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A WEIGHTED VARIATIONAL FORMULATION BASED ON

PLANE WAVE BASIS FOR DISCRETIZATION OF HELMHOLTZ

EQUATIONS

QIYA HU AND LONG YUAN

Abstract. In this paper we are concerned with numerical methods for solving Helmholtz equa-
tions. We propose a new variant of the Variational Theory of Complex Rays (VTCR) method
introduced in [15, 16]. The approximate solution generated by the new variant has higher accu-
racy than that generated by the original VTCR method. Moreover, the accuracy of the resulting
approximate solution can be further increased by adding two suitable positive relaxation param-
eters into the new variational formula. Besides, a simple domain decomposition preconditioner
is introduced for the system generated by the proposed variational formula. Numerical results
confirm the efficiency of the new method.
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1. Introduction

In recent years, the study of the vibrational behavior of mechanical systems has
become a cornerstone of the design of industrial products and of the optimization of
their performances. A key point in structural design is the modeling and calculation
of the vibrational response of industrial structures. Strategies to analyze the struc-
tural and acoustical behavior of structures have been developed based on the finite
element method [5, 17, 23, 1, 22], the boundary element method [10, 2, 4]. How-
ever, these methods are limited mainly to low-frequency problems and are either
inaccurate or costly.

Today, there are also dedicated computational strategies for the resolution of
medium-frequency problems, known as Trefftz methods [25], which differ from the
traditional FEM and the BEM in the sense that the basis functions in Trefftz
methods are chosen as some exact solutions of the governing differential equation
without boundary condition. These approaches include the Ultra Weak Variational
Formulation (UWVF) (see [3, 7]), the plane wave least-squares method [19], the
plane wave discontinuous Galerkin methods (PWDG) (see [8, 11]), the discontinu-
ous enrichment method [6] and the Variational Theory of Complex Rays (VTCR)
introduced in [15, 16, 20] (see also [14] and [21]). An important advantage of these
approaches is that they are capable of producing an approximate solution with high
accuracy by using only a small number of DOFs. In this paper, we are interested
in the development of the VTCR method.

The VTCR method has some similarity with the UWVF method. There are two
basic ingredients in the both methods: a triangulation on the underlying domain
and a set of wave basis functions in each element. But, two different kinds of
unknown functions are chosen in the variational equations of these two methods.
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For the VTCR method, the restrictions of the desired approximate solution on
every elements are chosen as the unknown functions, and some weak continuity
of the traces of the approximation across each local interface generated by the
triangulation is imposed by a direct variational formulation involved the traces.
For the UWVF method, the Robin boundary functions of the approximate solution
on the boundaries of every elements are chosen as the unknown functions, the
conjugation of each Robin boundary function has to be defined by introducing an
additional mapping. Then, in the UWVF method, the same weak continuity of
the traces is imposed by an indirect variational formulation involved the Robin
boundary functions and their conjugations. The design of the UWVF method
is based on the idea in the non-overlapping domain decomposition with Robin
interface conditions, on contrary to this, the design of the VTCR method is only
based on an intuitive idea to impose some weak continuity of the traces. It seems
that the variational equation in the VTCR method is simpler than the one in the
UWVF method, and the VTCR method is easier to implement than the UWVF
method. By the way, the unknown functions in the PWDG method is also the
restrictions of the desired approximate solution on every elements, and the PWDG
method was derived by using the techniques in the DG method.

In this paper, we present a new variant of the VTCR method. In the variational
equation of the original VTCR method, two different kinds of traces of the test
function and the trial function are used in each integral on the common interface
between two neighboring elements. The design of our method is also based on an
intuitive idea to impose some weak continuity of the traces, but we change that
variational equation such that the same kinds of traces of the test function and
the trial function are used in each interface integral. We find that the approximate
solution generated by the new variant has higher accuracy than the one generated
by the original VTCR method. More importantly, the accuracy of the new approx-
imation can be improved further by adding two suitable relaxation parameters into
the new variational equation. For convenience, the resulting variational formulation
is called a weighted variational formulation (WVF). We prove a L2 error estimate
of the approximate solution generated by the discrete WVF method. Numerical
experiments for both two-dimensional and three-dimensional problems show that
the new WVF method is obviously superior to the original VTCR method, and is
as good as the UWVF method in convergence (the new WVF method seems easier
to implement than the UWVF method). Unlike the existing discretization methods
for Helmholtz equations, the coefficient matrix of the algebraic system generated
by the WVF method is Hermite positive definite, so the algebraic system is easier
to solve.

To solve the algebraic system generated by the WVF method in an efficient man-
ner, we construct a simple domain decomposition preconditioner for the coefficient
matrix of the algebraic system. The numerical results indicate that the systems
generated by the WVF method for Helmholtz equations can be solved rapidly by
the preconditioned GMRES method with the proposed preconditioner.

The paper is organized as follows: In Section 2, we briefly review the Variational
Theory of Complex Rays for Helmholtz equations. In Section 3, we present a new
variant of the VTCR for Helmholtz equations, with two relaxation parameters. In
Section 4, we describe discretization of the variational formulation and derive an
error estimate of the resulting approximate solution. In section 5, we construct a
domain decomposition preconditioner for the stiffness matrix associated with the
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new variational formulation. In Section 6, we report some numerical results to
confirm the effectiveness of the new method.

2. Variational Theory of Complex Rays for Helmholtz equations

The purpose of this section is to recall the basic principles of the VTCR mod-
eling methodology for the resolution of Helmholtz’s equation (see [20] for more
details). At first the original problem to be solved is defined. Then the variational
formulation is presented in details.

2.1. The reference problem. Let Ω, which denotes an acoustic cavity in appli-
cations, be a bounded and connected Lipschitz domain in Rl, (l = 2, 3). Consider
Helmholtz equations which is formalized, normalizing the wave’s velocity to 1, by







−∆u− ω2u = f in Ω,
(∂n + iω)u = t(−∂n + iω)u+ g on γ,
|t| < 1, t ∈ C.

(1)

The outer normal derivative is referred to by ∂n, and the angular frequency is
denoted by ω.

The following classical result can be found in [3].

Theorem 2.1. Let Ω be an open bounded set, and γ be its boundary assuming it
is of class C1 nearly everywhere. Let f ∈ L2(Ω) and g ∈ L2(Ω). We let ζ = 1−t

1+t

and assume t to be constant, |t| < 1 (then ℜ(ζ) > 0). Then, there exists a unique
u ∈ H1(Ω) satisfying

(2)











∀v ∈ H1(Ω)
∫

Ω

∇u · ∇v̄ − ω2

∫

Ω

uv̄ + iωζ

∫

γ

uv̄ =

∫

Ω

f v̄ +
1

1 + t

∫

γ

gv̄,

or equivalently

(3)

{

−∆u− ω2u = f in Ω,

(∂n + iω)u = t(−∂n + iω)u+ g on γ.

where ⋄ designate the complex conjugate of the complex quantity ⋄.
�

2.2. The variational formulation of the problem. Let Ω be divided into a
partition in the sense that

Ω =

N
⋃

k=1

Ωk, Ωk

⋂

Ωj = ∅ for k 6= j.

In practice, the partition is a mesh of domain, and the sets {Ωk} are the elements.
Let Th denote the triangulation associated with the elements {Ωk}, where h is the
size of the triangulation. Define

(4)

Γkj = ∂Ωk

⋂

∂Ωj for k 6= j,

γk = Ωk

⋂

∂Ω (k = 1, · · · , N),

γ =

N
⋃

k=1

γk, Γ =

N
⋃

k=1

∂Ωk.
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For simplicity, we consider only the case t = 0 in the rest of this paper, and
we can directly generalize it to the other case with t 6= 0. Set u|Ωk

= uk (k =
1, · · · , N). Then the reference problem to be solved consists in finding the local
acoustic pressures uk ∈ H1(Ωk) such that

{

−∆uk − ω2uk = 0 in Ωk,
(∂n + iω)uk = g on γ (if ∂Ωk ∩ γ 6= ∅) (k = 1, 2, . . . , N),(5)

and
{

uk − uj = 0 over Γkj ,
∂nk

uk + ∂nj
uj = 0 over Γkj

(k 6= j; k, j = 1, 2, · · · , N).(6)

The first equation of (5) is the homogeneous Helmholtz equation, where the
wave’s velocity equals 1, so we call ω the wave number. The second equation of (5)
and the equation (6) are related to the boundary condition of the problem and the
continuity conditions at the interface between the subcavities Ωk and Ωj .

A weak form of the reference problem introduced in Section 2.1 can be derived
using a variational formulation introduced in [15]. This formulation verifies the
boundary conditions (5) and (6) in a weak sense.

Let V (Ωk) denote the space of the functions which verify Helmholtz’s homoge-
neous equation (5) on the cavity Ωk:

(7) V (Ωk) = {vk ∈ H1(Ωk); ∆vk + ω2vk = 0}.
Define

V (Th) =
N
∏

k=1

V (Ωk),

with the natural scalar product

(u, v)V =

N
∑

k=1

∫

Ωk

uk · vk dx, ∀u, v ∈ V (Th).

In the original VTCR method (see, for example, [21]), the variational problem
of (5) and (6) can be expressed as follows : find u ∈ V (Th) such that

Re

{

N
∑

k=1

∫

γk

1

2

(

((∂n + iω)uk − g) · −1

ω
∂nvk + i((∂n + iω)uk − g) · vk

)

ds

+
1

2

∑

j 6=k

∫

Γkj

(

(uk − uj) · i(∂nk
vk − ∂nj

vj)

+ i(∂nk
uk + ∂nj

uj) · (vk + vj)

)

ds

}

= 0, ∀v ∈ V (Th),

(8)

which is equivalent to

Re

{

N
∑

k=1

∫

γk

(

1

ω
((∂n + iω)uk − g) · ∂nvk + i ((∂n + iω)uk − g) · vk

)

ds

+ i
∑

j 6=k

∫

Γkj

(

(uk − uj) · (∂nk
vk − ∂nj

vj)

+ (∂nk
uk + ∂nj

uj) · (vk + vj)

)

ds

}

= 0, ∀v ∈ V (Th),

(9)
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where Re{⋄} designate the real part of the complex quantity ⋄.
When the space V (Th) is replaced with a suitable finite dimensional subspace of

V (Th) (see [20] and Section 5 for the details), then a discrete version of (9) can be
derived. The VTCR method is easier to understand and implement. However, our
numerical experiments indicate that the approximate solutions generated by the
discrete version have lower accuracy than that generated by the UWVF method
introduced by [3]. In particular, numerical results show that the VTCR method is
not available for the singularity problems. Moreover, the algebraic system induced
from this discrete problem seems difficult to solve when the mesh sizes become
small. In order to investigate the reasons, we need to analyze the structure of the
integral (which appears in the second sum of (9)):

∫

Γkj

(uk − uj) · (∂nk
vk − ∂nj

vj)ds.

Note that (uk−uj)|Γkj
is 0−order trace but (∂nk

vk−∂nj
vj)|Γkj

is 1−order trace.
This means that two different kinds of traces are used in the integral. From the
mathematical viewpoint, the functions (uk−uj)|Γkj

and (∂nk
vk−∂nj

vj)|Γkj
belong

two different spaces, namely, (uk − uj)|Γkj
∈ Hδ− 1

2 (Γkj) but (∂nk
vk − ∂nj

vj)|Γkj
∈

Hδ− 3

2 (Γkj) when uk ∈ Hδ(Ωk) and uj ∈ Hδ(Ωj) with δ >
3
2 . Thus the continuity

of u defined by (9) across the local interface Γkj must hold in Hδ− 1

2 (Γkj), which is
too strong (since δ > 3

2 ).
Based on the above observation, we propose a new variant of (9) in the next

section.

3. A new variational formulation for Helmholtz equations

Our main idea is to use the same kind of trace in each interface integral. For
ease of understanding, we would like to derive the variational formula from a min-
imization problem.1

Let α and β be two given positive real numbers. Corresponding to the boundary
condition in (5) and the interface continuity condition (6), we define the functional

J(v) =

N
∑

k=1

∫

γk

|(∂n + iω)vk − g|2ds

+
∑

j 6=k

(

α

∫

Γkj

|vk − vj |2ds+ β

∫

Γkj

|∂nk
vk + ∂nj

vj |2ds
)

, v ∈ V (Th).

It is clear that J(v) ≥ 0. Consider the minimization problem: find u ∈ V (Th)
such that

(10) J(u) = min
v∈V (Th)

J(v)

If u is the solution of the problem (1) (with t = 0), i.e., u ∈ V (Th) satisfies the
boundary condition in (5) and the interface continuity condition (6), then we have
J(u) = 0, which implies that u is also the solution of the minimization problem
(10). The introduction of the two relaxation parameters α and β in the above

1The authors found that a similar variational formula had been proposed in [19] when the
current article was prepared to publish, but the authors can not make essential revision to the
introduction of the article.



592 Q. HU AND L. YUAN

functional is based on the following motive: when the wave number ω is large, the
analytic solution u of (1) becomes high oscillating, and so the jump

|∂nk
uk + ∂nj

uj |
may be not so small as the jump

|uk − uj |.
In particular, when the analytic solution u is singular, the jump |∂nk

uk + ∂nj
uj|

may not be small on Γkj . We can imagine that

α

∫

Γkj

|uk − uj|2ds ≈ β

∫

Γkj

|∂nk
uk + ∂nj

uj |2ds→ 0, ∀v ∈ V (Th).

Then, for a large ω, we can choose the relaxation parameters α and β as α ≫ β,
such that

|uk − uj | ≪ |∂nk
uk + ∂nj

uj| → 0 on Γkj .

The variational problem associated with the minimization problem (10) can be
expressed as follows: find u ∈ V (Th) such that

N
∑

k=1

∫

γk

((∂n + iω)uk − g) · (∂n + iω)vkds+
∑

j 6=k

(

α

∫

Γkj

(uk − uj) · (vk − vj)ds

+β

∫

Γkj

(∂nk
uk + ∂nj

uj) · (∂nk
vk + ∂nj

vj)ds

)

= 0, ∀v ∈ V (Th).(11)

In the numerical experiments made in Section 6, we will choose α = ω2 and β = 1
(for the case with smooth solution), or α = ω and β = 1

ω
(for the case with singular

solution). We will find that the effectiveness of the method can be significantly
improved by such choice of α and β. For convenience, the variational formulation
(11) is called a weighted variational formulation (WVF) for the problem defined by
(5) and (6).

Define the sesquilinear form a(·, ·) by

a(u, v) =

N
∑

k=1

∫

γk

((∂n + iω)uk) · (∂n + iω)vkds

+
∑

j 6=k

(

α

∫

Γkj

(uk − uj) · (vk − vj)ds

+β

∫

Γkj

(∂nk
uk + ∂nj

uj) · (∂nk
vk + ∂nj

vj)ds

)

, ∀v ∈ V (Th),(12)

and ξ ∈ V (Th), via the Riesz representation theorem, by

(13) (ξ, v)V =

N
∑

k=1

∫

γk

g · (∂n + iω)vkds ∀v ∈ V (Th).

Then (11) can be written as:

{

Find u ∈ V (Th), s.t.
a(u, v) = (ξ, v)V , ∀v ∈ V (Th).(14)
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Theorem 3.1. Let u ∈ V (Th). For k = 1, · · · , N , assume that uk ∈ H1+δk(Ωk)
with δk >

1
2 such that ∂nk

uk ∈ L2(∂Ωk). Then the reference problem (5) and (6) is
equivalent to the new variational problem (14).

Proof. It is clear that the solution of the problem (5)-(6) is also the solution of
the variational problem (14). Therefore one needs only to verify the uniqueness of
solution of the problem (14).

The verification is standard. Let us consider two solutions u = (u1, · · · , uN ), u′ =
(u′1, · · · , u′N) of the variational problem (11), and let ũ = (ũ1, · · · , ũN) denote the
difference between the two solutions. Because of (11), these two solutions must
verify the following equation:

N
∑

k=1

∫

γk

((∂n + iω)ũk · (∂n + iω)vkds+
∑

j 6=k

(

α

∫

Γkj

(ũk − ũj) · (vk − vj)ds

+ β

∫

Γkj

(∂nk
ũk + ∂nj

ũj) · (∂nk
vk + ∂nj

vj)ds

)

= 0, ∀v ∈ V (Th).
(15)

Taking v = ũ, the equation (15) simplifies to:

N
∑

k=1

∫

γk

(∂n + iω)ũk · (∂n + iω)vkds+
∑

j 6=k

(

α

∫

Γkj

(ũk − ũj) · (ũk − ũj)ds

+ β

∫

Γkj

(∂nk
ũk + ∂nj

ũj) · (∂nk
ũk + ∂nj

ũj)ds

)

= 0.

(16)

Namely,

N
∑

k=1

∫

γk

|(∂n + iω)ũk|2ds+
∑

j 6=k

(

α

∫

Γkj

|ũk − ũj |2ds

+ β

∫

Γkj

|∂nk
ũk + ∂nj

ũj|2ds
)

= 0.

(17)

Note that α, β > 0, the above equality implies that
∫

γk

|(∂n + iω)ũk|2ds = 0,

∫

Γkj

|ũk − ũj |2ds = 0,

∫

Γkj

|∂nk
ũk + ∂nj

ũj |2ds = 0.

These show that the function ũ satisfies the interface continuity (6) and verifies the
initial Helmholtz reference problem (5) (note that ũ ∈ V (Th)) with the homoge-
neous boundary condition. Therefore ũ vanishes on Ω, which proves the uniqueness
of solution of (14).

�

4. Discretization of the variational formulation

In this section, we consider a discretization of the variational problem (14). The
discretization is based on a finite dimensional space Vp(Th) ⊂ V (Th). We first give
the exact definition of such a space Vp(Th).

4.1. The basis functions of Vp(Th). In each element Ωk, we introduce a finite
number of functions ykl (l = 1, 2, · · · , p) supported in Ωk and that are independent
solutions of the homogeneous Helmholtz equation (without boundary condition) in
the element Ωk (k = 1, 2, · · · , N).
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To simplify, we consider some constant number p of basis functions for all ele-
ments Ωk. Particularly, in this paper we will choose ykl as the wave shape functions
on Ωk, which satisfy







ykl(x) = eiω(x·αl), x ∈ Ωk,
αl · αl = 1,
l 6= s→ αl 6= αs,

(18)

where αl (l = 1, · · · , p) are unit wave propagation directions to be specified later.
The basis functions of Vp(Th) can be defined as

φkl(x) =

{

ykl(x), x ∈ Ωk,
0, x ∈ Ωj satisfying j 6= k

(k, j = 1, · · · , N ; l = 1, · · · , p).(19)

Thus the space V (Th) is discretized by the subspace

(20) Vp(Th) = span

{

φkl : k = 1, · · · , N ; l = 1, · · · , p
}

.

During numerical simulations, the directions of the wave vectors of these wave
functions, for two-dimensional problems, are uniformly distributed as follows:

αl =

(

(cos(2π(l − 1)/p)
sin(2π(l − 1)/p))

)

(l = 1, · · · , p).

For three-dimensional problems, the following formula proposed in [24] can be
used to generate the wave propagation derections

αj1,j2,j3 =
α̂j1,j2,j3

||α̂j1,j2,j3 ||
, α̂j1,j2,j3 =





tan((2j1/nt − 1)π/4)
tan((2j2/nt − 1)π/4)
tan((2j3/nt − 1)π/4)





where nt is a given positive integer and j1, j2, j3 = 0, · · · , nt are positive integers
chosen so that at least one of j1, j2, or j3 is equal to zero or to nt. Using this
construction algorithm, the number of directions p becomes equal to 6n2

t + 2. For
example, choosing nt = 2, nt = 3, and nt = 4 leads to 26, 56 and 98 wave functions,
respectively.

4.2. The discrete problem and the algebraic form of (14). Let Vp(Th) be
defined in the last subsection. Then the discrete variational problem associated
with (14) can be described as follows:

{

Find uh ∈ Vp(Th), s.t.
a(uh, vh) = (ξ, vh)V , ∀vh ∈ Vp(Th).(21)

After solving (21), the approximated solutions of Helmholtz equations (1) are
obtained directly since the unknown uh are defined on the elements {Ωk}, instead
of their boundaries ∂Ωk (as in UWVF). Moreover, the structure of the sesquiinear
form a(·, ·) is very simple, so the method seem easier to implement than the UWVF
method.

Let A be the stiffness matrix associated with the sesquiinear form a(·, ·) and
the space Vp(Th), and let b denote the vector associated with the scalar product

(ξ, vh)V . Namely, the entries of the matrix A are computed by al,mk,j = a(φjm, φkl);

and the complements of the vector b are defined as bk,l = (ξ, ψkl)V . Then the
discretized problem (21) leads to the algebraic system below:

(22) AX = b,
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where X = (x11, x12, · · · , x1p, x21, · · · , x2p, · · · , xN1, · · · , xNp)
t ∈ CpN is the un-

known vector. From the definition of the bilinear form a(·, ·), we know that the
matrix A is Hermite positive definite, so the system (22) is easier to solve than that
generated by the other existing methods.

In general the system (22) is solved by some iterative method, for example, the
preconditioned GMRES method. Then we need to construct an efficient precondi-
tioner B for the matrix A, and use GMRES method to solve the equivalent system

(23) B−1AX = B−1b.

4.3. Error estimates of the approximate solution defined by (21). Before
construct the preconditioner B, we derive estimates of the error u − uh in this
subsection, where u and uh are defined by (14) and (21) respectively.

As in [11], for a given a domain D ⊂ Rl, (l = 2, 3), let || · ||s,ω,D be the ω−
weighted Sobolev norm defined by

||v||s,ω,D =

s
∑

j=0

ω2(s−j)|v|2j,D.

The following lemma is a direct consequence of Theorem 5.2 and Theorem 5.3
in [18].

Lemma 4.1. [18] Let m ≥ 2 be an integer and set p = 2m + 1 (for 2d case) or
p = (m+1)2 (for 3d case). Assume that u ∈ Cm+1(Ωk) for each element Ωk. Then
there is a function wh ∈ Vp(Th) such that

(24) ||u− wh||ω,l,Ωk
≤ Chm+1−l||u||ω,m+1,Ωk

(k = 1, · · · , N),

for l = 0, 1, 2.

�

It is clear that a(v, v) ≥ 0. Moreover, from the proof of Theorem 3.1, we can see
that a(v, v) = 0 for v ∈ V (Th) if only if v = 0. Thus a(·, ·) is a norm on V (Th). For
ease of notation, this norm is denoted by || · ||V .

The following lemma can be obtained as Corollary 3.8 in [11].

Lemma 4.2. There is a constant C independent of h and ω such that

(25) ||u− uh||20,Ω ≤ C(hω + h−1ω−1)ω−1||u− uh||2V
�

Theorem 4.1. Let the assumptions in the above lemma be satisfied. Assume that
α = ω2, β = 1 and ωh ≤ c0 for a constant c0. Then

(26) ||u− uh||V ≤ Chm− 1

2 (
N
∑

k=1

||u||2ω,m+1,Ωk
)

1

2

and

(27) ||u− uh||0,Ω ≤ C(1 + (hω)−1)hm(

N
∑

k=1

||u||2ω,m+1,Ωk
)

1

2 ,

where C is independent of h, ω, but may be dependent of p (see [11] for the details).

Proof. Let wh be defined by Lemma 4.1. Then uh − wh ∈ Vp(Th). Note that
Vp(Th) ⊂ V (Th), we have by the definition of u and uh

a(u− uh, uh − wh) = 0.
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Then we get by Cauchy-Schwarz inequality

||u − uh||2V = a(u− uh, u− wh) ≤ ||u− uh||V · ||u− wh||V ,
which implies that

(28) ||u− uh||V ≤ ||u− wh||V .
It suffices to estimate ||u − wh||V . For ease of notation, set εh = u − wh. By the
definition of the norm || · ||V , we get

||εh||2V =

∫

γ

|iωεh +
∂εh
∂n

|2ds

+
∑

Γkj

{

ω2

∫

Γkj

|εh,k − εh,j|2ds+
∫

Γkj

|∂εh,k
∂nk

− ∂εh,j
∂nj

|2ds
}

≤
N
∑

r=1

{

ω2

∫

∂Ωr

|εh,r|2ds+
∫

∂Ωr

|∂εh,r
∂nr

|2ds
}

,(29)

where εh,r = εh|Ωr
(r = k, j). In an analogous way with the proof of Lemma

3.10 in [11], we can prove, by the trace theorems and Lemma 4.1, that

ω2

∫

∂Ωr

|εh,r|2ds+
∫

∂Ωr

|∂εh,r
∂nr

|2ds ≤ Ch2m−1||u||2ω,m+1,Ωk
.

Substituting the above inequality into (29) and combing (28), yields (26). Further-
more, the inequality (27) can be derived by Lemma 4.2.

�

5. A domain decomposition preconditioner B
In this section, we construct a preconditioner B based on the non-overlapping

domain decomposition method.

5.1. A space decomposition of Vp(Th). We first coarsen the triangulation {Ωk}
as follows: let Ω be decomposed into the union of D1, D2, · · · , Dn0

such that Dr is
just the union of several elements in {Ωk} and satisfies

Dr

⋂

Dl = ∅ for r 6= l.

Then

Ω =

n0
⋃

r=1

Dr

is a non-overlapping domain decomposition of Ω. For convenience, we use T r
h to

denote the restriction of the triangulation Th on the subdomain Dr (r = 1, · · · , n0).
Let {φkl} be the basis functions defined in Subsection 4.1. For r = 1, · · · , n0, define

Vp(T r
h ) = span

{

φkl : supp φkl ⊂ Dr

}

.

Let d denote the size of the subdomains D1, · · · , Dn0
, and let Td denote the

triangulation associated with the subdomains D1, D2, · · · , Dn0
. For r = 1, · · · , n0,

set ydrl(x) = eiω(x·−→αl) (x ∈ Dr; l = 1, 2, · · · , p). Define

φ̃rl =

{

ydrl, on Ωk satisfying Ωk ⊂ Dr,
0, on Ωk satisfying Ωk * Dr

(r = 1, · · · , n0; l = 1, · · · , p),(30)
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which are the basis functions of the space

Ṽp(Td) = span

{

φ̃rl : r = 1, · · · , n0; l = 1, · · · , p
}

.

Then we have the space decomposition

(31) Vp(Th) =
n0
∑

r=1

Vp(T r
h ) + Ṽp(Td),

where the coarse space Ṽp(Td), which is associated with the coarse triangulation Td,
has the same structure with the original space Vp(Th).

5.2. The preconditioner. Based on the space decomposition (31), we can con-
struct the desired preconditioner by the general framework. For the purpose of
implementation, we would like to describe the preconditioner in the algebraic form.

For r = 1, · · · , n0, let Ar denote the stiffness matrix induced from the sesquiinear
form a(·, ·) on the subspace Vp(T r

h ). When the order of the basis functions {φkl}
are arranged in a suitable manner, the original stiffness matrix A can be written
as a block matrix with the diagonal sub-matrices A1, · · · ,An0

. Set

D = diag(A1, · · · ,An0
).

In the following we define the coarse solver. To this end, we need to define a
transformation matrix. With the basis functions defined in the last subsection, we
define the transformation matrix Cd by

(φ̃11 · · · φ̃1p φ̃21 · · · φ̃2p · · · φ̃n01 · · · φ̃n0p)
t =

Cd(φ11 · · ·φ1p φ21 · · ·φ2p · · ·φN1 · · ·φNp)
t,(32)

where {φkl} are the basis functions of Vp(Th) (see (19)). Let Ad denote the stiffness

matrix induced from the sesquiinear form a(·, ·) on the coarse subspace Ṽp(Td). As
usual the matrix Ad is called a coarse solver. It is easy to verify that Ad = CdACt

d.
Then the preconditioner associated with the space decomposition (31) is defined

as

(33) B−1 = D−1 + Ct
dA−1

d Cd,
which is the desired preconditioner for the original stiffness matrix A. Since both
Ar and Ad in general have much lower orders than the original stiffness matrix A,
the implementation of the action of B−1 is much cheaper than that of A−1.

6. Numerical experiments

In this section we report some numerical results to compare accuracies of the ap-
proximate solutions generated by the weighted variational formulation (11) ( WVF
), the original variational formulation (9) ( VTCR ) and the ultra weak variational
formulation ( UWVF ). In order to compare the accuracies of the approximations
reliably, we first solve the resulting systems by the direct method. Besides, we ap-
ply the preconditioned GMRES method with the preconditioners B and the simple
GMRES method to solve the system (22) to illustrate the efficiency of the new
preconditioner B.

In the examples tested in this section, we adopt a uniform triangulation Th for
the domain Ω as follows: Ω is divided into some small cubes (for three-dimensional
case), rectangles or triangles (for two-dimensional case) with the same size, where
h denotes the length of the longest edge of the elements.
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In order to determine the coarse solver Ad described in Subsection 5.2, we define
subdomain Dr (r = 1, · · · , n0) as follows: each subdomain (coarse element) Dr is
a cube (for three-dimensional case) or rectangle (for two-dimensional case), which
is just the union of several elements, and every subdomains Dr have the same size.
Let d denote the length of the longest edge of the subdomains Dr. In general we
can define d ≈

√
h in the domain decomposition method. Here, for simplicity, we

set d = 4h, namely, each subdomain Dr (r = 1, · · · , n0) is the union of 4 × 4 × 4
(4× 4 for two-dimensional case) fine mesh elements.

To measure the accuracy of the numerical solution uh, we introduce the following
relative error:

err. =
||uex − uh||L2(Ω)

||uex||L2(Ω)
.

We use the above relative L2 error to measure the accuracy of the numerical solution
uh.

The stopping criterion in the iterative algorithms is that the relative L2-norm ǫ
of the residual of the iterative approximation satisfies ǫ < 1.0e−8 for 2-D case and
ǫ < 1.0e − 6 for 3-D cases (we choose initial guess X0 = 0 in the iteration), and
the maximum number of iteration steps maxit satisfies maxit = 5000. Moreover,
Niter and Tsol represents the iteration numbers and computing time for solving the
algebraic system respectively.

6.1. Wave propagation in a duct with rigid walls. The first model problem
is the following Helmholtz equations for the acoustic pressure u and associated
boundary conditions ( see [12] ):

∆u+ ω2u = 0 in Ω,

∂u

∂n
+ iωu = g on ∂Ω,

(34)

where Ω = [0, 2]× [0, 1], and g = ( ∂
∂n

+ iω)uex.
The exact solution to the problem can be obtatined in the closed form as

uex(x, y) = cos(kπy)(A1e
−iωxx + A2e

iωxx)

where ωx =
√

ω2 − (kπ)2, and coefficients A1 and A2 satisfy the equation

(35)

(

ωx −ωx

(ω − ωx)e
−2iωx (ω + ωx)e

2iωx

)(

A1

A2

)

=

(

−i
0

)

The solution respectively represents propagating modes and evanescent modes
when the mode number k is below the cut-off value k 6 kcut-off = ω

π
and up the cut-

off value k > kcut-off. For completeness, we compute approximate solutions for both
the highest propagating mode and the lowest evanescent modes in the following
tests.

We first consider the simplest choice of the parameters α and β in the new WVF
method: α = β = 1. The following table 1 give a comparison of error estimates
of the approximations generated by the WVF method and the original VTCR
method. The results listed in the above table indicate that the new WVF method
can generate better approximations than the original VTCR even if we simply set
α = β = 1. But the simplest choice is not our interest, and the tests in the rest
of the paper are made for the case α 6= β, which may generate higher accuracy
approximations.

As we pointed out in Section 3, we choose α = ω2 and β = 1 in the varia-
tional equation (11) for this case with smooth solution. In order to determine the
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Table 1. Errors of the approximations for the case ω = 20, p = 12.

Methods WVF (α = 1, β = 1) VTCR
h k err. err.

1
12

6 8.59e-6 2.82e-5
7 1.80e-4 2.06e-4

1
24

6 1.09e-7 2.78e-7
7 2.71e-6 4.36e-6

number of plane wave basis functions per element, we numerically investigate the p-
convergence (Figure 1 left) of three methods for the case of ω = 40, ωh = 1, k = 13
and the h-convergence (Figure 1 right) of the WVF method for the case of ω =
40, k = 13. These plots in Figure 1 left highlight two different regimes of p for both
the WVF method and the UWVF method when increasing p: a pre-asymptotic
region with slow convergence and a post-asymptotic region of faster convergence.
Moreover, for the smaller p, the accuracy for the three methods are not satisfactory.
So in order to reach the high accuracy of the approximations with a suitable size
of the problem, and give a fair comparison of the h-convergence of three methods,
the number p of basis functions in each element is set to 12 in this subsection.
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Figure 1. (left) p-convergence for the solution uex plotted against
p ∈ {3, · · · , 13}. (right) h-convergence of the WVF method.

Table 2, Table 3 and Figure 2 below show the h-convergence of the approxi-
mations generated by the method WVF, VTCR and UWVF, where the resulting
systems (9) and (11) are solved by the direct method.

Table 2. Errors of the approximations for the case ω = 20.

Methods WVF (α = ω2, β = 1) VTCR UWVF
h k err. err. err.

1
12

6 2.05e-6 2.82e-5 2.40e-6
7 1.90e-5 2.06e-4 2.08e-5

1
16

6 3.35e-7 4.53e-6 3.91e-7
7 3.14e-6 4.96e-5 3.47e-6

1
24

6 2.77e-8 2.78e-7 3.20e-8
7 2.70e-7 4.34e-6 2.81e-7
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Table 3. Errors of the approximations for the case ω = 40.

Methods WVF (α = ω2, β = 1) VTCR UWVF
h k err. err. err.

1
20

12 6.35e-6 9.95e-5 7.53e-6
13 1.27e-5 3.02e-4 1.42e-5

1
32

12 3.19e-7 5.33e-6 3.75e-7
13 6.31e-7 1.46e-5 7.17e-7

1
40

12 8.03e-8 4.73e-7 9.41e-8
13 1.59e-7 2.12e-6 1.79e-7
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Figure 2. A comparison of the three strategies on the accuracy.

The results listed in the tables 2-3 indicate that the approximation generated by
the new VWF method possesses much higher accuracy than the one generated by
the original VTCR method, and has slightly higher accuracy than that generated
by the UWVF method. Moreover, Figure 2 tells us that the new method is more
stable with respect to h than the original method.

For simplicity, in the following we call the preconditioned GMRES method with
the preconditioner B as the PGMRES method, and the simple GMRES method
as the GMRES method, respectively. Tables 4-5 below give the iteration numbers,
computing time and convergence of the PGMRES method and the simple GMRES
method for solving the system generated by the WVF method (α = ω2, β = 1, p =
12).

It can be seen, from the tables 4 - 5, that the iteration numbers and computing
time of the PGMRES method are much more smaller than those of the GMRES
method. Besides, in the two tables the iteration numbers and computing time of the
PGMRES method increases more slowly when h decreases than that of the GMRES
method. All these show that the proposed preconditioner B is very effective. It is
interesting that the PGMRES method is less effective to the system generated by
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Table 4. A comparison between two iterative algorithms for ω = 20.

PGMRES GMRES
h k Niter Tsol(sec) err. Niter Tsol(sec) err.

1
12

6 73 6.08 2.06e-6 3169 2.46e+3 6.23e-6
7 71 4.28 1.91e-5 3796 3.59e+3 2.68e-5

1
24

6 125 18.50 6.25e-8 5000+ 1.22e+4 3.59e-5
7 126 26.63 4.19e-7 5000+ 1.87e+4 1.72e-4

Table 5. A comparison between two iterative algorithms for ω = 40.

PGMRES GMRES
h k Niter Tsol(sec) err. Niter Tsol(sec) err.

1
20

12 69 6.59 6.35e-6 5000+ 1.16e+4 1.37e-5
13 67 7.01 1.27e-5 5000+ 1.10e+4 6.01e-5

1
40

12 111 46.08 8.98e-8 5000+ 5.14e+4 1.37e-4
13 110 50.04 2.91e-7 5000+ 6.09e+4 1.21e-4

the original VTCR method, which implies that the system generated by the VTCR
method is indeed difficult to solve (when h decreases).

In most applications, the wave number ω may be large, so we would like to
investigate how the errors of the approximate solutions depend on the wave number
ω. Figure 3 highlight a comparison of the three strategies on the accuracy for fixed
ωh = 1 and variable ω. It is clear that three methods offer the same trend of
error for fixed ωh = 1 and increasing ω. But the WVF method provides the higher
accuracy than other methods.
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Figure 3. A comparison of of the three strategies on the accuracy
for fixed ωh = 1 and variable ω.

6.2. A smooth homogeneous problem in 3D. The second model problem is
the following Helmholtz equations:

∆u + ω2u = 0 in Ω,

∂u

∂n
+ iωu = g over ∂Ω,

where Ω = [0, 1]× [0, 1]× [0, 1], and g = iω(1 + ~v0 · n)eiω ~v0·~x.
The exact solution of the problem can be obtained in the closed form as

uex(~x) = eiω ~v0·~x,
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where ~v1 = (tan(−π/10), 0, tan(π/5))t, ~v0 = ~v1/||~v1||2.
As in the last subsection, we also choose α = ω2 and β = 1 in the variational

equation (11) for this case. We numerically investigate the p-convergence of three
methods for the case of ω = 10 in order to determine the number of basis function
in each element, see Figure 4. We observe that in order to reach the high accuracy,
the suitable size of the problem and give a fair comparison of the h-convergence of
three methods, the number p of basis functions in each element is set to 26 from
this subsection.
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Figure 4. p-convergence for the solution uex plotted against p ∈ {8, 26, 58}.

Tables 6 - 7 and Figure 5 below give comparisons to the errors of the approxi-
mations generated by the three methods. Similarly to 2-D test, the corresponding
systems (9) and (11) are solved by the direct method.

Table 6. Errors of the approximations for the case ω = 10.

Methods WVF (α = ω2, β = 1) VTCR UWVF
h err. err. err.
1
8 8.27e-4 2.50e-3 8.46e-4
1
12 1.42e-4 6.00e-4 1.43e-4
1
16 4.10e-5 1.89e-4 4.12e-5

Table 7. Errors of the approximations for the case ω = 20.

Methods WVF (α = ω2, β = 1) VTCR UWVF
h err. err. err.
1
20 3.58e-4 1.10e-3 2.73e-4
1
24 1.43e-4 5.65e-4 1.22e-4
1
28 6.88e-5 2.99e-4 6.23e-5
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Figure 5. A comparison of the three strategies on the accuracy.
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Similarly to the above 2-D test, the results listed in Tables 6 - 7 indicate that
the approximation generated by the WVF method possesses much higher accuracy
than the one generated by the original VTCR method, and has almost the same
accuracy with the one generated by the UWVF method. Moreover, Fig.2 tells us
that the new method is also more stable with respect to h than the original method.

Table 8 below lists iteration numbers, computing time and convergence of the
PGMRES method and the simple GMRES method for solving the system generated
by the WVF method (α = ω2, β = 1, p = 26). It can be seen from Table 8 that

Table 8. A comparison between two iterative algorithms.

PGMRES GMRES
ω h Niter Tsol(sec) err. Niter Tsol(sec) err.

10
1
8 40 5.20 8.27e-4 943 3.64e+2 8.25e-4
1
16 64 73.16 4.10e-5 2945 4.35e+4 9.69e-5

20
1
12 78 35.01 7.90e-3 1441 2.76e+3 7.90e-3
1
24 56 1.50e+2 1.44e-4 5000+ 6.35e+5 2.01e-4

the iteration number and computing time of the preconditioned GMRES method
with the new preconditioner B increases more slowly when h decreases than that
of the simple GMRES method. Both the iteration counts and the computing times
in Table 8 indicate that the proposed preconditioner B is very effective.

The following Fig.6 describes real part and imaginary part of the exact solution
and the numerical solution in the plane z = 0.5, respectively. It can be found from
these figures that the approximate solutions computed by using the WVF method
almost coincide with the analytic solution.

Figure 6. The first row is the real part of the exact solution and
the numerical solution. The second row is the imaginary part of
the exact solution and the numerical solution.

.
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6.3. A point source problem. The following test problem consists of a point
source and associated boundary conditions for homogeneous Helmholtz equations
(see [13]):

u(r, r0) =
1

4π

eiω|r−r0|

|r − r0|
in Ω,

∂u

∂n
+ iωu = g over ∂Ω,

in a cubic computational domain Ω = [−1, 1] × [−1, 1] × [−1, 1] centred at the
origin. The location of the source is off-centred at r0 = (1, 1, 1) and r = (x, y, z)
is an observation point. Note that the analytic solution of the Helmholtz equation
with such boundary condition has a singularity at r = r0.

Since the analytic solution is singular, the jump ∂nk
uk + ∂nj

uj may not be

small on Γkj . Thus, we choose α = ω and β = 1
ω

in the variational equation
(11). Table 9, Table 10 and Figure 7 below give comparisons to the errors of the
approximations generated by the WVF method, the VTCR method and the UWVF
method respectively, where the resulting systems are solved by the direct method.

Table 9. Errors of the approximations for the case ω = 10.

Methods WVF (α = ω, β = ω−1) VTCR UWVF
h err. err. err.
1
6 1.14e-1 1.54e+1 1.16e-1
1
8 1.11e-1 3.22e+1 1.14e-1
1
12 1.10e-1 — 1.13e-1

Table 10. Errors of the approximations for the case ω = 20.

Methods WVF (α = ω, β = ω−1) VTCR UWVF
h err. err. err.
1
8 1.58e-1 2.06e+1 9.24e-2
1
12 8.53e-2 — 8.48e-2
1
16 6.18e-2 — 8.33e-2
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Figure 7. A comparison of the three strategies on the accuracy.

The results listed in Tables 9-10 indicate that, although the VTCR method is
completely invalid to solve such point source problem, the approximation generated



A WEIGHTED VARIATIONAL FORMULATION 605

by the WVF method can also achieve a certain accuracy for such singularity prob-
lem, and possesses slightly higher accuracy than the one generated by the UWVF
method when h decreases. Since the analytic solution u(r, r0) has singularity, the
approximation generated by the new method does not converges uniformly with
respect to h.

Table 11 below lists iteration numbers, computing time and convergence of the
PGMRES method and the simple GMRES method for solving the system generated
by the WVF method (α = ω, β = ω−1, p = 26).

Table 11. A comparison between two iterative algorithms.

PGMRES GMRES
ω h Niter Tsol(sec) err. Niter Tsol(sec) err.

10
1
4 58 6.21 1.28e-1 1424 1.28e+3 1.28e-1
1
8 38 27.52 1.12e-1 5000+ 2.24e+5 1.13e-1

20
1
6 77 30.57 3.90e-1 847 1.71e+3 3.90e-1
1
12 81 2.71e+2 8.71e-2 5000+ 8.57e+5 9.12e-2

Similarly to the smooth 3-D test, we can see from the above table that the
proposed preconditioner B is very effective.

The following Figure 8 describes real part and imaginary part of the exact solu-
tion and the numerical solution in the plane z = 0.5, respectively. It can be found
from these figures that the approximate solutions computed by using the WVF
method almost coincide with the analytic solution.

Figure 8. The first row is the real part of the exact solution and
the numerical solution. The second row is the imaginary part of
the exact solution and the numerical solution.

.
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7. Conclusion

In this paper we have put forward a weighted variational formulation (WVF) for
both two-dimensional and three-dimensional Helmholtz equations, inspired by the
variational theory of complex rays (VTCR, see [16]). We proved a L2 error esti-
mate of the approximate solution generated by the discrete WVF method. The all
numerical examples show that the approximations generated by the WVF method
possess much higher accuracies than that generated by the original VTCR method,
and have almost the same accuracies with that generated by the UWVF method
(note that the WVF method is easier to implement than the UWVF method), pro-
vided that the weighes α and β are chosen in a suitable manner. Moreover, the new
method is more stable with respect to mesh size h than the original VTCR method.
Besides, we have introduced a simple domain decomposition preconditioner for the
system arising from the WVF method for Helmholtz equations. We found that the
preconditioned GMRES method with such preconditioner is an effective method
for solving such system, in both two-dimensional and three-dimensional cases.
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