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TWO-LEVEL PENALTY FINITE ELEMENT METHODS FOR
NAVIER-STOKES EQUATIONS WITH NONLINEAR SLIP
BOUNDARY CONDITIONS
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(Communicated by Peter Minev )

Abstract. The two-level penalty finite element methods for Navier-Stokes equations with non-
linear slip boundary conditions are investigated in this paper, whose variational formulation is
the Navier-Stokes type variational inequality problem of the second kind. The basic idea is to
solve the Navier-Stokes type variational inequality problem on a coarse mesh with mesh size H in
combining with solving a Stokes type variational inequality problem for simple iteration or solving
a Oseen type variational inequality problem for Oseen iteration on a fine mesh with mesh size h.
The error estimate obtained in this paper shows that if H = O(h5/9)7 then the two-level penalty
methods have the same convergence orders as the usual one-level penalty finite element method,
which is only solving a large Navier-Stokes type variational inequality problem on the fine mesh.
Hence, our methods can save a amount of computational work.
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1. Introduction

Constructing efficient algorithms for solving Navier-Stokes equations is a fun-
damental and important problem. A difficulty lies in that the velocity and the
pressure are coupled by the solenoidal condition. The popular technique to over-
come this difficulty is relaxing the solenoidal condition in an appropriate method
and resulting in a pesudo-compressible system, such as the penalty method intro-
duced by Temam in [1,2], the locally stabilized methods introduced by Kechkar in
[3], the pressure projection stabilized methods introduced by Bochev in [4] and Li
in [5] and the references cited therein.

The other difficulty is that the Navier-Stokes equations are nonlinear. The two-
level method is a very popular technique for solving the numerical solutions of the
nonlinear equations. Its main idea is to solve a nonlinear problem on a coarse mesh
and solving a linear problem on a fine mesh, which saves computational work for
solving a nonlinear problem. There are a large amount of papers about the two-level
method, such as for nonlinear partial differential equations [6-11] and especially for
Navier-Stokes equations with homogeneous Dirichlet boundary conditions [12-21].

In this paper, we will consider the two-level penalty finite element methods
for Navier-Stokes equations with nonlinear slip boundary conditions. Since the
nonlinear boundary conditions are from the subdifferential property on the part
boundary, the weak variational formulation is the variational inequality problem of
the second kind with Navier-Stokes operator which is called the Navier-Stokes type
variational inequality problem. This nonlinear slip boundary conditions are firstly
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introduced by Fujita in [22] and appear in the modeling of blood flow in a vein of
an arterial sclerosis patient. The approach consists solving the Navier-Stokes type
variational inequality problem on a coarse mesh with mesh size H in combining
with solving a Stokes type variational inequality problem for simple iteration or
solving a Oseen type variational inequality problem for Oseen iteration on a fine
mesh with mesh size h. Denote " and p" the penalty approximation solutions
on the fine mesh. The error estimate derived in this paper is

[lu =l +[lp = p™ || < ez + B>+ HOY),

where ¢ > 0 is independent of h and H. This error estimate shows that if H =
O(h®/?) and ¢ is sufficiently small, the two-level penalty finite element methods
have the same convergence orders as the usual one-level penalty finite element
methods studied in [23]. Hence, our methods can save the CPU time and improve
the computational efficiency.

2. Navier-Stokes Equations with Nonlinear Slip Boundary Conditions

Let ¢ : R?> - R = (—o0, +00] be a given function possessing the properties of
convexity and weak semi-continuity from below (¢ is not identical with +00). The
subdifferential set 91 (a) denotes a subdifferential of the function ¢ at the point a:

opla) ={beR?:(t) —¢(a) > b-(t —a), VteR?}
Consider the steady Navier-Stokes equations

(1) —pAu+ (u-Viu+Vp=f in Q,
divu =0 in

with the following nonlinear slip boundary conditions [22]:

2) u =0, on I,
un =0, —o.(u) € gdlu;|  on S,

where Q C R2, is a bounded convex domain. I'NS =0, T US = 9Q. The viscous
coefficient ¢ > 0 is a positive constant. g is the scalar functions; u,, = u -n and
ur = u — u,n are the normal and tangential components of the velocity, where n
stands for the unit vector of the external normal to S; o, (u) = 0 —o,n, independent
of p, is the tangential component of the stress vector o which is defined by o; =
oi(u,p) = (peij(u) — pdi;)n;, where e;;(u) = gzj + g%i,i,j = 1,2. From the
definition of the subdifferential property, we note that the variational formulation
of (1)-(2) is the variational inequality problem of the second kind with Navier-Stokes
operator.

To give the variational formulation, we introduce some spaces which we will need

later in this paper. Denote

V={ueH(Q)? ur=0, u-n|s =0}, Vo=H}Q)?

Vo ={ueV, divu=0}, M=1L}Q) ={qc LQ(Q),/ qdz = 0}.
Q

Let || - || be the norm in Hilbert space H*(Q)2. Let (-,-) and || - || be the inner
product and the norm in L2?(2)2. Then we can define the inner product and the
norm in V by (V-,V-) and ||-||v = ||V -]|, respectively, because ||V -|| is equivalent
to || - ||1. Let X be a Banach space. Denote X’ the dual space of X and < -,- > be

the dual pairing in X x X'.
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Introduce the following bilinear forms and trilinear form:

a(u,v) = p(Vu, Vo) Y u,veV,
d(v,p) = (p,divv) VveV,pe M,
b(u,v,w):/(u~V)v-wdx YV u,v,w e V.
Q
Moreover, if divu = 0, it is easy to verify the trilinear form b(-, -, -) satisfies

blu,v,w) = ((u-V)v,w)+ %((divu)v, w)
:%((U-V)v,w)—%((u-V)w,v) YV u,v,we V.
Thus we have the following antisymmetric property:
b(u,v,w) = —b(u,w,v) YV u,v,w e V.
Especially, if v = w, there holds
b(u,v,v) =0 YV u,veV.

Denote
N= sp U
wwwev [ullv]vlv|wlly

then we have
b(u, v, w) < Nl|ullv||v||v]|w||v Y u,v,w e V.
The weak formulation associated with the problem (1)-(2) is the following vari-

ational inequality problem of the second kind with Navier-Stokes operator:

find (u,p) € V x M such that
(3) a(uvv_u)+b(u7uav_u)+j(v7')_j(uT)

—d(v—u,p)z(f,v—u) V’UEV,
d(u,q)=0 Vg€ M,

where j(n) = / glnlds. We call (3) the Navier-Stokes type variational inequality
s

problem. In [24], Saito shows that there exists some positive § > 0 such that
d(v,q
llal < sup L
vev |[vllv

then the variational inequality (3) is equivalent to
() find u € V, such that
a(u,v —u) + blu,u,v —u) + j(vs) — j(ur) > (f,v—uw) Vovel,.

We recall the following existence and uniqueness theorem of the solution of the
variational inequality problem (4) established in [23]. Moreover, the condition (5)
is called the uniqueness condition.

Theorem 2.1 Given f € L*(Q)? and g € L*(S). If

(5) 4“1N(||f||/;; lgllz>(s))

then the variational inequality problem (4) has a unique solution v € K, = {v €

2K .
Vo i lvllv < 71(||f|| +l9ll2¢s))}, where k1 > 0 satisfies

<1,

[(f;0) = 5(vo) | < ka (£ + lgllz2es)lollv - Vv eV



TWO-LEVEL PENALTY METHODS FOR NAVIER-STOKES EQUATIONS 611

In the problem (4), the space V, is the kernel space of the divergence operator,
which brings the difficulty to the numerical computations. In the problem (3), the
second equation doesn’t include the pressure p. Thus, the total stiff matrix from
the finite element approximation is a non positive definite matrix, which also is
difficult in the numerical computations. If we add a positive definite term in the
second equation of (3) which is associated with the pressure p, then the difficulty
can be overcome. Now, we give the penalty problem of the problem (1)-(2), which
is to approximate the solution (u,p) by (u®,p®) satisfying the following penalty
Navier-Stokes equations with nonlinear slip boundary conditions

—pAuE + (uf - V)us + Vp° = f in €,
(6) ep® + divu® =0 in
u® =0, on I,
us, =0, —o-(uf) € goug| on S,

where 0 < ¢ < 1 is the penalty parameter. Then the weak variational formulation
associated with the penalty problem (6) is

find (u®, p®) € V x M such that
M) a(us,v—us)—I—b(us,ys,v—ys)a— d(v—us,pi)
+j(vr) = j(uz) > (fyv—u®) YoeV,
ec(p®,q) +d(u®,q) =0 VgeM,
where

C(pE,Q):/psqu Vge M.
Q

The following error between the solutions (u,p) and the penalty approximation
solution (u®,p°) has been showed with respect to the penalty parameter ¢ in [23]:

(8) lu —wf[lv +[lp — p°|] < ce,
where ¢ > 0 is independent of €.
3. Penalty Finite Element Approximation

In this section, we will give the conforming finite element approximation for the
variational inequality problem (7). Let 7, be a family of regular partitions of Q
into triangles of diameter not greater than 0 < h < 1.

Let P.(K) be the space of the polynomials on K of degree at most r. The finite
element subspaces of V' and M are defined by

Vi =V W, with Wy, ={v, € CQ)? : wlx € [P(K)]? VKe}
and

Mh:{qheO(ﬁ) : qh|K€P1(K) VK€, /qhdx:()}.
Q

These finite element spaces of the velocity and the pressure are composed of the
Taylor-Hood element. It is well known that the bilinear form d(-,-) : Vi, x M), — R
satisfies the discrete inf-sup condition. The finite element approximation formula-
tion of the variational inequality problem (7) is

find (uf,, pf,) € Vi x M}, such that
(9) a(u‘}ia Up — U’]Ez) + b(u}iv U’]Ep Un — u}i) + j(th) - j(ulEm’)

—d(vy —u5,05) > (f,vn —u5,) Y op €V,
d(uj,, qn) +ec(pf,,qn) =0V qn € My,
Let

Bh(u27p‘}€7,7 Uh, Qh) = a(u;sw Uh) - d(’l}h,p‘}i) + d(u;sw Qh) + EC(p‘}E” qh)u
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then the discrete problem (9) can be rewritten as
(10) Bn(uj,, pf; vn =i, qn—ph) +b(uh, uh, vh —uj) +5(vnr) =5 (up,) 2 (f, vn —uj)-

The existence and uniqueness of the solution of the discrete problem (10) and
the error estimate between (u®,p®) and (uj, p5,) have been showed in [23].

Theorem 3.1 Suppose that the uniqueness condition (5) holds, then the dis-
crete problem (10) has a unique solution (uj,p5) € Ky, where

2I€1
Kn = {(vn,qn) € Vi, Mi), onlly < 7(||f|| + 1lgllr2(s)),

, 2k (111 + llgllz2(s))
e¥{|gnl] < e nCA

Theorem 3.2 Let (u®,p°) € V x M and (u$,p5) € Vi, x My, be the weak
solution of (7) and (10), respectively. Suppose that the solution (uf,p®) satisfies
(us,p) € H3(2)2NV x H*(Q) N M, then there holds

(11) [lu® — w3 || + hl|u® — uf||lv + h||p® —p5| < ch9/4,
where ¢ > 0 is independent of h.

4. Two-Level Penalty Finite Element Methods

In this section, based on the simple iteration method and the Oseen iteration
method on the fine mesh, the two-level penalty finite element methods are con-
structed. Let 7 and 75 be the family of regular partitions of €2 into triangles of
diameter not great than H and h, where 0 < h < H < 1. The finite element
approximation spaces (Vi, M) and (Vj,, My) with respect to the partition 75 and
Th, respectively, are constructed as in Section 3. Firstly, we consider the following
simple two-level penalty finite element method.

Algorithm 4.1 Simple Two-Level Penalty Finite Element Method

The simple two-level penalty finite element method is constructed in terms of
the simple iteration for solving Navier-Stokes problem.

Step I: Solve the Navier-Stokes type variational inequality problem on the
coarse mesh, i.e., find (u5;, p%) € (Va, Mu) such that for all (vy,qu) € Vi, Mu),
there holds

(12) By (uly, o vn — uy, qu — Po) + b(ufy, vy, v — ugy)
+j(vnr) = () = (f,vm — uf).
Step II: Solve the Stokes type variational inequality problem on the fine mesh,
ie., find (us",p") € (Vj, M},) such that for all (vs,qn) € (Vi, My,), there holds
(13)  Bu(u, p"; v — uf g — p) + b(uSy, uSy, v, — u")
+j(vnr) = (us") = (f, o0 — ™).

According to Theorem 3.2, for sufficiently smooth solution u® and p®, the fol-
lowing error estimate with respect to the coarse mesh size H holds:

(14) [|u® — ufy|| + H||u® — uyllv + H||p® — pgl| < cHY4,

where ¢ > 0 is independent of H. The main objective of two-level methods is
approximating u® and p° by the approximation solution u" and p* on the fine
mesh. Thus, we will study the convergence order of (us", p") to (u?, p®).
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Theorem 4.1 Under the conditions in Theorem 2.1 and Theorem 3.1-3.2 for
H and h, if the solution (u,p?) of the problem (7) satisfies (uf,p) € H3(2)? N
V x H?(Q) N M, then the following error estimate holds:

(15) [lu® = u"|ly + [[p" = p"|| < e(h/* + HOY),

where ut" and p" are the solution of (13), ¢ > 0 is independent of h and H.
Proof For all vy, € Vi, qn € My, by the definition of the bilinear form By, we
have
pllu = onl[3 + ellp™ — anll?
= Br(u™" — vn, p" — @ u" — v, 0" — qn)
" — v, p" — qn)

(16) _ a(uah7uah _ 'Uh) _ d(uah _ ’Uh,pah) + d(uah,pah _ Qh)

= By (u", p™ s u — vp, 0" — qi) — Bh(vn, qn; v

+ec(p™, p™ = an) = Bu(vn, qn; u=" — v, p™" — qn)
< (f,u" = on) + b(ugy, ufy, vn — u™) + j(onr) = j(us")
— Br(vn, qn; u" — v, p™" = qn).
Setting v = u*" and v = 2u® — vy, in (7), one has
a(u®, u™ —u®) +b(u®, u®, u —uf) + j(u") — j(us) —d(u" —u®,pf) > (f,u —u)

and
a’(usv u® —’Uh) +b(usa us, u® _vh) _d(us —’Uh,ps)—Fj(?Uf_ _th) _j(u‘sr) > (fv u® —’Uh),

which gives

a(u,u —vp) + b(u, ut u —vp) + §(2uf — onr) — 24(us) + j(us")
—d(u" — v, p°) > (f,u" —wp).
Substituting the above inequality into (16) yields
pllu™ —oplf + el [p™" — anl|?
< a(uf,u —vp) + b(us, uf, ut — ) — d(u — vy, p°)

+J(vnr) = 2j(uz) + j(2u7 = var)

+ d(u — vn, qn) — d(on, p™" — qn) — ec(an, p"" — qn)
= a(u® — v, u™" = vp) = d(u™ = v, = qn) + d(u® — v, p™" — qp)
(17) +ec(p® — an, ™" — qn) + b(u®, u®, ush
+ J(vnr) = 25(us) + j(2us — vpr)

< a(u® — v, u — vp)| + |d(u — vp, p* — qn) — d(u" — vy, p° — qn)|

—vp) — b(ufy, u%,ugh —vp)

+ec(p” = an, p™" = an)
+ [b(us, us, u — vp) — by, uy, ut" — vp)|
1(onr) — 2(u5) + (205 — vy

=L+ + 15,

where we use d(u®, q,) + ec(p®, qn) = 0 for all g, € M. Next, we estimate the five
terms of the right side of (17). According to Young inequality, we estimate I; as
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follows:
(18) L < pllu —opllvlfu™ —upllv < %Ilush —opl[i + pllu® — a7,
Similarly, we estimate I as follows:

I < |[u® — vllv|lp™ = qull + |[u=" — vnllv[Ip® — anl]

1 n 1
< eh 2 i [P 2 ”i1,,eh 2 T nE 2_
< allp™ — gul? + gl = vl + Gl ol o+~ anl

where a > 0 is a sufficiently small constant. Next we estimate I3 by

(19)

Iy = ec(p® — qn, 0" — qn)

- < Z ) — P + Sl -
We estimate I, as follows:
I, = |b(uf, u®, ush — vp) — b(u%,ufq,ugh — vp)|
= |b(uf — uSy, u, ut — wvp) — b(uf, Ut — uSy, utt —vy)
—b(uf — uSy, uf —usy, u" — vy

= |b(uf — uSy, u, ut — ) 4 b(ut, ut — v, ut — ufy)
(21) —b(uf — uSy, uf — usy, u" — vy

< (Ve |l (o) + ([0l Loe @) [0 = ugl] - [[u = vplv

+ Nlu® = ufy|[{[[u = vnllv

< elJuf = ugg|| + [|u® — uf|[P)|[u = vplv
I
< ZHuEh —wpllr + e(llu® —uf|* +[Ju® — uglly),
where ¢ > 0 is independent of h and H. For I5, we can easily obtain
(22) Is < cl[u® — vn||r2(s)-
Substituting (18)-(22) into (17), we can obtain
Ky eh € ¢h
T/ = onlli + 71" = anl?
< (o)l = ol + (- + " — anll + al o™ — P
- 4o w3

+e(llu® —ug | + llu® = uiyl[v + [[u® = vnllL2s)),
By triangle inequality ,we have
pllu® = u % + <t — ™
< 2pf[u® = vnl[} + 2pllu™ — vnlfy + 2¢lp® — anl* + 2¢[[p*" — anl|®
2 8 lde
< (10p+ =)|[u — v} + (= + —=)Ip° — aul* + 8al|p™™ — qn|?
(23) ( I v C+3 )| | | |
+ellu® —ug | + llu = ully + [Ju® = onllL2cs))
< c(|lu® = vnlly + 110" = anll?* + [Ju® — ufy]|?
+ 1w = ufyl[y + 1w = vnllz2s)) + 8allp™ — anll?,
where ¢ > 0 is a constant which depends on . Now, we estimate |[p" — gx||. Let
wp, € Vi, = Wp, N Vy. Setting v = u® £ wy, in (7) yields

a(u®,wy) + b(u®,u®,wy) — d(wp, p) > (f, wn) Y wy, € V.
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and
a(u®, —wp) + b(u®,u®, —wp) — d(—wp, p°) > (f, —wn) Y wy, € V.
Thus _
a(u®,wp) + b(u®, u®, wy) — d(wp, p°) = (f, wr) Y wp, € Vp.
Similarly, from (13) one has
a(uf wp) + b(uSy, uSy, wy) — d(wn, p) = (f, wn) Y wy, € V.
Hence

ch, wp) + b(u®, u®, wp) — b(ugy, ugy, wn) = d(wp, p° —psh) Y wy, € YN/h.

a(u® —u
So, for all wy, € 17h,
d(wn, p™" = qn)
= d(wp, p" — p°) + d(wn, p° — qn)
+b

= a(u" — uf wy) + b(uy
(

— b(us, wp, u® — ufy) + d(wp, p° — qn)

uH,wh)—b(u u®,wy) + d(wp, p° — qn)
= a(u" — us wp) 4 b(uf — uy, us — uSy, wy) — b(us — uSy, us, wy)
< pllu = wfllvlfwnllv + e(llu® = ul| + [[u® = ug )| lwnlly + 127 = anllllwnlv-

In addition, for all g, € M}, in terms of the discrete inf-sup condition, we have

d(w , eh __
Bl — anl] < sup AL 0)
(24) wnevn  |wnllv
< pllu =ty + e(lfu® — gyl + [[u® = ufll}) + (07— anll.
Substituting (24) into (23), it yields

€

lu® = u"lv < e(llu® = onlly + 17 = anll + [Ju® — uf]]

(25

1
+|uf = ugl[} + 1[0 = vnlZa(g) + ca? [Ju — |y
Then for sufficiently small o > 0, one has

E_

[lu® = ulv < cllu® = vallv +|Ip° = anll + [[u® — ]

1
(26) Tl — ull + Il — vnllags)
< C(h5/4+H9/4),

where we use
[[uf = vnll12(s) < ellus = val[Y2[Juf = val |}/,
From (24) and triangle inequality, we have
lp® = =" < lIp° — anl| + [P — aul
<c(l[u® —wnllv +1|p° — qul| + [[u® — ufl|

1
+[|uf = ugl|Y + [0 = vnllFzs))
<ch®*+ HYY. O

Algorithm 4.2 Oseen Two-Level Penalty Finite Element Method
The second two-level penalty finite element method is constructed in terms of
the Oseen iteration for solving Navier-Stokes problem.
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Step I: Solve the Navier-Stokes type variational inequality problem on the
coarse mesh, i.e., find (u%;,p%) € (Vi, My) such that for all (vy,qm) € (Vu, M)
there holds
(27)  Bu(ul, Pars vm — wiy, g — Pr) + 0(Wip, wlrs vm — uy)

+j(vHT) - j(u%‘r) > (fa VH — u%)

Step II: Solve the Oseen type variational inequality problem on the fine mesh,
ie., find (u",p") € (Vi, M},) such that for all (v, qn) € (Vi, My,) there holds
(28) Bh(uah,pah;vh _ uah7 an _pah) + b(u%7u€h, vy — uah)

+3(one) = 5(us") = (o0 — u").

For the Oseen two-level penalty finite element method, we obtain the following
convergence order of (uf" p*) to (uf, p®).

Theorem 4.2 Under the conditions in Theorem 2.1 and Theorem 3.1-3.2 for
H and h, if the solution (u®,p%) of the problem (7) satisfies (u®,p%) € H3(2)? N
V x H?(Q) N M, then the following error estimate holds:

(29) [lu = u|v + ||p° = p*"|| < (¥ + HYY),

where us" and p" are the solution of (28), ¢ > 0 is independent of h and H.
Proof Similar to the proof of Theorem 4.1, we have

pllu™ = vnl[} + ellp™ — anll®

<la(u® — Uhvush —op)| + [d(u® — Uhvpsh —qn) — d(ush — U, p° — qn)|

(B0) el — gor™ — @) + [ 0w — on) — bluy, u e — )]
+ 15 (onr) = 25(u?) 4§ (2uz — vnr)|
=1ls+---+ Lo,

As before, we estimate the five terms on the right hand side of (30) separately.
(31) Is < pllu® = vn||v |[u™ = wplly < %Hush —unllyr + 3pllu® — onl[7,
Similarly, we estimate I7 as follows:

Ir < [Ju = on[lv|[p™" = anl| + [[*" = vallv[lp® — anl|
B ol it~ ol el =l + 2l
where a > 0 is a sufficiently small constant. For Ig we have the estimate:

Is = ec(p® — qn, p°" — qn)

(33) 3e €
< 22| |peh 2 SE 2.
< 24l — anll? + S " — ol
We estimate Iy as follows:
Iy = |b(uf, uf, u — vp) — b(usy, u", uh — vp)|
= |b(uf — uSy, us, u — ) — b(uSy, u® — vp, vt — )
— b(uSy, vp — ut =)

34
B < V|l — ] 1[0 = wnlly + Nyl — vl

+ Nlug|lv||u® = vallv[[u" = vallv
< K H

< ol = onlly + ellu® — ug | + Sl = onllf + cllu® = onll7,



TWO-LEVEL PENALTY METHODS FOR NAVIER-STOKES EQUATIONS 617

where ¢ > 0 is independent of h and H. For I, we can easily obtain

(35)

I < c||u€ — 'Uh||L2(S)-
Substituting (31)-(35) into (30), we can obtain

w €
Tl = onll + 1P = anll®

1 2 3 € 2 h 2
S(3u+£)llu€—vh||v+(;+§)llp€—thl + af[p™" — qnl|
+ (| |uf — u|]? + |[u® = onl 5 + [[u® — vallL2(s)),

Using triangle inequality, we get
pllu® = w3 + el — 72

< 2w — wnl[3 + 2pllu™ — wnl[§ + 2¢lp® — anl|* + 2¢/lp™" — qull®
2 24 14e
< (261 + =)|[uf — vl + (&= + =)Ip° — anl|* + 8al|p™" — qu|?
g SO DIl G~ 0+ salb™ —
+e(llu® = ugyl] + llu® = vall§, + [[u® = vallL2(s))
< c(|lu® = vally + 110" = anl® + [lu® — uf|?

+ 1w = onllz2(s)) + 8allp™ — anlf?,

where ¢ > 0 is a constant which is dependent of ;. Now, we estimate |[p" — g
Using similar arguments as in the proof of Theorem 4.1, it follows that

a(u® —u" wy) + b(uf,us wp) — busy, u, wy) = d(wy, p* — p) Y wy, € V.

Thus, for all wy, € YN/h,

d(whapsh - Qh)

= d(wp,p™" — p°) + d(wn, p° — qn)

= a(u" — u® wp) + b(usy, u"

,U}h) - b(usvusvwh) + d(/whap‘S - Qh)
eh

—u®,wp) + b(uy — u,u’,wp) — b(ufy, u® — vy, wp)
— b(ufy, vn — ug, wn) + d(wn, p° — qn)

=a(u

< pllu™ = wflvllwnllv + el Vsl Lo oyl [u = ufy]] - [[wnllv
+ Nllugllv (e = vnllv + [[u= = valv)llwnllv + 107 = anl|[lwnlv

In addition, for all g, € M}, in terms of the discrete inf-sup condition, we have

d eh _
Bllp™ — anll < sup AP —0)
(37) wevn  wnllv

< e(lJu = ufl| + [Ju® = vnllv + [[u = w|lv) + [1p° — anl|.
Substituting (37) into (36),

(38) s~y < el —vnlly -+ llp* = anl| + 1 — |
38

i 1
FJu® = vnl|fas)) + e[ — |y
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Then for sufficiently small « > 0, one has

lu® = ||y

1
(39) < (v = onllv +1lp° = anll + lJu® — ug|[ + ||u® = vallf2(s))
< c(h¥* 4 HY*).

<c
Finally, from (37) by using triangle inequality, we get

sh|

lp* = p*"|| < [1p° — aul| + |Ip*" — au||

1
< (v —onllv +1lp° = anll + [[v° — ug|] + [|u” = vnll}2(g))
<ch®*+HYY. O
5. Numerical Results

In this section, we will give numerical results to confirm the error analysis ob-
tained in Section 4 and to show the advantage of the two-level methods. Since the
two-level methods (12)-(13) and (27)-(28) are given in the form of the variational
inequality problems which are not directly solved, the appropriate iteration algo-
rithm must be constructed. In [25], we give the Uzawa iteration algorithm to solve
the Stokes type variational inequality problem. Moreover, the numerical results
show that this Uzawa iteration algorithm is stable and convergent.

For simplicity, we only give the Uzawa iteration method for solving the varia-
tional inequality problem (3). Similar schemes can be used to solve the two-level
methods (12)-(13) and (27)-(28). First, there exists a multiplier A € A such that the
variational inequality problem (3) is equivalent to the following variational identity
problem:

a(u,v) + b(u, u,v) — d(v, p) +/ Agvrds = (f,v), VveV,
s
Ay = |ur, a.e. on S,

where A € A = {y € L%(S) : |y(z)] <1 a.e. on S}. In this case, we can solve the
problem (40) by the following Uzawa iteration scheme:

(41) A€ A s given

then A" is known, we compute (u",p") and A"*1 by

a(u™,v) + bu™, u™, v) —d(v,p™) = (f,v) — / A" gu,ds, VveV,
s

(42)
d(u™, q) =0, Y qe M,
and
(43) N = Py(\" + pgull),  p>0,
where

Pa(y) =sup(—1,inf(1,7)), Ve L*(9).

Consider the problem (1)-(2) in the fixed square domain (0,1) x (0, 1) (see Figure
1). Let u = 0.1. The external force f is chosen such that the exact solution (u,p)
is

u(z,y) = (u(z,y), u2(z,y)), plr,y) = 2z —-1)(2y - 1),
ur(w,y) = —a?y(e —1)(By - 2), ua(z,y) = ay’(y — 1)(3z - 2).
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It is easy to verify the exact solution u satisfiesu =0on I', u-7 = wu; = 0,us # 0
on S7 and u; # 0,u -7 = ug = 0 on S3. Moreover, the tangential vector 7 on Sy
and Sy are (0,1) and (—1,0). Thus, we have

or = 4uy*(y — 1) on Sy,
o, =4dpz?(x —1) on Ss.
On the other hand, from the nonlinear slip boundary conditions (2), there holds
|UT| S gv
then the function g can be chosen as ¢ = —o, > 0 on S7 and Ss.
¥ S,

1

Z

T ; 1 'x
Figure 1 the domain 2

In order to show the advantage of the two-level methods, we compare the nu-
merical accuracy and the computational efficiency of the one-level penalty method
with the two-level penalty methods. For one-level penalty method, we will solve
a large Navier-Stokes type variational inequality problem on the fine mesh h. Let
the iteration initial value A° = 1 and the parameter ¢ = 10~7, = 0.1 and p = iy

111
476’8 720
estimate (8), Theorem 4.1 and 4.2, the error estimate between the solution (u,p)
and the penalty approximation solution (u",p*") on the fine mesh is

(44) lu—u|y + [Ip — p*"|| < c(e + h** + H).
In Table 1, the scaling between 1/H and 1/h = (1/H)?/® is compared.

We pick nine coarse mesh size values, i.e.. H . In terms of the

uuuuuuuu

\\ \
\
‘A I

=

NN
s\\\

Figure 2 Exact solution
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Figure 4 Oseen two-level method

TABLE 1. Comparison of the scaling between 1/H and 1/h = (1/H)/°

1/H 4 6 8 10 12 14 16 18 20
1/h 12125 25.157 42.224 63.095 87.604 115.619 147.033 181.756 219.712

Thus, we choose the fine mesh size H ~ h%? in the numerical experiments.
Then, the error estimate (44) becomes the following error estimate:

=y + llp = p°1] < e

TABLE 2. Simple two-level penalty method

ah||

. Order M Order CPU
|[ullv ||pll

4 12 1.51475x 1072 / 5.41186 x 1073 / 0.234
6 25 3.29947 x 1073 2.076 1.25008 x 102 1.996  0.807
8 42 1.14444 x 1073 2.041 4.44010 x 10~* 1.995 2.177
10 63 5.05641 x 10~%  2.015 1.97792 x 10~ 1.994 4.801
12 87 2.65317x107% 1.998 1.03934 x 10~% 1.994 9.219
14 115 1.52629 x 10* 1.981 5.96418 x 107° 1.991 17.481
16 147 9.42968 x 1075 1.962 3.66411 x 107° 1.984 35.569
18 181 6.27777 x 107° 1.955 2.42769 x 1075 1.978 52.625
20 219 4.34967 x 107°  1.925 1.67076 x 10> 1.961 71.955
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TABLE 3. Oseen two-level penalty method

sh||

1/H 1/h Order =P e cPU
[|ullv Il

4 12 149636 x 102/  5.38462x10° /  0.271
6 25 3.22149x 1073 2.092 1.24190 x 103 1.999  0.907
8 42 1.11106 x 103  2.052 4.40321 x 10~* 1.999  2.503
10 63 487693 x 10~* 2.031 195827 x 10~% 1.998 5.523
12 87 254326 x 1074 2,017 1.02739x 10~% 1.998 10.572
14 115 1.45272x 1074 2.007 5.88402x 1075 1.998 19.421
16 147 8.89883 x 1075 1.996 3.60465 x 1075 1.996 39.396
18 181 5.87691x 10~ 1.994 2.38038 x 1075 1.994 58.010
20 219 4.03241 x 10°° 1.976 1.62917 x 10> 1.990 86.192

[l —uv

Tables 2-4 display the relative H' errors of the velocity and the relative L2
errors of the pressure and their convergence orders and CPU time when we use the

simple two-level penalty method, the Oseen two-level penalty method and the one-
1

this method doesn’t work and the computer display ”out of memory”. Howeléelr,
two-level penalty methods can obtain the desired numerical results. From these
tables, we observe the predicted optimal convergence orders. Moreover, the two-
level methods are over two times faster than the one-level method when we compare
the CPU time. In addition, as we predicted, the simple two-level method is faster
than the Oseen two-level method. The reason is that the term u%; - Vuf" in Oseen
method causes more consumed work.

Figure 2-4 show the streamline of flow and the pressure contour of the numer-
ical solution by the simple and Oseen two-level methods and the exact solution,
respectively. Figure 5 show the H' and L? convergence rates of the velocity and
the pressure for two-level methods.

In conclusion, the two-level penalty finite element methods for the Navier-Stokes
type variational inequality problem are the high-performance algorithm and im-
prove the computational efficiency.

level penalty method, respectively. For one-level penalty method, when h =

TABLE 4. One-level penalty method

ah||

1/h Order llp = p°71I Order CPU
[ullv |lpl]

12 1.48679 x 1072 / 5.37527 x 1073 / 0.486

25 3.19099 x 1073 2.097 1.23915x 1073 1.999  2.053

42 1.09618 x 1072 2.060 4.39093 x 10~* 1.999  6.070

63 4.79382 x 10~% 2.040 1.95176 x 10~* 1.999  13.918
87 249113 x 1074 2.028 1.02363 x 10~* 1.999  27.489
115 1.41805x 10~* 2.019 5.86162x 107> 1.998  52.079
147 8.65696 x 107° 2.010 3.59207 x 107° 1.995 108.293
181 out of memory / out of memory /

[lu— ulv
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6. Conclusion

In this paper, we study the simple and Oseen two-level penalty finite element
methods for the variational inequality problem of the second kind with Navier-
Stokes operator. The error estimates obtained in Theorem 4.1 and 4.2 show that
if H = O(h®?), then these two-level penalty finite element methods have the
same convergence orders as the usual one-level penalty finite element method. In
particular, there holds

llu = u|v + [lp = p™[| < e(e +n*).

Thus, our two-level methods can save a amount of computational work. Although
we deal with the two dimensional Navier-Stokes equations with nonlinear slip
boundary conditions, however, from the proof of Theorem 4.1 and Theorem 4.2,
we conclude that these theoretical results can be extended to the three dimensional
problem.

~4IT—— Simple Two-Level Method _— ~41T—— Simple Two-Level Method —
—o— Oseen Two-Level Method _— —o— Oseen Two-Level Method| -
s Optimal Rate — 5 Optimal Rate

_—

log(error)
log(error)

-10- -10

-11 -11
-55 -5 -4.5 -4 -35 -3 -5.5 -5 -4.5 -4 -35 -3

Figure 5 H'! and L? convergence rates of velocity and pressure
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