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SYMPLECTIC SCHEMES FOR STOCHASTIC HAMILTONIAN
SYSTEMS PRESERVING HAMILTONIAN FUNCTIONS

CRISTINA A. ANTON, YAU SHU WONG, AND JIAN DENG

Abstract. We present high-order symplectic schemes for stochastic Hamiltonian systems pre-
serving Hamiltonian functions. The approach is based on the generating function method, and
we prove that the coefficients of the generating function are invariant under permutations for this
class of systems. As a consequence, the proposed high-order symplectic weak and strong schemes
are computationally efficient because they require less stochastic multiple integrals than the Taylor
expansion schemes with the same order.

Key words. Stochastic Hamiltonian systems, generating function, symplectic method, high-order
schemes.

1. Introduction

Consider the autonomous stochastic differential equations (SDEs) in the sense
of Stratonovich:

dP; = —Loag D gy - f; L:?(Q]? 9,
(1) m

dwy, P(ty)=p

dwy, Q(to) = q,
r=1
where P, @, p,q are n-dimensional vectors with the components P;, Q;, pi, gi,t =
1,...,n and w{,r = 1,...,m are independent standard Wiener processes. The
SDEs (1) are called the Stochastic Hamiltonian System (SHS) ([12], [11]).
Unlike the deterministic cases, in general the SHS (1) no longer preserves the
Hamiltonian functions H;,i = 0,...,n with respect to time. However, by the chain
rule of the Stratonovich stochastic integration, for any ¢ = 0,...,m, we have

", 9H; OH;
dH; = dP d
o ;(apk % + 90; Qr)
) -
", 9H;9H, OH;0H, I~ OH;0H, OH;0H,
=3 (-G Dyt +3" 3 )
k=1

9P, 90r 90y OP;

9P, 9Qx | 90y, 0Ps

o dwy
r=1k=1

Thus, the Hamiltonian functions H;,i = 0,...,m are invariant for the flow of
the system (1) (i.e. dH; = 0), if and only if {H;,H;} = 0 for 4,5 = 0,...,m,
where the Poisson bracket is defined as {H;, H;} = Zzzl(ggi gg): - gg; gg)j).
In this paper we propose symplectic schemes for SHS preserving the Hamiltonian
functions. This type of SHS is a special case of integrable stochastic Hamiltonian
dynamical systems which has been studied in [8]. An example of a SHS preserving
Hamiltonian functions is the Kubo oscillator which is used, for instance, in [11] to
illustrate the superior performance of symplectic schemes.

Received by the editors April 9, 2013 and, in revised form, October 22, 2013.
2000 Mathematics Subject Classification. 65C30, 60H35, 37J10.
This research was supported by NSERC Canada.

427



428 C. ANTON, Y. WONG, AND J. DENG

We consider the differential 2-form
(3) dp Adg =dpi Ndgi + -+ + dpn A dgn.

The stochastic flow (p,q) — (P, Q) of the SHS (1) preserves the symplectic struc-
ture (see Theorem 2.1 in [12]) as follows:

(4) dP N dQ = dp A dg,

i.e. the sum of the oriented areas of projections of a two-dimensional surface onto
the coordinate planes (p;,¢;), ¢ = 1,...,n, is invariant. It should be noted that in
(1) p, q are fixed parameters and the differentiation is done with respect to time ¢,
while in (4) the differentiation is carried out with respect to the initial data p, g.
We say that a method based on the one-step approximation P = P(t + h;t,p,q),
Q = Q(t + h;t,p, q) preserves symplectic structure if

(5) dP A dQ = dp A dg.

If for the approximation X; = (P,Q), k = 0,1,..., of the solution X (t,w) =
(P(tr,w), Q(ty,w)), we have
(6) (B Xu(w)) — X (b, @)/ < KW,

where tj, = to + kh € [to,to + T1], h is the time step, and the constant K does not
depend on k and h, then we say that Xj approximates the solution X (¢x) of (1)
with mean square order of accuracy j ([7]). On the other hand, if

(7) | B[F(Xk(w)] — BIF(X (t, w)]| < KN,

1/2

for F from a sufficiently large class of functions, where t;, = to + kh € [to,to +
T], h is the time step, and the constant K does not depend on k and h, then
X}, approximates the solution X (t;) of (1) in the weak sense with weak order of
accuracy j ([7]).

Milstein et al. [12] [11] have constructed a symplectic scheme with mean square
order 0.5 for the general SHS (1), and several symplectic schemes with higher mean
square order for special types of SHSs such as SHSs with additive noise or separable
Hamiltonians. A symplectic scheme with weak order one is constructed in [10]. An
approach to construct symplectic schemes for SHSs based on generating functions
was proposed by Wang in [13]. More recently, Wang et al. have also proposed
variational integrators [14] for SHSs, and have presented several applications of the
generating functions method for SHSs in [5], [6].

In [1] and [4], we follow the approach based on generating functions and we pro-
pose a recurrence formula for finding the coefficients of the generating function for
SHSs. We derive several higher order strong and weak schemes and we also illus-
trate by numerical simulations that symplectic schemes are more accurate for long
term numerical calculations than the non-symplectic methods. In this study, we
extend the results presented in [3] and we focus on SHS preserving the Hamiltonian
functions.

In the next section, we introduce general results regarding the generating func-
tions associated with the SHS (1). The main results are presented in Section 3
where we prove that the coefficients of the generating function are invariant under
permutation for this type of systems. Hence, the construction of the strong and
weak symplectic schemes of order two and three reported in Section 4 is simpler and
more efficient than the non-symplectic explicit Taylor expansion schemes with the
same order. In Section 5 we illustrate numerically the performance of the proposed
strong and weak symplectic schemes.
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2. Generating function method

The generating functions are stochastic processes connected with the SHS (1)
by the following Hamilton-Jacobi partial differential equations (HJ PDE). Let
S!(P,q,t), i =1,...,3 be the solutions of the partial differential equations

(8) dSL=Ho(P,q+VpSL)dt+ > H.(P,q+VpSL)odw;, Sk, =0,

r=1

(9) dSo% = Ho(p + VQan Q)dt + Z H.(p+ VQan Q) o dwy, Sf;'t:to =0,

r=1
1 u 1
(10) dSj = Holw+3J 7' VSE)dt + 3 Hr(w+ 571 VS) o dufs Sty =0,
r=1

where S} depends on the coordinates (P,q), S2 depends on the coordinates (p, Q),
and S? depends on w € R?". Here J is the following matrix

(11) J= {_OI (ﬂ

where I is the n dimensional unit matrix. Under appropriate conditions (see The-
orem 3.1 in [4]) we have:

e The map (p,q) = (P(t,w), Q(t,w)) defined by

oSt Sk

0¢; 0P,
t=1,...,n is the flow of the SHS (1).

e The map (p,q) = (P(t,w), Q(t,w)) defined by

052 052
aQi (p7 Q)a Q’L =dq; — apz

t=1,...,n, is the flow of the SHS (1).
e The map (p,q) = (P(t,w), Q(t,w)) defined by

(14) Y =y—JVSi((y+Y)/2),
where Y = (PT,QT)T, y = (pT,¢")7 is the flow of the SHS (1).

The key idea to construct high-order symplectic schemes via generating functions
is to obtain an approximation of the solution of the HJ PDE, and then to derive
the symplectic numerical scheme through the relations (12) - (14).

As in [4], we assume that the generating function can be expressed by the fol-
lowing expansion locally:

(15) SL(Pq.t) =Y GliJaes, i=1,23,

(12) P =p; -

(P7q)7 Ql:q1+ (P7q)7

(13) P =pi +

(p, Q).

where o = (j1,J2,---, 1), Ji € {0,...,m} is a multi-index of length I(a) =1 (e.g.
la)=1if o= (j1,72,..-,71)), and Jass, ¢ is the multiple Stratonovich integral

t S S2
_ Ji ... Ji—1 Ji
(16) Jastot = / / . / odwl} -+ odwl ! o dwl!.
to Jto to

For convenience, ds is denoted by dwg, and we shall write J,, for Jo.t, +, whenever
the values of the time indexes are obvious.
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We denote by n(a) the number of components of the multi-index « that are
equal with 0 (e.g n(a) =2, if & = (0,3,0,1)). From equations (2.34) in Chapter 5
in [7], we have the following relationship between the Ito integrals

t s1 Sa ) ) )
A0 LlfCole= [ [ [ pendundwiodud, L= Tl
to Jto to
and the Stratonovich integrals J,, defined in equation (16): I, = J, if [(a) = 1 and

1
(18) Jo = I(jz) [Jaf] + X{jL:jl—lio}I(O) {ij(a_)_} , l(a) > 2,

where a = (j1,72,.-.,41),7i € {0,1,...,m}, xa denotes the indicator function of
the set A, and f is any appropriate process (see Chapter 5 in [7]) .

To introduce the formulas for the coefficients G%, i = 1,2,3, we define some
operations for the multi-indexes. If the multi-index « = (41, J2,...,j1) with I > 1
then a— = (j1,52,.-.,Ji-1), i.e. the last component is deleted. For any two
multi-indexes « = (ji1,J2,...,/1) and & = (j1,5,...,7,), we define the concate-
nation operation '« as a *x o = (j1,jo2,..., 1,71, J5,---,Jp). The concatenation of
a collection A of multi-indexes with the multi-index « gives the collection formed
by concatenating each element of the collection A with the multi-index «, i.e.,
Axa = {do xala’ € A}. For example, if A = {(1,1),(0,1,2),(1,1)} and o = (0)
then A+ a = {(1,1,0),(0,1,2,0), (1,1,0)}.

In [4] we define recursively the collection Ag,,.. ., depending on the multi-
indexes a1, ..., ax. If a1 = (j1,72,---,51) and a2 = (ji, 45, --, 1), then Ay, o, is
the collection of multi-indexes depending on «; and as and given by the following
recurrence relation:

{(j1,51), G,g0)}, i I=Tandl' =1

{AGy),as— * (Gp)seex ()}, if l=1landl' #1
{Aar,(ji) *(J1),01% ()}, if l#landl' =1
{Aai— a0 * (1)s Aoy oo x (J)}, if I#Tland ! #1

For any k > 2, we define Aq, ... .0, ={Ap,a,|B € Aay,...,an_, }- For example, Ay 0y, (0)=
{Aﬁ-,(O)lB € A(l),(O)} = {A(O,l),(O)uA(l,O).,(O)} = {(07071)7(07071)7 (07170)7 (17070)7
(0,1,0), (1,0,0)}.

In addition to the previous recurrence relation, we can also compute explic-
itly the collection Aq,,. o, (see Lemma 4.4 in [4]). First, for any multi-index
a = (J1,42,.--,71) with no duplicated elements, (i.e., jm # jn if m # n, m,n =
1,...,1) we define the set R(a) to be the empty set R(o) = 0 if I = 1 and
R(a) = {(jm,Jn)|m < n,m,n = 1,...,1} if | > 2. R(«) defines a partial order
on the set {0,...,m}, defined by 7 < j if and only if (¢,5) € R(c). If there are no

(19) Aa110¢2 =

duplicated elements in or between any of the multi-indexes a; = ( j%l) , jél), ceey jl(ll)),
e, Q= (jgk),jék), . ,jl(f)), then
(20)

Aoy ..o = 16 € M|UE_ R(e;;) € R(B) and there are no duplicated elements in 3},
where M = {(j1, jo, .., g)lji € Tt 8o gt DS i =1,
[ =11+ -+11.}. For multi-indexes with duplicated elements, we need to assign a dif-
ferent subscript to each duplicated element. For example, A2 .0)(0,1) = A(2,01),(02,1)
= {(27 02,1, 01)7 (027 2,1, 01)7 (27 01,02, 1)7 (027 2,01, 1)7 (027 1,2, 01)7 (27 02,01, 1)} =
{(2,0,1,0),(0,2,1,0),(2,0,0,1),(0,2,0,1),(0,1,2,0),(2,0,0,1)} .
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Notice that
(21) Aoq,---,ozk =A

A (1)se-¥r (k)

for any permutation 7 on the set {1,...,k} (i.e. for any bijective function 7 :

{1,...,k} = {1,...,k}).
Replacing the expansion (15) into the HIPDE (8)-(10) and using

BEAay,...,an
we obtain recursive formulas for the coefficients G%,, i = 1,2,3 (see Proposition 4.1
in [4]).
For the coefficients of S}, if & = (r), r = 0,...,m then G., = H,. If a =
(i1, ..yii—1,7), L > 1,41,...,4—1,7 = 0,...,m has no duplicates then
g > L o
=1 k17 hi=1 8qk 8 ki l(a1)+ +l(a1) (a) 1 8Pk1 8Pki
«@ R(a; ) CR(«x
(23) R(a1)U-UR(a;)CR(a—)

(a)—1

O'H,
I e D
=1 k= O - - D, Uar)++i(e)=1(a)—1
a—€ANAaq,..., «

oG, AGl,
OPy, 0P,

If the multi-index « contains any duplicates, then we apply formula (23) after
associating different subscripts to the repeating numbers. The coefficients of the
generating function S2 are obtained by replacing ¢ by p and P by @Q in the recur-
rence (23) .

Proceeding as for S., we obtain a general recurrence for finding the coefficients
G, of S2. Hence If a = (1), r = 0,...,m then G3 = H,.. If a = (i1,...,i1_1,7),

I>1,41,...,%1-1,7 = 0,...,m has no duplicates then
I(a)—1
O'H, 1.4 3
Z Z Oy - - - Oy, > (577 VGak
: Lki=1 n Ok o)+ +l(e;)=l(a)—1
R(a1)U---UR(a; ) CR(a—)
1
o (5TTIVGE ),
(24) (5 o s
I(a)—1
1 O'H, —1o 3
- Z 214 Z 3yk . Oyg Z (T VGa, )i
=1 ki,..oki= ki o)+ +l(e;)=l(a)—1

a—€Aaq,....a
(VG ks

where y = (p”, ¢")" and (J7'VG2 )y, is the k;-th component of the column vector
J~'VG?, . If the multi-index « contains any duplicates, then we apply formula (24)
after associating different subscripts with the repeating numbers.

3. Properties of G,

We now prove an invariance property of the coefficients G?, of the generating
functions S, i = 1,2,3. For any permutation on {1,...,l}, I > 1 and for any
multi-index « = (é1,...,4;) with {(a) = [, let denote by m(a) the multi-index
defined as 7(a) := (ix(1), - - - In(1))-

Based on formula (23), we have the following result.
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Theorem 3.1. For SHS preserving the Hamiltonian functions, the coeﬁicients G}l
of the generating function S} are invariants under permutations, i.e. G, = Gﬁ(a)
for any permutation ™ on {1,...,1}, where | = l(«).

Proof. The proof is based on induction on the length of the multi-index «. For
systems preserving the Hamiltonian functions the coefficients G}, of S, are invariant
under the permutations on «, when [(«) = 2, because for any r1,r2 =0,...,m, we
have

0H,, 0H,, 0H,, 0H,,
Z Z (

(25) 3% 3Pk -

Tl ra)

dq 0P,  (2m)

We assume that G, = Gl for any multi-index o with [(a) < [ and any permuta-
tion 7 on {1,...,1(a)}. Let consider any multi-index a with I(«) = 1. We suppose
that the components of the multi-index « are distinct, otherwise we rename the
repeating ones with distinct subscripts. To prove that G = Gt we analyze

m(a)’
several cases depending on the permutation 7 on {1,...,1}.
Case 1 Let first consider any permutation 7 such that 7(l) = [. Then we
can write o = (i1,...,4-1,7) and 7(a) = (ira),...,izq—1),7), With 7 = i €

{0,...,m}. From (23) and Gj = G4, for any multi-index 3 with I(8) < I, we get

-1 n

i 1 1
N M T
= v k1,....k;i=1 ey - - Ok o) +-+l(ai)=l-1 h i
a—€Aay,...,a;
-1 n

oGt 8G!, .
Mo
P, = 0Py, (@)

SHIE S P>

= '_' a. o

et - 0qk, - - - Oqx, o)+ () =l—1
m()—€Aay,...,a

Case 2: Now consider any permutation 7 such that 7(l) =1 —1, n(l — 1)
I, (a—=)— = (m(a)—)—. Then we can write & = (iy,...,4—2,8,7) and w(«)
(i1y...,41—2,7,8), with r =4; € {0,...,m} and s = ;1 € {0,...,m}. From (2
and since s is the ”largest” number with respect to the partial order < on a—, we
can write

R O'H,
Zz! z; 13qk ... Oqy, o)+ %ﬂl) 1
a—€Nay,..., «

Z

aGL, oGl
0P, 0P,

:ZaHaGa))(s)

kim1 8qk1 8Pk1

-1 n i 1 1
DD Mt D DI o

i=2 Chyyohg=1 QT Ok Ok =1 YR ki

(a=)—€Aay,....a
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Using formula (23) for the first and the third terms, we get

Z 0H, 0
O, Py,
OGYL OG? )

B Bu
2 9P, O

(B ++1(Bu)=1-2
(o 7>76A51 ..... o

ZZW

ClyeeyCy=1

<l 2 O H

OiH,  OH,
+Z 1)vk Z_ Dar - Oar, OF,
oGL. oG

(26) l(az)+-+l(o)=1—-2 8Pk2 8Pk1
(a=)—€Aays,....,0;

l(ag)+--+l(ai)=l—2—3,
l(al):j) (a_)_eAal ..... a;

8G%1 8Géu )

) (ZJ: 1 < O“H,
Loy 2y
0P, \ = u! e 0Ge, ---0qe, BT B)=i oF,, oF.,
a1€AB; ... By

yeeey

By the product rule, we separate G, into two sums denoted by 77 and T such that
T, is formed with all terms that do not include differentiation of the Hamiltonian

H, with respect to P;, for any i = 1,...,n. Thus G = Ty + Ty, with
<1 < 0H, 0“H o (0GY  OG:
Ly r s 3 ( A m)
' .
o T 0, 04c, -..0qe, KB 4 T8 =2 0Py, \ OF,, oF.,
(a=)—€Apy, .80
1-21—i—1 j n ;
- 1 0"H, O“H,
+ Zu!(i—l)! D PN TR R
i=2 j=1 u=l1 k1,..., ki=1 1 e
ClyeeeyCy=1
1 1
Z 8G(112 ' 8G(11i 9 (8G,31 o 8G6u>
o)+ +l(a)=l—2—7, 0P, 0P, L(B1)++1(Bu)=3 0P, \ OFe, OF,
l(a1)=7, (a—)—€Aay,. . a; a1€Mgy, .. By

After simple manipulations of the summation indexes, using (21) we get

z": OH, OH, °G{,_,_
8% (9(]01 (9P/€1 8Pc1

k lel

OH,  0“H, 0 (0G  9Gh,
+Z Z O, D4er -4, | 2 P, <apcl apcu>

" k1cteca=1 (Br)+-+l(Bu)=1-2
(a=)=€Apy,...80
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Uaz)++l(ay)=l—2—j,
l(a1)=j, (a=)—€Aa;
8G}31 8G}3u

1-21—i—1 n ; I—i—1
1 0'H, 0" H,
+ T N
P uz::l (i —1)lu! kl,%;:l Oqk, - .. 0qk; Oqe, - .. 0qc, =
Clyenny cy=1
oG,  OGl, 5 ) <aG;1 aGgu>
0Py, 0P, B )+ (B =i 0Py, \ OF, oP.,
a1€AB, . By
& 9H, 9H, PClay_
kiere1 8qk1 (9q.;1 8Pk18Pc1
-2 n
OH, 0" H, 17}
T T
|
w2 W e eu=1 94ry e, - - - Oe,, LB )+ +L(Bu)=l—2 9P,
a—)—€Ag, .. B,
1-21—i—1 n .
1 0'H, 0" H,
DI e B
— — ul(i —1)! P Oqk, - .. 0qk; Oqe, - . .0qc,
Clyeeny cy=1
oG, 0GL, a (0Gy  0Gh,
0Py, 0Py, 0Py, \ 0P, oP.,

U(a2)++1(Ba)=l—2
(a—)—€A

Using again the product rule and (21), we obtain

n

-y OH, 0H, 0°G(,__
! Oqx, 9qc, 0Py, P,

-2

+MZ:2(U_1)!

1

(

oP.,, 9P,

k1,c
Z": OH,  9"H, 3 0*G},
e o1 Ok, 04c, --.0qc, <A1 0Py, 0P,
R(B)CR((0—)-)
5 oGk, 0G| +l—2 1
B+ A=tz 9T o Ok Z -

(a_)_eAB,’um,’vufl

)

n i 21
D Tt D D
(27) ek, ki=1 ks - - - OGk; Oles 1<1(B)<I—1—i ki@t er
R(B)CR((a—)-)
1 1 -3 1—i—1
> e S
U(B)+U(y1) -+l (vi—1)=1-2 0P, OF%, i=2 u=2 (@ = Dllw -1
(a=)=€Ap, vy v
Z": O H, O“H, 3 PG
kiyoooki=1 Oqr, - - - Oar; ey - - - 9, 1<I(B)<l—i—u 0Py, OF,
ClyenyCy=1 R(B)CR((a—)—)
1 1
G, |0 06  9G,
aP]gz 6Pk1 6PCQ aPCu

UB)+H(y1)+ -+l (Vitu—2)=1-2
(O‘_)_eAﬂ,’Yl ,,,,, Vidu—2
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Notice that by first summing with respect to v and then with respect to i, we can

rewrite the last term of T as

-3 1l—u—1 1 n BZHT auHs 82G}3
= = (i—1)Nu—-1) k1,.§i:1 Oqk; - .- 0qr; 0qc, - .. 0qc, 1§l(6)2§:lfi7u 0Py, OP.,
elyecu=1 R(B)CR((a—)-)
R
B+ )+ (i pu2)=t=2 2 ki Ohe eu

(a7)7€A5,71 ,,,,, Vitu—2

Thus if we switch s and r, the formula (27) for T} does not change. Hence, T} is

symmetric in s and r.

From equation (26) and G, = Ty + T5, we have

- li 1 z": O'H,  OH, 5 aGL,  AG!,
Y = .
= 0D T O Oak 0P, )+ gitan—i—s P Ok
(a—)—€Aay,....q;
RS z”: OH,  9"T'H, 5 oGy, oG},
' PR —
u—1 w: E1,e1, . cu=1 6Qk1 a‘lea%n s aQCu 1(B1)+-- +l(,3u) -2 6P01 aPCu
(a=)—€Apy,....8,
1—21—i-1 j n ,
1 O'H, 9utLH,
+ —
= ]; ; (i — 1! kl,Zki—l Ok, - - - Oqr, 0Pk, 0qc, - .. 0qc,
Cl,...,Cy =1
oGL,  9GL, > oGL, oG},
OB, = 9P,

P.. 0P,
foay+oittanmia—y, O 0Py s
la1)=j, (a—)—€Aay,. .. q; a1€Mpy ... By

Similarly as for Ty, using (21), we obtain

aGL.  aGl,

3 OF S PR SNNCU T
pr R L R R l((acl)J)r---+l(ai):l72 0P, 0B,
a—)—€Aay,...,a;
N =24 i OH,. o, 6Gél oG
i—1 2 E1ygi.gi=1 6Qk1 aplmaq]l cet aq]i U(B1)++1(B)=1—2 a‘le aP]w
(0‘7)76[\51 ----- Bi
1—21—i—1 n ;
0"H, Ovt1H,
+Z Z (i—1) (i — D)lu! Z Ok, - - - Oqx;, 0Pk, 0qc, . ..0qc
=2 u=1 ki,...,ki=1 K b
Cly.eeCy=1
2 oP,, 0P, 0P,  OP.,

(ag)+-+1(Bu)=l
(a=)=€Aas,...,c; 1. Bu
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Introducing a new summation with index v =4+ u — 1 for the last term, we get

=1 & OH1H,  OH,
Z Z_ Z j ani 6Pk11 ! Z

0
=1 Y k=1 YO0 ()t L) =L —2

oGL,  OGL,
op;, " op;,

(a=)—€Aay,...,a;

T L R s O G

— il A Oqi, 0Py, 0qj, ... 0q;, KB FTB =2 oP;, oP;,
(a=)—€Apy, ...

. =2 v 1 z": O'H, Ui,

== (t—Dl(v—1i+41)! P e Oqi, 0¢;, - .. 0qj,_, 0Py, 0qj, . ..0qj,
) D
Qe B

Notice that 75 can be expressed as follows

(28)
-2 n " 1 1
T2:Zil Z 9 (8HT8H5) Z %%
= ke 00 00 N0 0P Sy SR, 9P OF,
(a*)*GA’u ,,,,, Yu
Hence T is symmetric with respect to s and r because gq—fi: gg:l = gg:l gqikl for
any k1 =1,...,n
Thus G}, is symmetric with respect to r and s, so we have G, = G}r(a
Case3: For any arbitrary permutation 7 on {1,...,1} not in any of the previous
two cases (i.e. w(l) # [ and either w(l) # 1 — 1 or n(l — 1) # 1), let consider any
multi-index a = (i1,...,49-1,7), T(@) = (ix1),- - ix(-1), ix()) and denote r =iy,

5 = irqy. Since 7(l) # I, we have r # s, and there exists k € {1,...,1 — 1} such
that i, = s. We consider a permutation 71 on {1,...,l} defined by m (k) =1 — 1,
m(l—=1) =k m@u) =u, foru=1,...,0, u # k, u # 1 —1. Thus m(a) =
(ixy(1)s---»8,7), and from Cases 1 and 2, we know that Gl = G}Tl(a) = G}ll, where
a1 = (ix,1),---,75). Notice that a; = (41,...,4-1,...,141,5), so we can obtain
m(a) from «; by applying a permutation 79 with m2(l) = I. From Case 1, we have
Gl =Gl =G!L Therefore, G, = G

(1) ()" m(a)”
Puttmg together the previous three cases, we get G = G}r(a) for any permuta-

tion 7 and any multi-index o with I(«) = I. O

Given that the coefficients of the generating function S? are obtained by replac-
ing ¢ by p and P by @ in the recurrence (23), we can easily adapt the previous
proof to show that the coefficients of S are also invariant under permutations .

A similar result also holds for the coefficients of the generating function S3 and
it is based on formula (24).

Theorem 3.2. For SHS preserving the Hamiltonian functions, the coefficients G
of the generating function S5 are invariant under permutations.

Proof. The proof can be done by induction on the length of the multi-index «. For
systems preserving the Hamiltonian functions the coefficients G3, of S3 are invariant
under the permutations on «, when I(«) = 2 because for any r1,r2 = 0,...,m, we
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have

(29) N 12( OH,, OH, , OH, 6HT1> oo

“ r2) §k:1 Oyk OUk+n  OUk+n OUk (r2,m2)"

We assume that G5 = Gfr(a)
permutation 7w on {1,...,l(«)}. Let consider any multi-index « with I(«) = 1. We
suppose that the components of the multi-index « are distinct, otherwise we rename

the repeating ones with distinct subscripts. To prove that G3 = Gf’r( we analyze

for any multi-index « with I(a) < [ and for any

)’
the same three cases as in the proof of Theorem 3.1. The arguments for Cases 1
and 3 are similar, so we will present the details only for Case 2.

Let consider any permutation 7 such that #(l) =1 -1, 7(l = 1) =1, (a—)— =

(r(a)=)—, and denote o = (i1,...,%-2,8,7) and w(a) = (i1,...,4_2,7,5), with
r,s € {0,...,m}. Notice that for any 2n- dimensional vector v = (vy,...,v2,)7,
we have J 710 = (—vp41, ..., —V2n, V1, .., 0n) .

Since s is the ”largest” number with respect to the partial order < on a—, from
formulas (21) and (24) we get

0"
Z 241 Z 8yk Ha Z ( _1VG21)7€1 s (J_lvc;gl)kl

ki,....ki= e Ok l(on) 4 +l(a)=l—1
a—€Aqq,..., a;
1 z”: OH, 0G0 ) )+s)  _OH: D
2 - aykl aykrf-n 6y/€1+n aykl
-1 i i
0*H, O0H, 0"H, OH,
+ > > (- g )
— 2'(i— 1) 2i(i — 1)! S o\ kg Oy OYkyin OYkytn - OYr, Oy,
i= DY
1-2 ]
—1 3 —1 3
Z (J VGOQ);CQ (I VGai)ki + Z m
o)+ +(o;)=1—2 =2

(a—=)—€Aay,...,a

Zn: > > (JTIVGE )y - (JTIVGEE )

J=1 ki=1ka,....ki=1 l(az)+ -+l (a;)=l—-2—7,
la1)=j, (a=)=€Aa;. . .o

O H oG3 O H 0G3
_ r ayx(s) + r agx(s)
Yk,

. .8yki 8yk1+n 8yk1+n .. .8yki 8yk1

Using formula (24) for the first and the third terms, we get

1 & 2 P 2n OvH,
-3 2> (e ( X 5t

kitn Cl,y..eyCy=1

> (J7IVGE),, ... (J—1VG3u)Cu)+
I(B1)++1(Bu)=l-2
(a=)—€Apy,....84
6 2n auHS —1 3 —1 3
Byk< > T 5% > (TG )ey . (T vaﬁu)cu»
P leren=1 70 U U(Br) A+ (Bu)=1—2
(a=)—€Ag,,....8,
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+ZQZ - .Z >

k1=1 ko,...k;=1

Z ( _1VG262)]€2 tet (J_lngcl)kw

l(a2)+"'+l(ai):l72
(a—=)—€Aas,...,a;

(_ OH, _ oH,  _ OH,__ 0H, )
8ylﬂ s 8ykz 8yk1+n 8yk1+n s ayk1 8ylﬂ

-2 I—i—1 j n 2n
1 1
N DIDIDD )3 (G, ),
i=2 T =1 u=1 T ki=1ko,.ki=1  I(on)+Hl(a)=l—2—j
l(e)=3j, (a—)—€Aay,..,ay
i 2n
0'H 0 o*H
L (JTIVGE ), (— r ( A
( 1) 8yk1 s 8yk1 8yk1+n 617_221 8y61 s 8ycu

> (J7IVGE)., ...(J_1VG%u)cu)+

U(BL)++U(Bu)=]
a1€Apy ... By

b 2n 6”Hs B , » .
(Z T Y (VG VGM%))

(B1)++I(Bu)=j
@1€My . By

As in the proof of Theorem 3.1, we separate into G5 =Ty + T with

0" H,
= Z 2“+1u' Z Z (?ycl. .0Ye,,

ki=1ci,...,cu=

> (‘aﬂr (79 ey - (TG, ).)

Yk, O
1(B1)++1(Bu)=1-2 Yk1 OYki+n
(O‘_)—EAﬁl ’’’’’ Bu

0H, 0
r JIVGE )., .. (JTIVGE ). )
8yk1+n aykl (( 61) ( Bu) u)

-2 1—i—1 J O
s

+Z ZQquzul Z—l ! Z Z 8yc1---8ycu

=2 j=1 u=1 ki1=1 ka,....k;=1
Clye.yCy=1

> (J7IVGEE )k, - (JTIVGEE )y,

Waz)+-+l(ai)=1-2—7,
Wea)=j, (a=)—€hay,. ..oy

d'H, d
- L JIVGE )., .. (JTIVGE )
2 ( OYky - - - OYry OYiey4m (( J ( B

U(B1)++U(Bu)=j
a1€Apy .8y

O'H, )
. TG )y - (JTIVGE ). ))
8yk1+n e 8yk1 8yk1 <( 181) ( u) u

After simple manipulations of the summation indexes, using (21) we get

1
22 Z Z aycl 6y/€1 aykﬁ-n aykﬁ-n aykl

kl 101 1

" 0H, oH, 9(J 1VG(a y— )er 0H, o(J 1VG(a )— )ex
- +
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0"H,

+ Z 2“+1u' klzl q,vwzcu 8y ey -+ O0Ye
>

(—gHra 0 (JTIVGE ey - (JTIVGE])e)
1(B1)+-+1(Bu)=1—2 Yk1 OYk14n
(a=)—€Ap,,...80

8H, 0 _ _
. (J'VGE ey - (] 1VG3u)cu)>

-2 1—i—1 0" Hy
+Z Z 2u+zul | Z Z m

=2 u=1 k1=1 ka,....,k;i=1
Ch»»»-,Cu:l

> (J7IVGE3 ey - (

l(a2)+"'+l(ﬂu):l_2
(OL*)*GAOQ ..... ;B Bu
0'H, 0 —1o3 -1ya3
<_ 6yk1 s aykz aykr’-” <(J VGﬁl)CI o (J VG&“)CH
0'H 0
r Jivas c...J_l G3 )e
+ ey an - - OUr, Oyr, (( VG Jer - (T7VC,) ))

JﬁlVthl)kz

From (21) and the product rule, we obtain

8 G(a )— 8H,r 8[—[ 82G(a y—

n OH, OH;
OYk1+n OYer+n OYr, OYc,

1
T = 922 kl%:: <8yk1 OYer OYky +n0Yci+n
G, OH, 0H, 0°G{,_,_
B 8yk1+n Aye, 8yk18ycl+n)
oH,.  O“H, 9*G%
<5yk1 OYey - - - OYcy OUky+n0Yci+n

_ OH, OH,
8ykl 8y61+n 8yk1+n8yc1

+22u+1 Z Z >
: cu=1 1<I(B)<l—1—u
R(B)CR((a—)—)

OH, 0" H., Gy 0H.  9“H, Gy 0H,

3yk1+n OYer4n - ey OYk1OYer  OYky+n OYey - - OYey OYky OYern  OYk,
0'H >Gj > > (JIVGEE ey ... (JTIVGEE )

OYer+n - - OYey OYky +n0Ycy n Tumricn

LB)+Uv1) Al (Yu—1)=1—2
(@=)=€AB,y; .. vy

+Z2M S Z >
kl c1=1kg,...k;=1 Rl(;l)(cﬁ])zf(lal)z)

0H, 0°Gy  9'H,

8yk1+n ce 8yki (9y.;1+n 8yk1 (9y.:1 8yk1+n s

0'H, oH,  0°G} ) s

- JTVGE kg -
(9yk1 .. .8yki OYey+n ayk1+n8yc1 Z ( 71 )kz

< o'H, 0H,  0°G}
OYky - - OYr; OYer OYky+n0Yci+n

0H, 0°G}

0'H,
ayki aycl 8ykl 8ycl +n

LB)+Uv1) -+l (vi—1)=1-2
(a=)—€Ag,yy i vi



440 C. ANTON, Y. WONG, AND J. DENG

-3 1—i—1
—1 3
(771G, k+222m_, Z Z
=2 u=2 k1,01 1 k2,.. k=1
C2y..yCy=1
3 ( o' H, d"“H, G} N O'H,
ks - - OYk, OYey - - OYe, OYky+n0Ycitn  OYky4n - - OYr,

1<U(B)<l—i—u
R(B)CR((a—)—)

O“H, 0*GY 0'H, 0" H, 0*GY
Weran - e, O, Oer Oty - - Ok, Oer 4 - - - O, Oy +00Yey
O'H, " H, G}
 OYrkyan - Ok, O, - - OYe, 6yk16ycl+n)

UB)+H(y1)+ -+l (Vitu—2)=1-2
=) =€EAB V1, i

(J71VGi1)k2 e (J71VGii71)ki (J71VG%)C2 ( 1VG’3¥z+u 2)

Notice that the previous formula does not change by switching r and s. Hence, T}

is symmetric in 7 and s.
The difference Tp = G3 — T} is given by

- (_ O'H, _ 9H, . O0'H, _ 0H, )
8yk1 .. 8yk1 8yk1+n 8yk1+n s 8ykz 8yk1

Z ( _1VG3 )kz ( _1VGZ¢)]9'L

l(a2)+"'+l(ai):l72
(a—)—eAa2 ..... o

+ Z st O >

ki=1ci,.. 7Cu_l

Z ( _1VG31)01 et (J_lvG%u)c“

1(B1)++1(Bu)=1—2
(a=)—€Agy,....84

< 0H, O t1H, n 0H, ot H, >
OYky OYky +1n0Yc, - - - OYe, OYky+n Yk, 0Ye, - - - Oye,

1—21—i—1 jJ .
81HT 8u+1H5
t2 2 2 g > Z (‘aykl -0y O +n0Yer - - - O
i=2 j=1 u=l1 k1=1 ko,....k; K u
C1,.. ,cufl
O'H, ovtiH )
+ - . JvG?
8yk1+n .. 8yk1 8yk18ycl . _.8ycu Z ( z)kz

laz)++l(ai)=1—2—7,
Wen)=3, (a=)=€Aay, . oy

(Jilngi)ki Z (Jilngl)ﬁ T (JilvG%u)c“

1(B1)++1(Bu)=7
a1€AB, .. By
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Introducing new summation indexes j =4 — 1 for the first term, and v=7+u —1
for the last term and using (21), we obtain

9T H, OH, 07H, OH,
Z 2J+1 i Z Z » <_8ykl o 0Ye; OYkyin + OYkytn - - OYe; 8%)

kl1=1c1,..., cj
> (JIVGE ey (JTIVGE ),
l(a1)+»~+l(o¢j):l—2
(a=)—€Aay,...a;

O0H, OvtIH, 0H,
- Z 2u+1u' Z Z <_ayk1 OYky +n0Yey - - - Oy, * OYky+n

=lci,...,cu=1

8u+1H5 ) . . ,
Ok, 0Ye, - - Oye > Z (J VG'QI )Cl e (J VGBu)Cu
“ l(éil)+---+z(5u):l—2

-2 v aiHT
+ZZQU+1 z+1'Z Z <_3yk13yj1-

v=21=2 ki=1j1,...,jb=1 ”ayji’l
8v+2szS N 81 , 8v+27iHS )
6yk1+nayji s ayju aykl-i-ﬂayjl .- 'ayji—l aylﬁ 6yji s aij
Z (J_]"VG:O’YI )]1 T (J_]"VG:O’YU )]u

v+l (yw)=1-2
(=) —€Ayy ..y

: _ OH, OH. _ _0OH, _
Notice that T5 = 0 because By Tun i = Bk Byk forany k1 =1,...,n and Tb

can be expressed as follows

-2
oY 0H, OH, O0H, O0H,
I = ZQU+IIZ Z Oy, -0 <_5 ) +5 p) )
LAl " OYj, Yk1 OYki+n Yk14n OYky
> (J*VGil)jl = (J*VG;)@
)+ +l(yw)=1-2
(a—=)—€Ay, ..., Yo

Thus G3 = T} is symmetric with respect to s and r (I

4. Symplectic schemes

In this section, we apply the generating function method and the special prop-
erties of the coefficients G, i = 1,2,3 to construct symplectic schemes for SHS
preserving the Hamiltonian functions. Taking advantage of the invariance under
permutations of the coefficients G¢,, i = 1,2,3, we propose high-order strong and
weak symplectic schemes that are computationally attractive.

4.1. Symplectic strong schemes. Let define A, = {a : l(a) + n(a) < 27},
where n(«) is the number of zero components of the multi-index a. Symplectic
schemes that have mean square order of convergence k can be constructed using
the equations (12)-(14) and truncations of the appropriate generating functions
Si,i=1,2,3, according to the indexes o € A. Since these schemes are implicit,
the Stratonovich stochastic integrals should be approximated by bounded random
variables ([11]).
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In [4] we proposed first-order schemes for the SHS (1) based on truncations of
the generating function S¢, i = 1,3, according to A;. Let 0 < h < 1 be a small
time step, and for any multi-index « let denote by J, the multiple Stratonovich
integral Jy.0,5 defined in (16). To construct second-order schemes, we employ the
following truncations according to As:

m

S~ GloyJo) + (GET)J(T) + GlomyJom + Gb,oﬂ@,o)) + Glo,0)7(0,0)
r=1
30) + Z Glondon + O, Glsmydiin Z Gl i) Trgiens)
r,g=1 r,j,k=1 r,j,k,s=1
+ Z ( 50750 T Glory J0.r) +G2r,0,j)J(T70>j))’

r,g=1

for any 1 = 1,2, 3.
Using (22), we obtain

(31) JoyJiry = Z Jg = Jo,m + Jiro)

BEA(©0),(r)
(32) J(O) J(r,r) = Z Jﬁ = J(O,r,r) + J(T,T,O) + '](7‘,0,7‘)
BEA ), (r,r)
(33) J(O)J(T)J(j) = Z Jg = J(Qmj) + ...+ J(j,r,O)

BEA©),(r).(i)

B4 Jndn= >, Js=Jwy+Jun

BEAM, ()
35  Jpdem = D T8 =JGem + T + T
BEAG), (r,r)
(36) JiJo,0) = Z Js = J(5,0,00 T J0,0.5) + J0,5,0
BEAG), (rr)
BT Jendon= . Ts=Jerin o+ JGimm
BEA(rr),(5.9)
(38) '](]) J(r,r,r) = Z Jﬁ = '](j,r,r,r) + J(r,r,j,r) + J(r,j,r,r) + J(r,r,r,j)
BEAG) (rr.r)
(39) J(k)J(T)J(j) = Z Jﬁ = J(k,r,j) +...+ J(j,r,k)
BEAK),(r).(5)
(40) J(k)J(j)J(Tyr) = Z Jg = J(k,j,r,r) + ...+ J(Tij“T)
BEA®), (), (r,r)
(41) J(S)J(k)J(T)J(j) = Z Jﬁ = J(s,k,r,j) + ...+ J(j,r,k,s)v

BEA(s), (k). (m).(4)

for any distinct positive integers r, j, k, s = 1,...,m. The previous equations
and Propositions 3.1 and 3.2 give us the following truncations of the generating
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functions S¢, i = 1,2,3:

S4 % GloyJio) + 3 (Gl dor + Glony Jeamy + Glouny Ti0) ) )
r=1

m

+ Gz(oﬁ()) J(O,O) + Z (Gz(rmyo) J(T,r) J(O) + Gz(nryr) J(r,r,r) + GE’I",T,’I",T) J(r,r,r,r))
r=1

+ ‘Z (GET,J)J(r)J(j) + Gl o I G.9) +GEo,r,j>J<o>J<r>J<j>)

2. Y Gljma o dmdw -

Notice that to construct second-order symplectic schemes for SHS preserving
Hamiltonian functions, we need to generate only the stochastic integrals J(o), J(0,0),
Jirys Jrrys Jrrrys a0d J (g gy, 7 = 1,...;m. To ensure that these implicit schemes
are well-defined, we proceed as in [11], and to generate the stochastic integrals
instead of the independent random variables £(r) ~ N(0,1), r = 1,...,m, we use
the bounded random variables & (r):

—Ah if 5(7’) < —Ah
(43) En(r) = {&(r) i [E(r)] < A
Ah if 5(7‘) > Ah,

where 0 < h < 1 is a small time step and A, = 2,/2|Inh|. Hence, we apply the
following approximations for the stochastic integrals:

h2
s Joy=h, Joo =5 T =Vha(r),
P R i 1 _wg)
(ryr) — 2 ) (ryryr) — 6 ) (ryryryr) — 24 .

For example, for m = 1 (i.e. the SHS with one noise), using (12) and (42),
the symplectic mean square second-order scheme based on the truncation of the
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generating function S? is given by:

1 1 1 1 2
Gl 9l e, W 12, PG
0Q; 0Q; ’ 0Q; 2 0Q; 2
G%l,o) 3 aG%1,1,1) hgf}?i,z n aG%m,o) Ehih? 8G%1,1,1,1) h2§ﬁ,l>

Pi+1)=P(l) - (

0
+ Enih? +

(45) 0Q; 0Q; 6 0Q; 2 0Q; 24
oGt G oGl p2 0G| he?
| . © W (0.0 (L) P&y

G%Lo)g B i aG%Lm) hgf}%,l aG%LLo) 5}%,lh2 aG%l,l,l,l) h2§ﬁ,l
op, oM OP; 6 oP, 2 op, 2 )

where everywhere the arguments are (P(I 4+ 1), Q(1)), and the random variables &
are generated independently at each step [ according to (43).
For the coefficients of S2, a simple calculation shows that G

w?

3
(r1,m2)
ry,ro = 0,1 and G?1,1,1.,1) = 0. Hence, using (14), when m = 1 the second-order

midpoint symplectic scheme can be expressed by

= 0 for any

Yipr =Y+ J VG (V)b + T IVGE) (Vi 1) Vhén,

(46) nies,

_ _ §hah®
+J 1VG?1,1,1)(Y1+%)T+J 1VG?1,1,0)(Y1+%) 7

2

where Y, 1 = Y1 +Y)/2, Y = (PT(1)7QT(1))T7 and the random variables &, ;
are generated independently at each time step ! according to (43).

Since the schemes (45) and (46) are based on the generating functions, we can
easily prove that they are symplectic (see also the proof of Theorem 3.1 in [11]).
Analogously with Theorem 5.3 in [4], the convergence with mean square order two

can be proved under appropriate conditions using repeated Taylor expansions and
Theorem 1.1 in [9].

4.2. Symplectic weak schemes. To obtain a k-order symplectic weak scheme,
we replace in (15) the Stratonovich integrals J, by the Ito integrals using the
equation (18), and we truncate the series to include only Ito integrals with multi-
indexes a such that I(a) < k, k = 1,2,3 ([1]). Replacing in (18), we get Jg) =
Loy, Jiy = Lays Jo,0) = Lo0), Joi) = Loy Jao) = Laoy Ja0g) = Lo,
J(i,0,) = L0, Jag) = L6.g)> J00,0) = L,0,0)> J0.1,0) = L(0,5,0)> J(0,00) = L(0,0,8);
Jii.3.0) = Li.j.0)

1 1
Jai =1an + 510y Jaign = laig + 510
1 1
JGia = 1gaa + 5160y Jaio = laio + 5100,
1 1
(47) Jo,i,i) = L(0,i,i) + 51(0,0)7 Jiii) = L0 + 5 (I(o,i) + I(i,O))

1 1
Jaign = laign + 5 (os) +16i0) + 7loo,
1

1
S = L0 + B (I(O,i,i) + L00) + I(i,i,O)) + 11(0,0)7
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for any i # j, 4,5 = 1,...,m. Thus, for a second-order weak scheme, we apply the
following approximation for the generating functions S¢,, ¢+ = 1,2, 3:

i 7 1 - i - i
S, = (Gw) +32 G(k,m) Toy + 3 Gl oy
k=1

k=1

7 1 = 1 7 1 S 1
+ | Glooy + 5 2_(Glawoy + Glowew) + 7 2 Glirsa) | loo)
k=1 k=1
(48)

Mz ——~

_|_

i I~
0n+3 ZGmk) Tow + | Glroy + 5 2 Gl | Tovo)
Jj=1

Z G(J k I(J,k)

k=1

E
Il
—

Using Propositions 3.1 and 3.2 together with equations (31) and (34), we get:

i j 1 Zm i Zm i
Sw ~ < 5 G(k,k)) I(O) + G(k)‘[(k)
k=1

k=1
m 1 . 1m—1 m .
Z Glinoy T 7Ckmnm ) T3 Y Glewsn | Lo
k=1 k=1 j=k+1
(49)
+y Glow 3 ZGmk) ) I<k>+ZG<kk> (k,k)
k=1 j=1 k=1
m—1 m
+ Y Gl
k=1 j=k+1

For a weak scheme, we can generate the noise increments more efficiently than
for a strong scheme. Hence proceeding as in section 14.2 of [7] to simulate the

stochastic integrals I(x), k = 1,...,m, we generate independent random variable
\/ECk.,l, k=1,...,m at each time step [ with the following discrete distribution

1 2
(50) P(Cry = +V3) = 5’ PGy =0) = 3

The moments of (;; are equal up to order 5 with the moments of the normal
distribution N(0,1), so we obtain the scheme based on S.:

m 1 1
, 96 oG, (3% 0
2

P(l+1)=P() - 8@ h1/22§ 50, 0.

m [ HG! 10G Pl 9Gh
N Z ( a(k,lf,o) . S,k,&k)) . Z (;k,k?g,g))
Pt Qi Qi it Qi
61 hn . 9G <k D) Gl
—5263, ——Z Z 6QJ GGl
k=1 k=1 j=k+1 v
m 0 k) 8G1
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(52)

wherei =1,...

C. ANTON, Y. WONG, AND J. DENG

Qi(l+1)=Q:(l) + 8 h1/22< G(k) hz(aG%o,m

2\ oP,
L35 (Gl 1 3G<k,k,k,k> . 1’”21 i )
OP, 4 9P 2 _ OP;
b—1 k=1 j=k+1
hs 5 0Ghay A= <= 9G
+§Z<k,l aH +§ Z aPl C l<jl
k=1 k=1 j=k+1
m 1
+R23 ¢ 0Glow 15~ 9C0Gam
b op; 2 oP, ’

is symplectic and of weak order two.

Similarly we can construct symplectic schemes of weak order three based on the
following approximations of the generating functions S?,, i = 1,2, 3 (see also section

3 in [1]):
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,m, and everywhere the arguments are (P(I+1),Q(!)). In Theorem
1 in [1], we prove that the scheme based on the one-step approximation (51)-(52)
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Using Propositions 3.1 and 3.2, equations (31)-(36), (39) and (47), the previous
approximation becomes
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We can now obtain third-order symplectic weak schemes based on one of the equa-
tions (12)-(14) and the approximation (53) of the corresponding generating func-
tions S?, i = 1,2,3. Notice that we only need to generate the multiple stochastic
integrals I(xy, Iokk), L(kkk)s & = 0,...,m. At each time step [, we can generate
the stochastic integrals I(;), K =1,...,m, as independent random variable \/E&g,l,
k=1,...,m, with the following discrete distribution (see the scheme (10.36) in [9])

1 3 1
4 P =0)=-, P =+1)=—, P ==+ =
(54) (o1 =0) =3, P& ) =15 Pl V6) 30"
L ys a8 BER /2 —h/2, and Ly k1), as hVRES /6 —h3/%6.,/2, k = 1,...,m. Under
appropriate assumptions regarding the functions H,, r = 0,...,m, we can prove

the convergence of the schemes with weak order three proceeding as in [1], using
Theorem 4.1 in [10] and repeated Taylor expansions.
5. Numerical simulations

In this section we illustrate numerically the performance of the strong and weak
symplectic methods for SHSs preserving the Hamiltonian functions. We consider
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the Kubo oscillator:
dP = —aQdt — cQ o dw;, P(0) =p,
dQ = aPdt+ oP odw;, Q(0)=gq.

Given the special form of the linear system (55), it is easy to verify that the
Poisson bracket of the Hamiltonian functions H(® and H®) vanishes, so H® and
H®W conserve along the phase flow of the system. For the following numerical
simulations the values of the parameters are a = 2, ¢ = 0.3, and we let the initial
values be p=1, ¢ = 0.

The superior performance for long term simulations of symplectic strong schemes
compared to non-symplectic schemes is shown in [11], [1]. Here we consider five
types of stochastic strong symplectic schemes: the schemes based on SJ, with mean
square order 0.5, 1 and 2, and the mean square first- and second-order schemes
based on S2. The linear system (55) can be solved analytically and the solution is
given by the following equations

P(T;0,p,q) = cos (aT + cwr)p + sin (aT + cwr)q
Q(T;0,p,q) = —sin (aT + owr)p + cos (aT + cwr)q.

Hence, we can compute the error associated with the proposed symplectic schemes.
Our attention here will focus on comparing the efficiency in terms of the accuracy
and the CPU time required for various numerical schemes.

(55)

(56)

0.5 T T
— - —  Milstein
o O~ L _ Symplectic Order 0.5 [
T o Symplectic Order 1.0
-0.51 RN o Symplectic Order 2.0 [|
_l |- = - V 4
= -15F o B
\/9' -2 €] v b
] !
S _o5f A g
-3+ \ 4
-3.5F q
a4l il
-45 Il Il Il Il Il Il Il Il
2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6

log, (computational time) (s)

FiGURE 1. Computing time v.s. error for Milstein scheme and
different types of symplectic strong S., schemes with various time
step for T = 100 with 10° samples, (): h = 0.004; (J: h = 0.002;
A: h=0.001, 7: h = 0.0005.

It is usually difficult to implement the symplectic schemes of mean square order
two or higher because it requires the simulation of many multiple stochastic inte-
grals. However, for SHSs preserving the Hamiltonian functions, the higher order
symplectic schemes such as (45) and (46) have a simpler form due to the invariance
of the coefficients under permutations (see theorems 3.1 and 3.2).

Fig. 1 and Fig. 2 clearly confirm that the higher order strong schemes are more
efficient than the lower order schemes. To achieve a similar level of accuracy, a
larger step size can be employed in a higher order scheme and this could lead to a
saving in the computing time.
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Order 2.0
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FIGURE 2. Computing time v.s. error for different types of sym-
plectic strong S2 schemes with various time step for 7' = 100 with
10° samples, O): h = 0.004; O: h = 0.002; A: h = 0.001, :
h = 0.0005

For example, Fig. 1 shows that the error of the second order S! scheme with
h = 0.004 and the error of the first order S} scheme with finer h = 0.002 are 0.0038
and 0.0049. However, the computing time required for the second order scheme is
about 3200 seconds which is less than the 4180 seconds needed for the first order
schemes. In Fig. 2, we observe that the error for the first order S3 scheme with
h = 0.0005 is larger that that resulted from the second order S2 with a much
larger step size h = 0.004. More importantly, the computing time required for the
first and second order schemes are 12100 and 3560 seconds, respectively. Thus, a
considerable reduction in computing time is achieved using a higher order scheme.

In Fig. 1 we have also included a non-symplectic scheme, namely the mean square
first order Milstein scheme (see Chapter 10.3 in [7]). There is no doubt to conclude
that the symplectic schemes offer a significant improvement in accuracy, but without
a substantial increase in the computing time. For example, for h = 0.001, the error
of the Milstein scheme is 0.2, more than 50 - 80 times larger than the corresponding
errors of the first order symplectic schemes (which are 0.004 for the scheme based
on S3 and 0.0025 for the scheme based on S}). The computing time for the
first order symplectic schemes based on S. and S3 are 5684 seconds and 5747
seconds respectively, compared with 3804 seconds for the Milstein scheme.Thus, a
remarkable improvement in accuracy is obtained using the symplectic schemes with
an acceptable computing time.

In Table 1, we compare several symplectic and non-symplectic weak schemes.
Since the system (55) is linear, it is easy to verify that we have

(57) E(P(T;0,p,q) = e 7" (cos (aT)p — sin (aT')q)
(58) E(Q(T;0,p,q) = ot (sin (aT")p + cos (aT)q).

We run a Monte Carlo simulation and estimate the 95% confidence intervals for
E(P(t;0,p,q)) as

SP(t7Oap7Q)
59 P(t:0,p,q) + 1.962 225 22D
(59) (5:0,5.0) i
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TABLE 1. E[P(T)] from various schemes for a = 2, ¢ = 0.3 and

T =100
Numerical Method | time step | 95% confidence interval | computational time (s)

weak Euler h=0.01 0.0049 £ 0.0010 904

scheme h =0.001 0.007 £0.0017 9010
weak 2nd order h=0.01 0.0048 £ 0.0014 4650
Taylor scheme h =0.001 0.0055 £ 0.0014 46100
weak ST 1st h =0.01 0.006 £+ 0.0013 873

order scheme h =0.001 0.0057 £ 0.0013 13492
weak ST 2nd h=0.01 0.0033 £ 0.0014 4526
order scheme h =0.001 0.0051 £ 0.0014 44624
weak S5 1st h=0.01 0.0056 £ 0.0013 1085
order scheme h =0.001 0.0056 £ 0.0013 12735
weak S2 2nd h=0.01 0.0046 £ 0.0013 2816
order scheme h =0.001 0.0055 +0.0014 30356

where M = 10° is the number of independent realizations in the Monte Carlo sim-
ulations, P(t;0, p,q) is the sample average and sp(t; 0, p, q) is the sample standard
deviation (see also formula 7.7 in [10]). In addition to the weak scheme error, we
also have the Monte Carlo error, but the margin of error in the confidence intervals
(59) reflects the Monte Carlo error only. In [4] we show that the Euler scheme
requires a much smaller time step A to converge than the symplectic schemes, and
it fails for h = 275, so here we consider h = 0.01 and h = 0.001 (see also [2] for a
study of the global error).

Replacing T' = 100 in (57) we get E[P(100;0, 1,0)] = 0.0056. From the numerical
results reported in Table 1 for T" = 100, we notice that, with one exception, the
confidence intervals include the exact value 0.0056. Moreover, the weak 2nd order
symplectic schemes require less computational time than the weak 2nd order Taylor
scheme. This can be explained by the fact that for the system (55), the 2nd order
Taylor scheme includes the stochastic integrals I(o,1), L(0,2); 1(1,0)> L(2,0), {(1,2)> L(2,1)
in addition to the multiple stochastic integrals included in the 2nd order symplectic
schemes.

Due to the invariance under permutations proved in Theorems 3.1 and 3.2,
for any SHS (1) preserving the Hamiltonian functions, the stochastic integral-
s included in a k-order weak symplectic scheme based on the generating func-
tions S, i = 1,2,3 are {I4|l(a) = 1,....k,a = (j,...,5),5 = 0,...,m}. On
the other hand, a k-order weak Taylor scheme contains the stochastic integrals
{Ll=1a) =1,....k,a = (j1,.--,51),Ji = 0,...,m,i = 1,...,1}. Thus, the
computational advantage of the weak symplectic schemes compared with the weak
Taylor schemes for SHS (1) preserving the Hamiltonian functions increases with
the order k, because simulating multiple stochastic integrals of higher order is both
mathematically difficult and time consuming.

6. Conclusions

We propose strong and weak symplectic schemes for the special class of stochastic
Hamiltonian systems preserving the Hamiltonian functions. Following an approach
based on the generating function method, the important contribution of the present
work is to prove that the coefficients of the generating functions are invariant under
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permutations for stochastic Hamiltonian systems preserving Hamiltonian functions.
This invariance property is the crucial factor leading to the successful construction

of computationally efficient high order symplectic schemes.
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