2D Maxwell-Lorentz TE scalar equations derived from system (2.16)
on which the Yee scheme is based are:

∂H

∂t
=

1

µ0

(
∂Ex
∂y
− ∂Ey

∂x

)
,(2.20a)

∂Ex
∂t

=
1

ε0ε∞

(
∂H

∂y
− JPx

)
,(2.20b)

∂Ey
∂t

= − 1

ε0ε∞

(
∂H

∂x
+ JPy

)
,(2.20c)

∂JPx

∂t
= ε0ω

2
pEx −

1

τ
JPx
− ω2

0Px,(2.20d)

∂JPy

∂t
= ε0ω

2
pEy −

1

τ
JPy
− ω2

0Py,(2.20e)

∂Px
∂t

= JPx
,(2.20f)

∂Py
∂t

= JPy
.(2.20g)

3. The Yee scheme: Discretization in Space and Time

In this section we consider the finite difference time domain (FDTD) Yee scheme
for discretizing the 2D Maxwell-Debye model (2.6) or (2.13) and 2D Maxwell-
Lorentz models (2.16) or (2.20).
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Consider the spatial domain Ω = [0, a]× [0, b] ⊂ R2 and time interval [0, T ] with
a, b, T > 0, and spatial step sizes ∆x > 0 and ∆y > 0 and time step ∆t > 0.
The discretization of the intervals [0, a], [0, b], and [0, T ] is performed as follows
[7]. Define L = a/∆x, J = b/∆y and N = T/∆t. For `, j, n ∈ N we consider the
discretizations

0 = x0 ≤ x1 ≤ · · · ≤ x` ≤ · · · ≤ xL = a,(3.1)

0 = y0 ≤ y1 ≤ · · · ≤ yj ≤ · · · ≤ yJ = b,(3.2)

0 = t0 ≤ t1 ≤ · · · ≤ tn ≤ · · · ≤ tN = T,(3.3)

where x` = `∆x, yj = j∆y, and tn = n∆t for 0 ≤ ` ≤ L, 0 ≤ j ≤ J , and
0 ≤ n ≤ N . Define (xα, yβ , t

γ) = (α∆x, β∆y, γ∆t) where α is either ` or ` + 1
2 , β

is either j or j + 1
2 , and γ is either n or n + 1

2 with `, j, n ∈ N. The Yee scheme
staggers the electric and magnetic fields in space and time. Fields Ex, Ey, and H
are staggered in the x and y directions. We define the discrete meshes

τEx

h :=
{(
x`+ 1

2
, yj

) ∣∣ 0 ≤ ` ≤ L− 1, 0 ≤ j ≤ J
}
,(3.4)

τ
Ey

h :=
{(
x`, yj+ 1

2

) ∣∣ 0 ≤ ` ≤ L, 0 ≤ j ≤ J − 1
}
,(3.5)

τHh :=
{(
x`+ 1

2
, yj+ 1

2

) ∣∣ 0 ≤ ` ≤ L− 1, 0 ≤ j ≤ J − 1
}
,(3.6)

to be the sets of spatial grid points on which the Ex, Ey, and H fields, respectively,
will be discretized. The components Px, and JPx are discretized at the same spatial
locations as the field Ex, while the components Py and JPy

are discretized at the
same spatial locations as the field Ey. For the time discretization, the components
Ex, Ey, Px, Py, JPx

and JPy
are all discretized at integer time steps tn for 0 ≤ n ≤

N . In the Yee scheme, the magnetic field, H, is staggered in time with respect to
Ex and Ey and discretized at time tn+ 1

2 for 0 ≤ n ≤ N − 1.
Let U be one of the field variables H, Ex, Ey, Px, Py, JPx or JPy , let (xα, yβ) ∈

τHh , τ
Ex

h or τ
Ey

h , and γ be either n or n+ 1
2 with n ∈ N. We define the grid functions

or the numerical approximations

Uγα,β ≈ U(xα, yβ , t
γ).

We will also use the notation U(tγ) to denote the continuous solution on the domain
Ω at time tγ , and the notation Uγ to denote the corresponding grid function on its
discrete spatial mesh at time tγ .

We define in a standard way (see for e.g. [3, 10]) the centered temporal difference
operator and a discrete .time averaging operation, respectively, as

δtU
γ
α,β :=

U
γ+ 1

2

α,β − U
γ− 1

2

α,β

∆t
,(3.7)

U
γ

α,β :=
U
γ+ 1

2

α,β + U
γ− 1

2

α,β

2
,(3.8)

and the centered spatial difference operators in the x and y direction, respectively,
as

δxU
γ
α,β :=

Uγ
α+ 1

2 ,β
− Uγ

α− 1
2 ,β

∆x
,(3.9)

δyU
γ
α,β :=

Uγ
α,β+ 1

2

− Uγ
α,β− 1

2

∆y
.(3.10)
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Next, we define the following staggered discrete l2 normed spaces (see also [11])

VH :=
{
U = (Ul+ 1

2 ,j+
1
2
), (x`+ 1

2
, yj+ 1

2
) ∈ τHh , ‖U‖H <∞

}
,

(3.11)

VE :=
{
F = (Fx

l+1
2
,j
, Fy

l,j+1
2

)T , (x`+ 1
2
, yj)× (x`, yj+ 1

2
) ∈ τEx

h × τEy

h , ‖F‖E <∞
}
,

(3.12)

VE,0 :=
{
F ∈ VE | Fx

`+1
2
,0

= Fx
`+1

2
,J

= Fy
0,j+1

2

= Fx
L,j+1

2

= 0,

(3.13)

0 ≤ ` ≤ L, 0 ≤ j ≤ J} ,
where the discrete grid norms are defined as

‖F‖2E = ∆x∆y

L−1∑
`=0

J−1∑
j=0

(
|Fx

`+1
2
,j
|2 + |Fy

`,j+1
2

|2
)
,∀ F ∈ VE ,(3.14)

‖U‖2H = ∆x∆y

L−1∑
`=0

J−1∑
j=0

|U`+ 1
2 ,j+

1
2
|2,∀ U ∈ VH ,(3.15)

with corresponding inner products

(F,G)E = ∆x∆y

L−1∑
`=0

J−1∑
j=0

(
Fx

`+1
2
,j
Gx

`+1
2
,j

+ Fy
`,j+1

2

Gy
`,j+1

2

)
,∀ F,G ∈ VE ,

(3.16)

(U, V )H = ∆x∆y

L−1∑
`=0

J−1∑
j=0

U`+ 1
2 ,j+

1
2
V`+ 1

2 ,j+
1
2
,∀ U, V ∈ VH .

(3.17)

Finally, we define discrete curl operators on the staggered l2 normed spaces as

(3.18) curlh : VE,0 −→ VH , curlh F := δxFy − δyFx,
and

(3.19) curlh : VH −→ VE,0, curlh U := (δyU,−δxU)T .

The discrete differential operators mimic properties that are satisfied by their con-
tinuous counterparts. In particular, if the PEC conditions (2.1d) are satisfied on
the discrete Yee mesh,

(3.20) Fx
`+1

2
,0

= Fx
`+1

2
,J

= Fy
0,j+1

2

= Fx
L,j+1

2

= 0, 0 ≤ ` ≤ L, 0 ≤ j ≤ J,

i.e. ∀ F ∈ VE,0, discrete integration by parts (also see [3, 10]) yields,

(3.21) (curlh E, H)H = (E, curlhH)E .

Thus, the discrete versions of the curl operators remain adjoint to each other, which
is essential for obtaining discrete energy estimates [3].

In the rest of the paper we assume a uniform mesh, i.e. ∆x = ∆y = h. In
Sections 4 and 5 we prove discrete energy estimates for the Yee scheme applied to
the Maxwell Debye model (2.13) and the Maxwell-Lorentz model (2.20), respec-
tively. In addition, we show that the Yee schemes for these media retain the second
order accuracy in space and time that the scheme enjoys in a non-dispersive medi-
um. However, our energy decay results indicate the dissipative nature of the Yee
schemes in Debye and Lorentz media, as opposed to the non-dissipative nature of
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the Yee scheme in a non-dispersive dielectric (also see [4, 31]). Our energy analysis
shows that the Yee schemes for the Maxwell-Debye and Maxwell-Lorentz models
are conditionally stable with the stability condition.

(3.22)
2c2∞∆t2

h2
< 1, or 2ν2 − 1 < 0,

where the Courant number ν := c∞∆t
h . Then the stability condition (3.22) implies

that ν < 1√
2
, and we prove convergence of the Yee schemes under this criteria.

4. Yee Scheme for the Maxwell-Debye System

4.1. Discretization. To discretize the 2D TE Maxwell-Debye system (2.13), in
addition to staggering electric and magnetic components in space and time, the
lower order terms are discretized using averaging. Using the operators defined in
(3.7), (3.8), (3.9), and (3.10), the Yee scheme for the 2D TE Maxwell-Debye system
(2.13) consists of the following discrete equations:

δtH
n
`+ 1

2 ,j+
1
2

=
1

µ0

(
δyE

n
x
`+1

2
,j+1

2

− δxEny
`+1

2
,j+1

2

)
,(4.1a)

δtE
n+ 1

2
x
`+1

2
,j

=
1

ε0ε∞
δyH

n+ 1
2

`+ 1
2 ,j
− εq − 1

τ
E
n+ 1

2

x
`+1

2
,j

+
1

τε0ε∞
P
n+ 1

2

x
`+1

2
,j
,(4.1b)

δtE
n+ 1

2
y
`,j+1

2

= − 1

ε0ε∞
δxH

n+ 1
2

`,j+ 1
2

− εq − 1

τ
E
n+ 1

2

y
`,j+1

2

+
1

τε0ε∞
P
n+ 1

2

y
`,j+1

2

,(4.1c)

δtP
n+ 1

2
x
`+1

2
,j

=
ε0ε∞ (εq − 1)

τ
E
n+ 1

2

x
`+1

2
,j
− 1

τ
P
n+ 1

2

x
`+1

2
,j
,(4.1d)

δtP
n+ 1

2
y
`,j+1

2

=
ε0ε∞ (εq − 1)

τ
E
n+ 1

2

y
`,j+1

2

− 1

τ
P
n+ 1

2

y
`,j+1

2

.(4.1e)

Re-writing system (4.1) in vector form we consider the problem of solving the
discrete Maxwell-Debye system given by the Yee scheme as
Given E0 ∈ VE,0, P0 ∈ VE and H−

1
2 ∈ VH , find En+1 ∈ VE,0, Pn+1 ∈ VE and

Hn+ 1
2 ∈ VH that satisfy

δtH
n +

1

µ0
(curlhE)

n
= 0,(4.2a)

δtE
n+ 1

2 =
1

ε0ε∞
(curlhH)

n+ 1
2 − εq − 1

τ
E
n+ 1

2 +
1

τε0ε∞
P
n+ 1

2 ,(4.2b)

δtP
n+ 1

2 =
ε0ε∞ (εq − 1)

τ
E
n+ 1

2 − 1

τ
P
n+ 1

2 .(4.2c)

4.2. Accuracy: Truncation Error Analysis. Similar to the Yee scheme in free
space, the Yee scheme for the Maxwell-Debye system is also second-order accurate
in both time and space.

Lemma 4.1 (Yee Scheme Truncation Errors for Maxwell-Debye). Suppose that the
solutions to the two-dimensional Maxwell-Debye equations (2.6) or (2.13) satisfy
the regularity conditions E ∈ C3([0, T ]; [C3(Ω)]2), P ∈ C3([0, T ]; [C(Ω)]2)and H ∈
C3
(
[0, T ]; [C3(Ω)]

)
. Let ξ

n

H , ξ
n+ 1

2

Ex
, ξ
n+ 1

2

Ey
, ξ
n+ 1

2

Px
, ξ
n+ 1

2

Py
be the truncation errors for

the Yee scheme for the Maxwell-Debye model (4.1). Then

max
{∣∣ξnH ∣∣ , ∣∣∣ξn+ 1

2

Ex

∣∣∣ , ∣∣∣ξn+ 1
2

Ey

∣∣∣ , ∣∣∣ξn+ 1
2

Px

∣∣∣ , ∣∣∣ξn+ 1
2

Py

∣∣∣} ≤ CD (∆x2 + ∆y2 + ∆t2
)
,(4.3)

where CD = CD (ε0, µ0, ε∞, εq, τ) does not depend on the mesh sizes ∆x, ∆y, and
∆t.
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Proof. We perform Taylor expansions and substitute the exact solution to obtain
the truncation errors for (4.1a) - (4.1e). We have

(ξH)
n
`+ 1

2 ,j+
1
2

=
∆t2

24

∂3H

∂t3
(x`+ 1

2
, yj+ 1

2
, t11) +

∆y2

24µ0

∂3Ex
∂y3

(x`+ 1
2
, y11, t

n)

− ∆x2

24µ0

∂3Ey
∂x3

(x11, yj+ 1
2
, tn),

(4.4)

(ξEx)
n+ 1

2

`+ 1
2 ,j

=
∆t2

24

∂3Ex
∂t3

(x`+ 1
2
, yj , t21) +

∆t2

24ε0ε∞

∂3Px
∂t3

(x`+ 1
2
, yj , t22)

− ∆y2

24ε0ε∞

∂3H

∂y3
(x`+ 1

2
, y21, t

n+ 1
2 ),

(4.5)

(
ξEy

)n+ 1
2

`,j+ 1
2

=
∆t2

24

∂3Ey
∂t3

(x`, yj+ 1
2
, t31) +

∆t2

24ε0ε∞

∂3Py
∂t3

(x`, yj+ 1
2
, t32)

+
∆x2

24ε0ε∞

∂3H

∂x3
(x31, yj+ 1

2
, tn+ 1

2 ),

(4.6)

(ξPx
)
n+ 1

2

`+ 1
2 ,j

=
∆t2

24

∂3Px
∂t3

(x`+ 1
2
, yj , t41)− ∆t2ε0ε∞(εq − 1)

8τ

∂2Ex
∂t2

(x`+ 1
2
, yj , t42)

+
∆t2

8τ

∂2Px
∂t2

(x`+ 1
2
, yj , t43),

(4.7)

(
ξPy

)n+ 1
2

`,j+ 1
2

=
∆t2

24

∂3Py
∂t3

(x`, yj+ 1
2
, t51)− ∆t2ε0ε∞(εq − 1)

8τ

∂2Ey
∂t2

(x`, yj+ 1
2
, t52)

+
∆t2

8τ

∂2Py
∂t2

(x`, yj+ 1
2
, t53),

(4.8)

where x` ≤ x11 ≤ x`+1, yj ≤ y11 ≤ yj+1, tn−
1
2 ≤ t11 ≤ tn+ 1

2 , x`− 1
2
≤ x31 ≤ x`+ 1

2
,

yj− 1
2
≤ y21 ≤ yj+ 1

2
, tn ≤ t2i, t3i ≤ tn+1 for i = 1, 2, and tn ≤ t4i, t5i ≤ tn+1 for

i = 1, 2, 3. �

4.3. Discrete Energy Estimates for Debye media. In this section we prove
a discrete version of the energy decay property given in Theorem 2.1 for the 2D
Maxwell-Debye model (2.6). Theorem 4.1 proves the conditional stability of the
2D Yee scheme for discretizing the Maxwell-Debye model by showing the decay of
a discrete energy in time. To prove the decay of a discrete energy we will need the
following lemma.

Lemma 4.2. The operator Ah : VE,0 → VE,0 defined as

(4.9) AhF =

(
I − c2∞∆t2

4
curlh curlh

)
F, ∀ F ∈ VE,0.

satisfies the inequality

(4.10) (AhF,F)E ≥ (1− 2ν2)||F||2E ,∀ F ∈ VE,0.

where ν := c∞∆t
h is the Courant number, and h is the (uniform) mesh step size.
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Proof. In two dimensions, with a uniform space mesh step size ∆x = ∆y = h, we
have for all F ∈ VE,0 the inequality ([3]),

(4.11) ||curlh F||2H ≤
8

h2
||F||2E ,

from which we have ∀ F ∈ VE,0

(AhF,F)E = (F,F)E −
c2∞∆t2

4
(curlh F, curlh F)H

= ||F||2E −
c2∞∆t2

4
|| curlh F||2H

≥ ||F||2E −
8c2∞∆t2

4h2
||F||2E = (1− 2ν2)||F||2E .

(4.12)

�

Theorem 4.1 (Energy Decay for Maxwell-Debye). If the stability condition,

(4.13) 1− 2ν2 ≥ ν0 > 0,

for the Courant number ν := c∞∆t
h , and constant ν0 is satisfied, then the Yee scheme

for the Maxwell-Debye System (4.2) satisfies the discrete identity

(4.14) δtE
n+ 1

2

h,D =
−1

En+ 1
2

h,D τε0ε∞(εq − 1)
||ε0ε∞(εq − 1)E

n+ 1
2 −P

n+ 1
2 ||2E ,

for all n ≥ 0 where
(4.15)

Enh,D =

µ0(Hn+ 1
2 , Hn− 1

2 )H + ||
√
ε0ε∞En||2E +

∣∣∣∣∣
∣∣∣∣∣ 1√

ε0ε∞(εq − 1)
Pn

∣∣∣∣∣
∣∣∣∣∣
2

E


1
2

defines a discrete energy.

Proof. We consider the average of (4.2a) at n and n+1, multiply with µ0∆x∆yHn+ 1
2

and sum over all spatial nodes on τHh to get

(4.16) µ0(δtH
n+ 1

2 , Hn+ 1
2 )H + (curlhE

n+ 1
2 , Hn+ 1

2 )H = 0.

We can rewrite (4.16) as

(4.17)
µ0

2∆t
{(Hn+ 3

2 , Hn+ 1
2 )H − (Hn+ 1

2 , Hn− 1
2 )H}+ (curlhE

n+ 1
2 , Hn+ 1

2 )H = 0.

We multiply equation (4.2b) with ε0ε∞∆x∆yE
n+ 1

2 and sum over all spatial nodes

on τEx

h × τEy

h to get

ε0ε∞(δtE
n+ 1

2 ,E
n+ 1

2 )E +
ε0ε∞(εq − 1)

τ
(E

n+ 1
2 ,E

n+ 1
2 )E −

1

τ
(P

n+ 1
2 ,E

n+ 1
2 )E

= (curlhH
n+ 1

2 ,E
n+ 1

2 )E ,

(4.18)

which can be re-written as

ε0ε∞
2∆t

{
||En+1||2E − ||En||2E

}
+
ε0ε∞(εq − 1)

τ
||En+ 1

2 ||2E −
1

τ
(P

n+ 1
2 ,E

n+ 1
2 )E =

(curlhH
n+ 1

2 ,E
n+ 1

2 )E .

(4.19)
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Finally, we multiply equation (4.2c) by ∆x∆y 1
ε0ε∞(εq−1)P

n+ 1
2 and sum over all

spatial nodes on τEx

h × τEy

h to get
(4.20)

1

ε0ε∞(εq − 1)
(δtP

n+ 1
2 ,P

n+ 1
2 )E =

1

τ
(P

n+ 1
2 ,E

n+ 1
2 )E −

1

ε0ε∞(εq − 1)τ
||Pn+ 1

2 ||2E ,

which can be re-written as
(4.21)

1

ε0ε∞(εq − 1)

{
||Pn+1||2E − ||Pn||2E

}
=

1

τ
(P

n+ 1
2 ,E

n+ 1
2 )E−

1

ε0ε∞(εq − 1)τ
||Pn+ 1

2 ||2E .

Adding equations (4.17), (4.19), and (4.21), and using the definition (4.15) we
have

1

2∆t

{
(En+1
h,D )2 − (Enh,D)2

}
= − 1

ε0ε∞(εq − 1)τ

{
||Pn+ 1

2 ||2E

−2ε0ε∞(εq − 1)(P
n+ 1

2 ,E
n+ 1

2 )E + (ε0ε∞(εq − 1))2||En+ 1
2 ||2E

}
.

(4.22)

We can rewrite this equation in the form
(4.23)

En+1
h,D − Enh,D

∆t
= −

(
2

En+1
h,D + Enh,D

)
1

ε0ε∞(εq − 1)τ
||ε0ε∞(εq − 1)E

n+ 1
2 −P

n+ 1
2 ||2E ,

which on utilizing the definitions of the time differencing and averaging operators in
(3.7), and (3.8), respectively, gives us the discrete identity (4.14) for Debye media.
What is left to prove is that the quantity defined in (4.15) is a discrete energy, i.e.,
a positive function of the solution to the system (4.1).

Using the parallelogram law [3] we have

(4.24) (Hn+ 1
2 , Hn− 1

2 )H =
1

4

∣∣∣∣∣∣Hn+ 1
2 +Hn− 1

2

∣∣∣∣∣∣2
H
− 1

4

∣∣∣∣∣∣Hn+ 1
2 −Hn− 1

2

∣∣∣∣∣∣2
H
.

Using (4.2a) and the definitions of the time differencing operator in (3.7) we can
rewrite the second term in (4.24) as

(4.25)
1

4

∣∣∣∣∣∣Hn+ 1
2 −Hn− 1

2

∣∣∣∣∣∣2
H

=
∆t2

4
||δtHn||2H =

∆t2

4
||curlhE

n||2H .

Substituting equations (4.24) and (4.25) into the definition (4.15), and using the
definition of the time averaging operator given in (3.8), we can re-write the discrete
energy (4.15) as

(4.26) Enh,D =

µ0||H
n||2H + ε0ε∞(En,AhEn)E +

∣∣∣∣∣
∣∣∣∣∣ 1√

ε0ε∞(εq − 1)
Pn

∣∣∣∣∣
∣∣∣∣∣
2

E


1
2

,

with the operator Ah as defined in (4.9). If the stability condition (4.13) is satisfied,
then 1−2ν2 ≥ ν0 > 0, the operator Ah is positive definite, i.e. (AhF,F) > 0,∀ F ∈
VE,0, and Enh,D defines a discrete energy. We note that this stability condition is
the same for the Yee scheme applied to a non-dispersive dielectric with the same
infinite frequency relative permittivity ε∞ [31, 33]. �

Remark: For a nonuniform mesh the stability condition is again the same as for
the non-dispersive case, i.e. ν < 1 [33], with the Courant number

(4.27) ν = c∞∆t

√
1

∆x2
+

1

∆y2
.
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4.4. Convergence Analysis of the Yee scheme for the Maxwell-Debye
Model. The technique to prove convergence of the Yee schemes is a classical one
(see for e.g. [3, 17] and references therein) and employs the energy approach. To
prove the convergence of the Yee scheme for the 2D Maxwell-Debye system for
0 ≤ n ≤ N we define the error quantities

Hn = Hn −H(tn),(4.28a)

En = En −E(tn),(4.28b)

Pn = Pn −P(tn).(4.28c)

As was done for the discrete energy estimate in the proof of Theorem 4.1, we obtain
the following identities for the Yee scheme for the Maxwell-Debye model in (4.2).

µ0δtHn + curlhEn = ξnH ,(4.29a)

ε0ε∞δtEn+ 1
2 − curlhHn+ 1

2 + ε0ε∞
(εq − 1)

τ
En+ 1

2 − 1

τ
Pn+ 1

2 = ξ
n+ 1

2

E ,(4.29b)

1

ε0ε∞(εq − 1)
δtPn+ 1

2 +
1

ε0ε∞(εq − 1)τ
Pn+ 1

2 − 1

τ
En+ 1

2 = ξ
n+ 1

2

P ,(4.29c)

where ξnH , and ξ
n+ 1

2

F = (ξ
n+ 1

2

Fx
, ξ
n+ 1

2

Fy
)T , for F = E,P are the local truncation errors

for the Maxwell-Debye system as discussed in Lemma 4.1. We have the following
result:

Theorem 4.2 (Convergence of Yee Scheme for 2D Maxwell-Debye). Suppose that
the solutions to the two-dimensional Maxwell-Debye equations (2.6) or (2.13) sat-
isfy the regularity conditions E ∈ C3([0, T ]; [C3(Ω)]2), P ∈ C3([0, T ]; [C(Ω)]2) and

H ∈ C3
(
[0, T ]; [C3(Ω)]

)
. For n ≥ 0, let Hn+ 1

2 ∈ VH , En ∈ VE,0 and Pn ∈ VE
be the solution to the Yee scheme for the Maxwell-Debye system (4.2). Also,

let ξ
n

H , ξ
n+ 1

2

Ex
, ξ
n+ 1

2

Ey
, ξ
n+ 1

2

Px
, ξ
n+ 1

2

Py
be the truncation errors for the Yee scheme for

Maxwell-Debye (4.1) or (4.2) satisfying the conditions of Lemma 4.1. Assume that
the stability condition (4.13) is satisfied, then for any fixed T > 0,∃ a positive
constant CD = CD(ε0, µ0, ε∞, εq, ν) depending on the medium parameters and the
Courant number ν, but independent of the mesh parameters ∆t,∆x,∆y, such that

(4.30) max
0≤n≤N

{
ERnh,D

}
≤ ER0

h,D + TCD(ε0, µ0, ε∞, εq, ν)
(
∆x2 + ∆y2 + ∆t2

)
,

where the energy of the error at time tn = n∆t, ERnh,D, is defined as
(4.31)

ERnh,D =

µ0(Hn+ 1
2 ,Hn− 1

2 )H + ||
√
ε0ε∞En||2E +

∣∣∣∣∣
∣∣∣∣∣ 1√

ε0ε∞(εq − 1)
Pn
∣∣∣∣∣
∣∣∣∣∣
2

E


1
2

.

Proof. We first note, based on the proof of Theorem 4.1, that the energy of the
error (4.31) can be equivalently written in the form

(4.32) ERnh,D =

||√µ0H
n||2H + ε0ε∞(En,AhEn)E +

∣∣∣∣∣
∣∣∣∣∣ 1√

ε0ε∞(εq − 1)
Pn
∣∣∣∣∣
∣∣∣∣∣
2

E


1
2

,

with the operator Ah as defined in equation (4.9).
Next, we follow a similar procedure to that done in the proof of Theorem 4.1.

Multiplying the average of (4.29a) at n and n + 1 by ∆x∆y Hn+ 1
2 and summing

over all spatial nodes on τHh , multiplying (4.29b) by ∆x∆y En+ 1
2 and summing over
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all spatial nodes on τEx

h × τEy

h , multiplying (4.29c) by ∆x∆y Pn+ 1
2 on τEx

h × τEy

h

and summing over all spatial nodes, and finally adding all the results we obtain

δtER
n+ 1

2

h,D ERh,D
n+ 1

2 =
−1

τε0ε∞(εq − 1)
||ε0ε∞(εq − 1)En+ 1

2 − Pn+ 1
2 ||2E

+ (ξ
n+ 1

2

H ,Hn+ 1
2 )H + (ξ

n+ 1
2

E , En+ 1
2 )E + (ξ

n+ 1
2

P ,Pn+ 1
2 )E .

(4.33)

Dropping the first negative term we have

δtER
n+ 1

2

h,D ERh,D
n+ 1

2 ≤ ||ξn+ 1
2

H ||H ||Hn+ 1
2 ||H +

1

2
||ξn+ 1

2

E ||E
(
||En||E + ||En+1||E

)
+

1

2
||ξn+ 1

2

P ||E
(
||Pn||E + ||Pn+1||E

)
.

(4.34)

From (4.32) we have the following bounds

||Hn||H ≤ (µ0)−
1
2 ERnh,D,(4.35a)

||En||E ≤
(
ε0ε∞(1− 2ν2)

)− 1
2 ERnh,D,(4.35b)

||Pn||E ≤ (ε0ε∞(εq − 1))
1
2 ERnh,D.(4.35c)

The inequalities in (4.35) give us bounds for the averaged electric and polarization
terms as

1

2

(
||En||E + ||En+1||E

)
≤
(
ε0ε∞(1− 2ν2)

)− 1
2 ERh,D

n+ 1
2 ,(4.36a)

1

2

(
||Pn||E + ||Pn+1||E

)
≤ (ε0ε∞(εq − 1))

1
2 ERh,D

n+ 1
2 .(4.36b)

For a bound on ||Hn+ 1
2 ||H we note that since Hn+ 1

2 = Hn + ∆t
2 δtH

n, we have

(4.37) ||Hn+ 1
2 ||H ≤ ||H

n||H +
∆t

2
||δtHn||H .

Under the assumption of the stability condition (4.13) and the form of the (non-
negative) energy of the error in (4.31) we have the inequality

(4.38) −(Hn+ 1
2 ,Hn− 1

2 )H ≤
1

µ0

||√ε0ε∞En||2E +

∣∣∣∣∣
∣∣∣∣∣ 1√

ε0ε∞(εq − 1)
Pn
∣∣∣∣∣
∣∣∣∣∣
2

E

 .

Next, since ∆t2

4 ||δtH
n||2H = ||Hn||2H − (Hn+ 1

2 ,Hn− 1
2 )H we have from (4.38)

(4.39)
∆t2

4
||δtHn||2H ≤

1

µ0

||√µ0H
n||2H + ||

√
ε0ε∞En||2E +

∣∣∣∣∣
∣∣∣∣∣ 1√

ε0ε∞(εq − 1)
Pn
∣∣∣∣∣
∣∣∣∣∣
2

E

 .

Substituting inequalities (4.35) (4.36), (4.37) and (4.39) in (4.34) we have

(4.40)
(
δtER

n+ 1
2

h,D

)
ERh,D

n+ 1
2 ≤

CD(ε0, µ0, ε∞, εq, ν) max
{
||ξn+ 1

2

H ||H , ||ξ
n+ 1

2

E ||E , ||ξ
n+ 1

2

P ||E
}
ERh,D

n+ 1
2 ,
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where CD = CD(ε0, µ0, ε∞, εq, ν) is a constant that depends on the medium pa-
rameters and the Courant number ν, but is independent of the mesh parameters

∆t,∆x,∆y. Dividing by ERh,D
n+ 1

2 6= 0, we get
(4.41)

ERn+1
h,D ≤ ER

n
h,D + ∆t CD(ε0, µ0, ε∞, εq, ν) max

{
||ξn+ 1

2

H ||H , ||ξ
n+ 1

2

E ||E , ||ξ
n+ 1

2

P ||E
}
.

Recursively applying the inequality (4.41) from n+ 1 to 1 we have

(4.42) ERn+1
h,D ≤ ER

0
h,D+

∆t CD(ε0, µ0, ε∞, εq, ν)

(
n∑
k=0

max
{
||ξk+ 1

2

H ||H , ||ξ
k+ 1

2

E ||E , ||ξ
k+ 1

2

P ||E
})

.

Using ∆t = T/N and 0 ≤ n ≤ N − 1, and noting that the sum in the second term
on the right in (4.42) from Lemma 4.1 is O(∆t2 + ∆x2 + ∆y2), we get

(4.43) ERn+1
h,D ≤ ER

0
h,D + TCD(ε0, µ0, ε∞, εq, ν)

(
∆t2 + ∆y2 + ∆x2

)
.

Note, we use CD as a generic constant absorbing all constants that arise in the
above inequalities. Finally taking the maximum for n from 0 to N − 1 in (4.43) we
obtain (4.30). �

Remark 4.1. We note that the convergence result in Theorem 4.2 does not hold at
the stability limit ν = 1√

2
(see also [17]). It is shown in [27] that the Yee scheme in

a non-dispersive dielectric need not be stable at the stability limit. However, (4.13)
provides a necessary and sufficient criteria for the stability of the Yee scheme. (Also
see [15]).

4.5. Discrete Divergence for the Maxwell-Debye Model. If the initial fields
satisfy the Gauss divergence laws

∇·D = ρ,(4.44a)

∇·B = 0,(4.44b)

where ρ is the electric charge density, then one can show from the Maxwell curl
equations that the Gauss divergence laws are satisfied for all time [29]. This is done
by applying the divergence operator to the Maxwell curl equations, using the fact
that the divergence of the curl is zero and utilizing the continuity equation (assume
there are no sources, i.e. the source current density Js = 0), to get

(4.45)
∂ρ

∂t
+∇·Jc = 0,

where Jc is the conduction current density. (Note: we have assumed in (2.1a) that
the current density J = Jc + Js = 0). It is well known that the Yee scheme for the
Maxwell equations in free space (linear media) preserves the divergence property
of the solution at the discrete level [8]. We now show that this remains true for the
Yee scheme applied to the Maxwell-Debye system (with ρ = 0).

4.5.1. Discrete Divergence Operator. To define the discrete divergence oper-
ator, we define the discrete mesh of interior vertices

(4.46) τ0
h := {(x`, yj) |1 ≤ ` ≤ L− 1, 1 ≤ j ≤ J − 1} ,

to be the set of spatial grid points on which the discrete divergence of an electric
field, will be defined. On the mesh τ0

h , we define the staggered l2 normed space

V0 :=
{
V = (V`,j), (x`, yj) ∈ τ0

h , ‖V ‖20 <∞
}
,(4.47)
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where the discrete grid norm || · ||0 is defined as

(4.48) ‖V ‖20 = ∆x∆y

L−1∑
`=1

J−1∑
j=1

(
|V`,j |2

)
,∀ V ∈ V0,

with corresponding inner product

(4.49) (V,W )0 = ∆x∆y

L−1∑
`=1

J−1∑
j=1

(
V`,jW`,j

)
,∀ V,W ∈ V0,

We define the discrete divergence operator on VE,0 as

(4.50) divh : VE,0 −→ V0, (divh F)`,j := (δxFx)`,j + (δyFy)`,j ,

∀ 1 ≤ ` ≤ L− 1, 1 ≤ j ≤ J − 1.

Lemma 4.3 (Discrete Divergence for the Maxwell-Debye System). For the Yee
scheme applied to the Maxwell-Debye system given in (4.2) the discrete divergence
of the initial grid functions is preserved for all n ≥ 0, i.e. we have the identity

(4.51) divh D
n = divh D

0, on τ0
h .

Proof. We note that the discrete derivative operators δt, δx and δy commute. From

the Yee equations (4.2b) and (4.2c) we have on the mesh τEx

h × τEy

h ,

(4.52) δtD
n+ 1

2 = δt(ε0ε∞En+ 1
2 + Pn+ 1

2 ) = curlhH.

Therefore divh curlhH = δxδyH − δyδxH = 0. Thus, applying the discrete diver-
gence operator divh to (4.52) we obtain
(4.53)

δt divh D
n+ 1

2 = δt(ε0ε∞ divh E
n+ 1

2 + divh P
n+ 1

2 ) = divh curlhH = 0, on τ0
h .

We finally have

(4.54) divh D
n+1 = divh D

n, on τ0
h .

Applying the identity (4.54) recursively in discrete time we obtain (4.51). �

Remark 4.2. We note that for the 2D TE Maxwell model, the divergence of the
magnetic flux density is not defined. Thus, the divergence free or solenoidal nature
of the magnetic flux density is lost in the two dimensional model [28].

5. Yee Scheme for the Maxwell-Lorentz System

5.1. Discretization. The discrete approximation of the 2D Maxwell-Lorentz sys-
tem (2.16) by the Yee scheme is

δtH
n
`+ 1

2 ,j+
1
2

=
1

µ0

(
δyE

n
x
`+1

2
,j+1

2

− δxEny
`+1

2
,j+1

2

)
,(5.1a)

δtE
n+ 1

2
x
`+1

2
,j

=
1

ε0ε∞

(
δyH

n+ 1
2

`+ 1
2 ,j
− Jn+ 1

2

Px
`+1

2
,j

)
,(5.1b)

δtE
n+ 1

2
y
`,j+1

2

= − 1

ε0ε∞

(
δxH

n+ 1
2

`,j+ 1
2

+ J
n+ 1

2

Py
`,j+1

2

)
,(5.1c)

δtJ
n+ 1

2

Px
`+1

2
,j

= ε0ω
2
pE

n+ 1
2

x
`+1

2
,j
− 1

τ
J
n+ 1

2

Px
`+1

2
,j

− ω2
0P

n+ 1
2

x
`+1

2
,j
,(5.1d)

δtJ
n+ 1

2

Py
`,j+1

2

= ε0ω
2
pE

n+ 1
2

y
`,j+1

2

− 1

τ
J
n+ 1

2

Py
`,j+1

2

− ω2
0P

n+ 1
2

y
`,j+1

2

,(5.1e)
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δtP
n+ 1

2
x
`+1

2
,j

= J
n+ 1

2

Px
`+1

2
,j

,(5.1f)

δtP
n+ 1

2
y
`,j+1

2

= J
n+ 1

2

Py
`,j+1

2

.(5.1g)

Re-writing system (5.1) in vector form we consider the problem of solving the
discrete Maxwell-Lorentz problem given by the Yee scheme as
Given E0 ∈ VE,0, P0,J0

P ∈ VE and H−
1
2 ∈ VH , find En+1 ∈ VE,0, Pn+1,Jn+1 ∈

VE and Hn+ 1
2 ∈ VH that satisfy

δtH
n +

1

µ0
(curlhE)

n
= 0,(5.2a)

δtE
n+ 1

2 =
1

ε0ε∞
(curlhH)

n+ 1
2 − JP

n+ 1
2 ,(5.2b)

δtJ
n+ 1

2

P = ε0ω
2
pE

n+ 1
2 − 1

τ
J
n+ 1

2

P − ω2
0P

n+ 1
2 ,(5.2c)

δtP
n+ 1

2 = JP
n+ 1

2 .(5.2d)

5.2. Accuracy: Truncation Error Analysis. The Yee scheme for the Maxwell-
Lorentz system is also second-order accurate in both time and space.

Lemma 5.1 (Yee Scheme Truncation Errors for Maxwell-Lorentz). Suppose that
the solutions to the two-dimensional Maxwell-Lorentz equations (2.16) or (2.20) sat-
isfy the regularity conditions E ∈ C3([0, T ]; [C3(Ω)]2), P,JP ∈ C3([0, T ]; [C(Ω)]2)

and H ∈ C3
(
[0, T ]; [C3(Ω)]

)
. Let ξ

n

H , ξ
n+ 1

2

Ex
, ξ
n+ 1

2

Ey
, ξ
n+ 1

2

JPx
, ξ
n+ 1

2

JPy
, ξ
n+ 1

2

Px
, ξ
n+ 1

2

Py
be the

truncation errors of the Yee scheme for the Maxwell-Lorentz model (5.1). Then

(5.3) max
{∣∣ξnH ∣∣ , ∣∣∣ξn+ 1

2

Ex

∣∣∣ , ∣∣∣ξn+ 1
2

Ey

∣∣∣ , ∣∣∣ξn+ 1
2

JPx

∣∣∣ , ∣∣∣ξn+ 1
2

JPy

∣∣∣ , ∣∣∣ξn+ 1
2

Px

∣∣∣ , ∣∣∣ξn+ 1
2

Py

∣∣∣} ≤
CL
(
∆x2 + ∆y2 + ∆t2

)
,

where CL = CL (ε0, µ0, ε∞, εq, τ, ω0) does not depend on the mesh sizes ∆x, ∆y,
and ∆t.

Proof. We perform Taylor expansions and substitute the exact solution to obtain
the truncation errors for the equations in system (5.1). We have

(ξH)
n
i+ 1

2 ,j+
1
2

=
∆t2

24

∂3H

∂t3
(x`+ 1

2
, yj+ 1

2
, t11) +

∆y2

24µ0

∂3Ex
∂y3

(x`+ 1
2
, y11, t

n)

− ∆x2

24µ0

∂3Ey
∂x3

(x11, yj+ 1
2
, tn),

(5.4)

(ξEx)
n+ 1

2

`+ 1
2 ,j

=
∆t2

24

∂3Ex
∂t3

(x`+ 1
2
, yj , t21) +

∆t2

24ε0ε∞

∂3Px
∂t3

(x`+ 1
2
, yj , t22)

− ∆y2

24ε0ε∞

∂3H

∂y3
(x`+ 1

2
, y21, t

n+ 1
2 ),

(5.5)

(
ξEy

)n+ 1
2

`,j+ 1
2

=
∆t2

24

∂3Ey
∂t3

(x`, yj+ 1
2
, t31) +

∆t2

24ε0ε∞

∂3Py
∂t3

(x`, yj+ 1
2
, t32)

+
∆x2

24ε0ε∞

∂3H

∂x3
(x31, yj+ 1

2
, tn+ 1

2 ),

(5.6)
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(
ξJPx

)n+ 1
2

`+ 1
2 ,j

=
∆t2

24

∂3JPx

∂t3
(x`+ 1

2
, yj , t41)− ε0ωp

∆t2

8

∂2Ex
∂t2

(x`+ 1
2
, yj , t42)

+
∆t2

8τ

∂2JPx

∂t2
(x`+ 1

2
, yj , t43) +

ω2
0∆t2

8

∂2Px
∂t2

(x`+ 1
2
, yj , t44),

(5.7)

(
ξJPy

)n+ 1
2

`,j+ 1
2

=
∆t2

24

∂3JPy

∂t3
(x`, yj+ 1

2
, t51)− ε0ω2

p

∆t2

8

∂2Ey
∂t2

(x`, yj+ 1
2
, t52)

+
∆t2

8τ

∂2JPy

∂t2
(x`+ 1

2
, yj , t53) +

ω2
0∆t2

8

∂2Py
∂t2

(x`+ 1
2
, yj , t54),

(5.8)

(ξPx
)
n+ 1

2

`+ 1
2 ,j

=
∆t2

24

∂3Px
∂t3

(x`+ 1
2
, yj , t61)− ∆t2

8

∂2JPx

∂t2
(x`+ 1

2
, yj , t62),(5.9) (

ξPy

)n+ 1
2

`,j+ 1
2

=
∆t2

24

∂3Py
∂t3

(x`, yj+ 1
2
, t71)− ∆t2

8

∂2JPy

∂t2
(x`, yj+ 1

2
, t72),(5.10)

where x` ≤ x11 ≤ x`+1, yj ≤ y11 ≤ yj+1, and tn−
1
2 ≤ t11 ≤ tn+ 1

2 . Next, x`− 1
2
≤

x31 ≤ x`+ 1
2
, yj− 1

2
≤ y21 ≤ yj+ 1

2
, tn ≤ t`i ≤ tn+1 for i ∈ {1, 2}, and ` = 2, 3, . . . , 7,

and tn ≤ t`i ≤ tn+1 for i ∈ {3, 4}, and ` = 4, 5 �

5.3. Discrete Energy Estimates for Lorentz media.

Theorem 5.1 (Energy Decay for Maxwell-Lorentz). If stability condition (4.13)
is satisfied, then the Yee scheme for the Maxwell-Lorentz System (5.2) satisfies the
discrete identity

(5.11) δtE
n+ 1

2

h,L = − 1

En+ 1
2

h,L τε0ω2
0

||JP
n+ 1

2 ||2E ,

for all n ≥ 0, where

(5.12) Enh,L =

{
µ0(Hn+ 1

2 , Hn− 1
2 )H + ||

√
ε0ε∞En||2E

+

∣∣∣∣∣
∣∣∣∣∣ 1√

ε0ε∞(εq − 1)
Pn

∣∣∣∣∣
∣∣∣∣∣
2

E

+

∣∣∣∣∣∣∣∣ 1
√
ε0ωp

JnP

∣∣∣∣∣∣∣∣2
E


1
2

,

defines a discrete energy.

Proof. The proof is similar to the proof of Theorem 4.1 for the Yee scheme for the
Maxwell-Debye system. We point out the differences here. We multiply equation

(5.2b) with ε0ε∞∆x∆yE
n+ 1

2 and sum over all spatial nodes on τEx

h × τEy

h to get

(5.13) ε0ε∞(δtE
n+ 1

2 ,E
n+ 1

2 )E + (J
n+ 1

2

P ,E
n+ 1

2 )E = (curlhH
n+ 1

2 ,E
n+ 1

2 )E

which can be re-written as

(5.14)
ε0ε∞
2∆t

{
||En+1||2E − ||En||2E

}
+ (J

n+ 1
2

P ,E
n+ 1

2 )E = (curlhH
n+ 1

2 ,E
n+ 1

2 )E .

Next, we multiply equation (5.2c) by ∆x∆y
ε0ω2

p
JP

n+ 1
2 and sum over all spatial nodes

on τEx

h × τEy

h to get

(5.15)
1

ε0ω2
p

(δtJ
n+ 1

2

P ,JP
n+ 1

2 )E =

(E
n+ 1

2 ,JP
n+ 1

2 )E −
1

τε0ω2
p

(J
n+ 1

2

P ,J
n+ 1

2

P )E −
1

ε0ε∞(εq − 1)
(JP

n+ 1
2 ,P

n+ 1
2 )E ,
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which we re-write as

(5.16)
1

ε0ω2
p

{
||Jn+1

P ||2E − ||JnP ||2E
}
− (E

n+ 1
2 ,JP

n+ 1
2 )E

+
1

τε0ω2
p

||Jn+ 1
2

P ||2E +
1

ε0ε∞(εq − 1)
(JP

n+ 1
2 ,P

n+ 1
2 )E = 0.

Finally, we multiply equation (5.2d) by ∆x∆y
ε0ε∞(εq−1)P

n+ 1
2 and sum over all spatial

nodes on τEx

h × τEy

h to get

(5.17)
1

ε0ε∞(εq − 1)
(δtP

n+ 1
2 ,P

n+ 1
2 )E −

1

ε0ε∞(εq − 1)
(JP

n+ 1
2 ,P

n+ 1
2 )E = 0,

which can be re-written as
(5.18)

1

2∆tε0ε∞(εq − 1)

{
||Pn+1||2E − ||Pn||2E

}
− 1

ε0ε∞(εq − 1)
(JP

n+ 1
2 ,P

n+ 1
2 )E = 0.

Adding equations (4.17), (5.14), (5.16), and (5.18), and using the definition (5.12)
we have

(5.19)
1

2∆t

{
(En+1
h,L )2 − (Enh,L)2

}
= − 1

ε0τω2
p

{
||JP

n+ 1
2 ||2E

}
.

We can rewrite this equation in the form

(5.20)
En+1
h,L − Enh,L

∆t
= −

(
2

En+1
h,D + Enh,D

)
1

ε0τω2
p

||JP
n+ 1

2 ||2E ,

which on utilizing the definitions of the time differencing and averaging operators
in (3.7), and (3.8), respectively, gives us the discrete identity (5.11) for Lorentz
media. As for the case of Debye media, if the stability condition (4.13) is satisfied,
the quantity defined in (5.12) is a discrete energy, i.e. a nonnegative function of
the solution to the system (5.2). The rest of the proof is similar to the proof of
Theorem 4.1 for the case of Debye media. �

5.4. Convergence Analysis of the Yee scheme for the Maxwell-Lorentz
Model. For 0 ≤ n ≤ N , define the error quantities

Hn = Hn −H(tn),(5.21a)

En = En −E(tn),(5.21b)

J nP = JnP − JP (tn),(5.21c)

Pn = Pn −P(tn).(5.21d)

From the Yee scheme for the Maxwell-Lorentz model (5.2), we obtain the iden-
tities

µ0δtHn + (curlhE)
n

= ξnH ,(5.22a)

ε0ε∞δtEn+ 1
2 − (curlhH)

n+ 1
2 + JP

n+ 1
2 = ξ

n+ 1
2

E ,(5.22b)

1

ε0ω2
p

δtJ
n+ 1

2

P − En+ 1
2 +

1

ε0ω2
pτ
J n+ 1

2

P +
1

ε0ε∞(εq − 1)
Pn+ 1

2 = ξ
n+ 1

2

J ,(5.22c)

1

ε0ε∞(εq − 1)
δtPn+ 1

2 − 1

ε0ε∞(εq − 1)
J n+ 1

2

P = ξ
n+ 1

2

P .(5.22d)

For the Maxwell-Lorentz system we have the following result:
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Theorem 5.2 (Convergence of Yee Scheme for 2D Maxwell-Lorentz). Suppose that
the solutions to the two-dimensional Maxwell-Lorentz equations (2.16) satisfy the
regularity conditions E ∈ C3([0, T ]; [C3(Ω)]2), P,JP ∈ C3([0, T ]; [C(Ω)]2) and H ∈
C3
(
[0, T ]; [C3(Ω)]

)
. For n ≥ 0, let Hn+ 1

2 ∈ VH , En ∈ VE,0, JnP ∈ VE and Pn ∈
VE be the solution to the Yee scheme for the Maxwell-Lorentz system (5.2), and let

ξ
n

H , ξ
n+ 1

2

E , ξ
n+ 1

2

J , ξ
n+ 1

2

P be the truncation errors with ξkF = (ξkFx
, ξkFy

)T , F = E, J, P ,

satisfying the conditions of Lemma 5.1. If the stability condition (4.13) is satisfied,
then for any fixed T > 0,∃ a positive constant CL = CL(ε0, µ0, ε∞, εq, τ, ω0, ν)
depending on the medium parameters and the Courant number ν, but independent
of the mesh parameters ∆t,∆x,∆y, such that

(5.23) max
0≤n≤N

{
ERnh,L

}
≤ ER0

h,L + TCL(ε0, µ0, ε∞, εq, ω0, ν)
(
∆t2 + ∆y2 + ∆x2

)
,

where the energy of the error at time tn = n∆t, ERnh,L, is defined as

ERnh,L =

µ0(Hn+ 1
2 ,Hn− 1

2 )H + ||
√
ε0ε∞En||2E +

∣∣∣∣∣
∣∣∣∣∣ 1√

ε0ε∞(εq − 1)
Pn
∣∣∣∣∣
∣∣∣∣∣
2

E

+

∣∣∣∣∣∣∣∣ 1
√
ε0ωp

J nP
∣∣∣∣∣∣∣∣2
E

} 1
2

.

(5.24)

Proof. We follow a similar procedure to the convergence analysis for the Yee scheme
for the Maxwell- Debye model in Theorem 4.2. We multiply the average of (5.22a)

at n and n+1 by ∆x∆yHn+ 1
2 and sum over all spatial nodes on τHh , multiply (5.22b)

by ∆x∆yEn+ 1
2 and sum over all spatial nodes on τEx

h × τEy

h , multiply (5.22c) by

∆x∆yJ n+ 1
2

P and sum over all spatial nodes on τEx

h × τ
Ey

h , multiply (5.22d) by

∆x∆yPn+ 1
2 and sum over all spatial nodes on τEx

h × τEy

h and add the results to
obtain

δtER
n+ 1

2

h,L ERh,L
n+ 1

2 =
−1

τε0ω2
p

||J n+ 1
2

P ||2E + (ξ
n+ 1

2

H ,Hn+ 1
2 )H

+ (ξ
n+ 1

2

E , En+ 1
2 )E + (ξ

n+ 1
2

J ,J n+ 1
2

P )E ,+(ξ
n+ 1

2

P ,Pn+ 1
2 )E ,

(5.25)

Expanding (5.25) we have

(5.26)

δtER
n+ 1

2

h,L ERh,L
n+ 1

2 ≤ ||ξn+ 1
2

H ||H ||Hn+ 1
2 ||H +

1

2
||ξn+ 1

2

E ||E
(
||En||E + ||En+1||E

)
+

1

2
||ξn+ 1

2

J ||E
(
||J nP ||E + ||J n+1

P ||E
)

+
1

2
||ξn+ 1

2

P ||E
(
||Pn||E + ||Pn+1||E

)
.

Substituting inequalities (4.35), (4.36), (4.37) and (4.39) in (5.26) and using the
bound

(5.27)
1

2

(
||J nP ||E + ||J n+1

P ||E
)
≤ ε0ω2

pERh,L
n+ 1

2 ,

we have
(5.28)(
δtER

n+ 1
2

h,L

)
ERh,L

n+ 1
2 ≤ CLmax

{
||ξn+ 1

2

H ||, ||ξn+ 1
2

E ||, ||ξn+ 1
2

J ||, ||ξn+ 1
2

P ||
}
ERh,L

n+ 1
2 ,

where CL = CL(ε0, µ0, ε∞, εq, τ, ω0, ν) is a constant that depends on the medium
parameters and the Courant number ν, but is independent of the mesh parameters
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∆t,∆x,∆y. Dividing by ERh,L
n+ 1

2 6= 0, using recursion in time from n + 1 to 1,
∆t = T/N , the results of Lemma 5.1, and taking the maximum for n from 0 to
N − 1 we finally obtain

(5.29) ERn+1
h,L ≤ ER

0
h,L + TCL(ε0, µ0, ε∞, εq, ω0, τ, ν)

(
∆t2 + ∆y2 + ∆x2

)
.

�

Remark 5.1. As noted in Remark 4.1 for the convergence result in Theorem 4.2
for the 2D Yee Maxwell-Debye scheme, the convergence result in Theorem 5.2 for
the 2D Yee Maxwell-Lorentz scheme does not hold at the stability limit ν = 1√

2
.

5.5. Discrete Divergence for the Maxwell-Lorentz Model.

Lemma 5.2 (Discrete Divergence for the Maxwell-Lorentz System). For the Yee
scheme applied to the Maxwell-Lorentz system given in (5.2) the discrete divergence
of the initial grid functions is preserved for all n ≥ 0, i.e. we have the identity

(5.30) divh D
n = divh D

0, on τ0
h .

Proof. The proof is the same as the proof of Lemma 4.3 for Debye media. �

6. Numerical Simulations of the Yee Scheme for the Maxwell-Debye
Model

We perform numerical simulations of system (4.2) on the domain Ω = [0, 1] ×
[0, 1]. For our simulation we assume a uniform mesh with ∆x = ∆y = h. We use
T = 1, parameter values µ0 = 1, ε0 = 1 (i.e. c0 = 1), ε∞ = 1, εq = 2 (εs = 2), and
τ = 1.

6.1. An Exact Solution for the Maxwell-Debye Model. We use an exact
solution, introduced in [7], to the Maxwell-Debye system (2.13) along with PEC
boundary conditions (2.1d), which we use to initialize our simulations. We define

the wave vector as k = (kx, ky)T , where kx = πk̃x, ky = πk̃y, and the corresponding

wave number is |k| =
√
k2
x + k2

y. We also define the function αD(θ, |k|) := θ2− θ+

|k|2. The exact solution to the Maxwell-Debye system (2.13) with (2.1d) is

H =
|k|2

π
e−θt cos(kxx) cos(kyy),(6.1a)

E =

(
Ex
Ey

)
=

 − θπkye−θt cos(kxx) sin(kyy)

θ

π
kxe
−θt sin(kxx) cos(kyy)

 ,(6.1b)

P =

(
Px
Py

)
=

 ky
π
αD(θ, |k|)e−θt cos(kxx) sin(kyy)

−kx
π
αD(θ, |k|)e−θt sin(kxx) cos(kyy)

 ,(6.1c)

where the parameter θ is a real number. We note that for k̃x and k̃y integers,
the exact solution (6.1) satisfies the perfect conductor conditions (2.1d) on the
boundary of the domain Ω, and the electric and polarization fields are divergence
free on Ω.

The wave number |k| and parameter θ are related by the equation

θ3 − 2θ2 + |k|2 θ − |k|2 = 0.(6.2)
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The energy defined in (2.12) for the exact solution (6.1) can be computed to be

(6.3) ED(t) =
|k|e−θt

2π

√
(|k|2 + θ2 + α(θ, |k|)2).

In our simulations we use various values of the Courant number ν, defined in (4.13),
and various values of kx = ky = k. The real root of equation (6.2) depends on the

value of the wave number |k| =
√

2k. In particular, for k̃ = k̃x = k̃y = 1, θ ≈ 1.0532.
The exact dispersion relation for Debye media [5, 31] relating the wave number

|k| to the angular frequency ω is

(6.4) |k| = ω

c0

√
εs − iωτε∞

1− iωτ
.

Thus, using the chosen values for the parameters c0 = τ = ε∞ = 1, and εs = εq = 2
in (6.4) and squaring both sides, the dispersion relation can be written as

(iω)3 − 2(iω)2 + |k|2 iω − |k|2 = 0.(6.5)

As noted in [7], comparing the dispersion relation (6.5) to the relation (6.2) for real
θ, we note that the exact solution (6.1) corresponds to a solution for the Maxwell-
Debye system (2.13) for a purely imaginary angular frequency ω = −iθ.

6.2. Relative and Energy Errors. For the discrete solution produced we com-
pute relative errors defined as

ER,D(tn) =
(
‖E(tn)−En‖2E + ‖H(tn)−Hn‖2H + ‖P(tn)−Pn‖2E

) 1
2

,(6.6)

relative error = max
0≤n≤N−1

(
ER,D(tn)

ED(tn)

)
,(6.7)

where the grid norms ‖ ·‖E , and ‖ ·‖H are defined in (3.14) and (3.15), respectively.
We also define the energy error for the discrete solutions as

(6.8) energy error = max
0≤n≤N−1


∣∣∣∣∣∣∣
dED
dt

(tn+ 1
2 )− δtE

n+ 1
2

h,D

dED
dt

(tn+ 1
2 )

∣∣∣∣∣∣∣
 ,

where the discrete energy Enh,D is defined in (4.15) and dED
dt

(
tn+ 1

2

)
is the time

derivative of the exact energy (6.3) computed at the time point tn+ 1
2 .

Table 1 presents the relative errors (6.7) and confirms the second order accuracy
of the Yee scheme for various values of ∆t, h, k and ν. The variable N ∈ N is the
number of time steps performed, thus N∆t = T . We note that the largest value
of ∆t chosen (0.02) is such that ∆t/τ (τ = 1 in this example) is O(10−2) or lower.
This is in agreement with results obtained in [31] which indicate that to resolve
all time scales in the problem we must choose ∆t = O(10−2τ) for Debye media.
Table 2 presents the energy errors (6.8). The results in this table indicate that the
energy error decreases in a second order accurate manner, and provides another
confirmation of the second order accuracy of the Yee scheme.

In Figures 1 and 2 we plot the relative errors (6.6) and the energy errors (6.8),
respectively, for the various values of N, ν and k as presented in the corresponding
tables. AnO(h2) reference is provided to visually confirm the second order accuracy
of the Yee scheme.
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Table 1. Relative Errors for the 2D Yee Maxwell-Debye scheme.

k = 1π

N ν = 0.3 ν = 0.5 ν = 0.7
Error Rate Error Rate Error Rate

50 1.20× 10−3 4.57× 10−4 2.53× 10−4

100 2.99× 10−4 2.01 1.14× 10−4 2.01 6.30× 10−5 2.00

200 7.46× 10−5 2.00 2.84× 10−5 2.00 1.57× 10−5 2.00

400 1.86× 10−5 2.00 7.10× 10−6 2.00 3.93× 10−6 2.00

800 4.65× 10−6 2.00 1.77× 10−6 2.00 9.83× 10−7 2.00

k = 5π

N ν = 0.3 ν = 0.5 ν = 0.7
Error Rate Error Rate Error Rate

50 5.39× 10−3 2.01× 10−3 1.02× 10−3

100 1.39× 10−4 1.96 4.97× 10−4 2.02 2.54× 10−4 2.01

200 3.44× 10−4 2.01 1.24× 10−4 2.01 6.34× 10−5 2.00

400 8.57× 10−5 2.00 3.09× 10−5 2.00 1.58× 10−5 2.00

800 2.14× 10−5 2.00 7.72× 10−6 2.00 3.95× 10−6 2.00

k = 10π

N ν = 0.3 ν = 0.5 ν = 0.7
Error Rate Error Rate Error Rate

50 1.23× 10−2 4.08× 10−3 2.02× 10−3

100 2.79× 10−3 2.14 9.75× 10−4 2.06 4.94× 10−4 2.03

200 6.74× 10−4 2.05 2.41× 10−4 2.02 1.23× 10−4 2.02

400 1.67× 10−4 2.01 6.00× 10−5 2.00 3.06× 10−5 2.00

800 4.16× 10−5 2.00 1.50× 10−5 2.00 7.66× 10−6 2.00

Table 2. Energy Errors for the 2D Yee Maxwell-Debye scheme.

k = 1π

N ν = 0.3 ν = 0.5 ν = 0.7
Error Rate Error Rate Error Rate

50 1.67× 10−3 6.44× 10−4 3.60× 10−4

100 4.16× 10−4 2.01 1.60× 10−4 2.01 8.97× 10−5 2.01

200 1.04× 10−4 2.00 4.00× 10−5 2.00 2.24× 10−5 2.00

400 2.59× 10−5 2.00 9.99× 10−6 2.00 5.59× 10−6 2.00

800 6.48× 10−6 2.00 2.50× 10−6 2.00 1.40× 10−6 2.00

k = 5π

N ν = 0.3 ν = 0.5 ν = 0.7
Error Rate Error Rate Error Rate

50 6.68× 10−3 2.32× 10−3 1.20× 10−3

100 1.61× 10−3 2.06 5.79× 10−4 2.01 2.99× 10−4 2.00

200 3.98× 10−4 2.02 1.44× 10−4 2.01 7.44× 10−5 2.01

400 9.91× 10−5 2.00 3.60× 10−5 2.00 1.86× 10−5 2.00

800 2.47× 10−5 2.00 9.89× 10−6 2.00 4.64× 10−6 2.00

k = 10π

N ν = 0.3 ν = 0.5 ν = 0.7
Error Rate Error Rate Error Rate

50 1.46× 10−2 5.24× 10−3 2.52× 10−3

100 3.53× 10−3 2.05 1.23× 10−3 2.09 6.30× 10−4 2.00

200 8.55× 10−4 2.04 3.06× 10−4 2.01 1.56× 10−4 2.01

400 2.12× 10−4 2.01 7.62× 10−5 2.00 3.90× 10−5 2.00

800 5.27× 10−5 2.00 1.90× 10−5 2.00 9.75× 10−6 2.00
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Figure 1. Relative errors for different wave numbers (kx = ky =
k) in the 2D Yee Maxwell-Debye scheme for Courant numbers ν =
0.3, 0.5 and 0.7.
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Figure 2. Energy errors for different wave numbers (kx = ky = k)
in the 2D Yee Maxwell-Debye scheme for Courant numbers ν = 0.3,
0.5 and 0.7.



CONVERGENCE ANALYSIS OF YEE SCHEMES FOR DISPERSIVE MEDIA 681

6.3. Convergence Analysis of the Discrete Divergence. We verify the
identity in (4.51) by computing the maximum absolute grid error in the discrete
divergence as follows

(6.9) max
0≤n≤N

‖ divh D
n − divh D

0‖0,

where the grid norm ‖ · ‖0 is defined in (4.48). Table 3 presents the absolute errors
(6.9) of the 2D Yee Maxwell-Debye scheme for various values of ∆t, h, k and ν.
Again, N ∈ N, with N∆t = T , refers to the number of time steps performed. All
errors are sufficiently small to suggest that they are due to roundoff.

Table 3. Discrete Divergence Errors for the 2D Yee Maxwell-
Debye scheme.

k = 1π

N ν = 0.3 ν = 0.5 ν = 0.7

50 9.47× 10−14 1.26× 10−13 2.25× 10−13

100 2.43× 10−13 4.05× 10−13 5.82× 10−13

200 7.12× 10−13 1.15× 10−12 1.61× 10−12

400 2.04× 10−12 3.24× 10−12 4.70× 10−12

800 5.76× 10−12 9.66× 10−12 1.34× 10−11

k = 5π

N ν = 0.3 ν = 0.5 ν = 0.7

50 4.66× 10−12 1.68× 10−11 1.47× 10−11

100 2.99× 10−11 5.48× 10−11 7.16× 10−11

200 7.29× 10−11 1.30× 10−10 1.98× 10−10

400 2.31× 10−10 3.83× 10−10 6.19× 10−10

800 6.86× 10−10 1.17× 10−9 1.71× 10−9

k = 10π

N ν = 0.3 ν = 0.5 ν = 0.7

50 6.99× 10−11 1.14× 10−10 1.89× 10−10

100 1.15× 10−10 2.48× 10−10 5.40× 10−10

200 3.91× 10−10 1.09× 10−9 1.31× 10−9

400 1.71× 10−9 3.35× 10−9 4.91× 10−9

800 6.44× 10−9 8.73× 10−9 1.25× 10−8

7. Numerical Simulations of the Yee Scheme for the Maxwell-Lorentz
Model

We perform numerical simulations of system (5.2) on the domain Ω = [0, 1]×[0, 1]
using exact solutions for which ε0 = µ0 = ε∞ = ω0 = 1, τ = 0.4, and εs = εq = 2.

7.1. An Exact Solution for the Maxwell-Lorentz Model. We define the
functions αL(θ, |k|) := θ2 + 2θ + |k|2 − 1, and βL(θ, |k|) := θ2 + |k|2. We consider
the following exact solution to the Maxwell-Lorentz system (2.16) along with PEC
boundary conditions (2.1d)

E =

(
Ex
Ey

)
=

 − θπkye−θt cos(kxx) sin(kyy)

θ

π
kxe
−θt sin(kxx) cos(kyy)

 ,(7.1a)

H =
|k|2

π
e−θt cos(kxx) cos(kyy),(7.1b)
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P =

(
Px
Py

)
=

 −ky
π

αL(θ, |k|)e−θt cos(kxx) sin(kyy)

kx
π
αL(θ, |k|)e−θt sin(kxx) cos(kyy)

 ,(7.1c)

JP =

(
JP,x
JP,y

)
=

 −ky
π

βL(θ, |k|)e−θt cos(kxx) sin(kyy)

kx
π
βL(θ, |k|)e−θt sin(kxx) cos(kyy)

 .(7.1d)

In the above, the wave number and parameter θ are related by the equation

θ4 − 1

τ
θ3 + (2 + |k|2)θ2 − |k|

2

τ
θ + |k|2 = 0.(7.2)

As in the Debye model, for k̃x and k̃y integers, the exact solution (7.1) satisfies
the perfect conductor conditions on the boundary of the domain Ω, and the electric
and polarization fields are divergence free on Ω. The energy defined in (2.19) for
the exact solution (7.1) can be computed to be

(7.3) E(t) =
|k|e−θt

2π

√
βL (1 + βL) + αL(θ, |k|)2.

The real root of equation (7.2) depends on the value of the wave number |k|. In

particular, for k̃ = 1, θ ≈ 0.5087.
The exact dispersion relation for Lorentz media [5, 31] relating the wave number

|k| to the angular frequency ω for the chosen values of parameters is

(7.4) |k| = ω

c0

√
(ω2 − 2)τ + iω

(ω2 − 1)τ + iω
.

Squaring both sides, the dispersion relation can be written as

(iω)4 − 1

τ
(iω)3 + (2 + |k|2)(iω)2 − |k|

2

τ
(iω) + |k|2 = 0.(7.5)

Comparing the disersion relation (7.5) to the relation (7.2) for real θ, we note that
the exact solution (7.1) corresponds to a solution for the Maxwell-Lorentz system
(2.16) for a purely imaginary angular frequency ω = −iθ.

7.2. Relative and Energy Errors. For the discrete solution produced we com-
pute relative errors defined as

(7.6) ER,L(tn) =(
‖E(tn)−En‖2E + ‖H(tn)−Hn‖2H + ‖P(tn)−Pn‖2E + ‖JP (tn)− JnP ‖2E

) 1
2

,

(7.7) relative error = max
0≤n≤N

(
ER,L(tn)

EL(tn)

)
,

where the grid norms ‖ ·‖E , and ‖ ·‖H are defined in (3.14) and (3.15), respectively.
We also define the energy error for the discrete solutions as

(7.8) energy error = max
0≤n≤N


∣∣∣∣∣∣∣
dEL
dt

(tn+ 1
2 )− δtE

n+ 1
2

h,L

dEL
dt

(tn+ 1
2 )

∣∣∣∣∣∣∣
 ,

where the discrete energy Enh,L is defined in (5.12) and dEL
dt

(
tn+ 1

2

)
is the time

derivative of the exact energy (7.3) computed at the time point tn+ 1
2 .
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Table 4 presents the relative errors (7.7) and confirms the second order accuracy
of the Yee scheme for various values of ∆t, h, k and ν. The number of time steps
performed is N ∈ N with N∆t = T . Table 5 presents the energy errors (7.8).

Table 4. Relative Errors for the 2D Yee Maxwell-Lorentz scheme.

k = 1π

N ν = 0.3 ν = 0.5 ν = 0.7
Error Rate Error Rate Error Rate

50 4.43× 10−4 1.62× 10−4 8.45× 10−5

100 1.11× 10−4 2.00 4.04× 10−5 2.00 2.11× 10−5 2.00

200 2.76× 10−5 2.00 1.01× 10−5 2.00 5.27× 10−6 2.00

400 6.90× 10−5 2.00 2.52× 10−6 2.00 1.32× 10−6 2.00

800 1.72× 10−6 2.00 6.30× 10−6 2.00 3.29× 10−7 2.00

k = 5π

N ν = 0.3 ν = 0.5 ν = 0.7
Error Rate Error Rate Error Rate

50 2.42× 10−3 8.89× 10−4 4.49× 10−4

100 6.14× 10−4 1.98 2.19× 10−4 2.02 1.12× 10−4 2.00

200 1.52× 10−4 2.01 5.47× 10−5 2.00 2.79× 10−5 2.00

400 3.79× 10−5 2.00 1.37× 10−5 2.00 6.97× 10−6 2.00

800 9.47× 10−6 2.00 3.41× 10−6 2.00 1.74× 10−6 2.00

k = 10π

N ν = 0.3 ν = 0.5 ν = 0.7
Error Rate Error Rate Error Rate

50 5.45× 10−3 1.81× 10−3 8.97× 10−4

100 1.24× 10−3 2.14 4.34× 10−4 2.06 2.20× 10−4 2.03

200 3.00× 10−4 2.04 1.07× 10−4 2.01 5.47× 10−5 2.01

400 7.45× 10−5 2.01 2.68× 10−5 2.00 1.37× 10−5 2.00

800 1.86× 10−5 2.00 6.68× 10−6 2.00 3.41× 10−6 2.00

The results in this table indicate that the energy error decreases in a second order
accurate manner, and provides another confirmation of the second order accuracy
of the Yee scheme.

In Figures 3 and 4 we plot the relative errors (7.6) and the energy errors (7.8),
respectively, for the various values of N, ν and k as presented in the corresponding
tables. AnO(h2) reference is provided to visually confirm the second order accuracy
of the Yee scheme.

7.3. Convergence Analysis of Discrete Divergence. Finally, we verify the
identity in (5.30) by computing the maximum absolute grid error in the discrete
divergence as defined in (6.9). Table 6 presents the absolute errors in the discrete
divergence of solutions to the 2D Yee Maxwell-Lorentz scheme for various values
of ∆t, h, k and ν. Again, N ∈ N, with N∆t = T , refers to the number of time
steps performed. All errors are sufficiently small to suggest that they are due to
roundoff.

8. Conclusions

In this paper, we have presented an accuracy, stability and convergence analysis
of the Yee scheme for Maxwell’s equations in Debye and Lorentz dispersive media
using energy techniques. This research fills an important gap in the literature on
Yee methods for dispersive media models by explicitly computing energy decay
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Table 5. Energy Errors for the 2D Yee Maxwell-Lorentz scheme.

k = 1π

N ν = 0.3 ν = 0.5 ν = 0.7
Error Rate Error Rate Error Rate

50 2.00× 10−4 6.59× 10−5 3.55× 10−5

100 4.97× 10−5 2.01 1.64× 10−5 2.01 9.14× 10−6 1.96

200 1.24× 10−5 2.00 4.10× 10−6 2.00 2.32× 10−6 1.98

400 3.10× 10−6 2.00 1.02× 10−6 2.00 5.84× 10−7 1.99

800 7.74× 10−7 2.00 2.56× 10−7 2.00 1.47× 10−7 2.00

k = 5π

N ν = 0.3 ν = 0.5 ν = 0.7
Error Rate Error Rate Error Rate

50 3.37× 10−4 1.20× 10−4 6.43× 10−5

100 7.99× 10−5 2.08 2.99× 10−5 2.01 1.63× 10−5 1.98

200 1.97× 10−5 2.02 7.44× 10−6 2.00 4.07× 10−6 2.00

400 4.92× 10−6 2.00 1.86× 10−6 2.00 1.02× 10−6 2.00

800 1.23× 10−6 2.00 4.65× 10−7 2.00 2.55× 10−7 2.00

k = 10π

N ν = 0.3 ν = 0.5 ν = 0.7
Error Rate Error Rate Error Rate

50 4.29× 10−4 1.21× 10−4 6.91× 10−5

100 8.86× 10−5 2.28 3.31× 10−5 1.87 1.75× 10−5 1.98

200 2.23× 10−5 1.99 8.22× 10−6 2.01 4.44× 10−6 1.98

400 5.50× 10−6 2.02 2.06× 10−6 2.00 1.11× 10−6 2.00

800 1.37× 10−6 2.01 5.13× 10−7 2.00 2.78× 10−7 2.00

Table 6. Discrete Divergence Errors for the 2D Yee Maxwell-
Lorentz scheme.

k = 1π

N ν = 0.3 ν = 0.5 ν = 0.7

50 1.71× 10−13 2.96× 10−13 3.59× 10−13

100 4.10× 10−13 6.91× 10−13 1.02× 10−12

200 1.22× 10−12 2.05× 10−12 2.83× 10−12

400 3.34× 10−12 5.78× 10−12 8.06× 10−12

800 9.82× 10−12 1.62× 10−11 2.30× 10−11

k = 5π

N ν = 0.3 ν = 0.5 ν = 0.7

50 9.59× 10−12 2.35× 10−11 4.37× 10−11

100 3.39× 10−11 7.80× 10−11 1.11× 10−10

200 1.61× 10−10 2.32× 10−10 3.61× 10−10

400 5.19× 10−10 8.36× 10−10 9.91× 10−10

800 1.18× 10−9 1.96× 10−9 2.77× 10−9

k = 10π

N ν = 0.3 ν = 0.5 ν = 0.7

50 1.18× 10−10 2.25× 10−10 2.66× 10−10

100 3.62× 10−10 3.83× 10−10 8.60× 10−10

200 1.18× 10−9 1.64× 10−9 2.63× 10−9

400 2.85× 10−9 5.09× 10−9 8.09× 10−9

800 9.96× 10−9 1.55× 10−8 2.29× 10−8
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Figure 3. Relative errors for different wave numbers (kx = ky =
k) in the 2D Yee Maxwell-Lorentz scheme for Courant numbers
ν = 0.3, 0.5 and 0.7.
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Figure 4. Energy errors for different wave numbers (kx = ky =
k) in the 2D Yee Maxwell-Lorentz scheme for Courant numbers
ν = 0.3, 0.5 and 0.7.

inequalities for these methods which aid in a convergence analysis of the numerical
schemes. Our analysis assumes dispersive media parameters that are constant.
However, the generality of the energy analysis will allow an extension of our results
to the case of parameters that are functions of space and/or time.
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We have constructed novel exact solutions for the Maxwell-Debye and Maxwell-
Lorentz models that illustrate our analytical results. These exact solutions will also
be helpful to illustrate analyses of other numerical techniques.
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