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Abstract. The main purpose of this work is the efficient implementation of a multigrid algorithm
for solving Navier-Stokes problems at low Reynolds numbers in different triangular geometries.
In particular, a finite element formulation of the Navier-Stokes equations, using quadratic finite

elements for the velocities and linear finite elements to approximate the pressure, is used to solve
the problem of flow in a triangular cavity, driven by the uniform motion of one of its side walls. An
appropriate multigrid method for this discretization of Navier-Stokes equations is designed, based
on a Vanka type smoother. Moreover, the data structure used allows an efficient stencil-based
implementation of the method, which permits us to perform simulations with a large number of
unknowns with low memory consumption and a relatively low computational cost.
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1. Introduction

One of the most important aspects in the numerical simulation of the Navier-
Stokes equations is the efficient solution of the large sparse systems of equations
arising from their discretization. This work is focused on an efficient implementation
and the solution by geometric multigrid methods of the incompressible Navier-
Stokes equations on structured triangular grids.

It is well-known that multigrid methods [2, 4, 8, 17] are among the fastest al-
gorithms to solve large systems of equations, with small convergence factors which
are independent of the space discretization parameter, and achieve optimal compu-
tational complexity of O(N), where N is the number of unknowns of the system.
Geometric multigrid methods were initially developed for structured grids. How-
ever, in order to deal with relatively complex domains, an efficient implementation
of this type of multigrid methods can be done on semi-structured triangular grids,
see [6]. As a preliminary step towards this generalization, here we develop a geomet-
ric multigrid code suitable for efficiently solving this problem on a structured grid
arising in a single triangular domain, which later will be part of the semi-structured
grid.

An important step in the analysis of partial differential equations (PDE) prob-
lems using finite element methods is the construction of the large sparse matrix
A corresponding to the system of discrete equations. The standard algorithm for
computing matrix A is known as assembly, and consists of computing this matrix
by iterating over the elements of the mesh and adding from each element of the tri-
angulation the local contribution to the global matrix A. Because of the size of this
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matrix, it is important to store it in an efficient way. However, the data structures
needed to represent this type of sparse matrices can cause slowness in the code due
to the use of indirect indexing to access the non-zero entries of the matrix. By
working on structured grids, the necessary data structures are much more efficient
and lead to better performance, due to the fact that explicit assembly of the global
matrix is not necessary and that the matrix can be stored using stencils.

In this work, a stencil-based implementation of the Taylor-Hood element for
the Navier-Stokes equations is presented, together with the design of an efficient
geometric multigrid algorithm, based on a box-type smoother, to solve the large
system of equations arising from this type of finite element discretization. More
concretely, the outline of this work is as follows. In Section 2, the considered
problem is presented, together with the linearization and the proposed finite element
discretization. Section 2.1 is devoted to describe the stencil-based implementation
of the Taylor-Hood element discretization of Navier-Stokes equations. Section 3 is
focused on the design of a suitable geometric multigrid method, based on Vanka-
type smoothers. Finally, in Section 4, the lid-driven recirculating flow in a triangular
cavity is simulated, using the proposed multigrid solution procedure.

2. Finite element discretization of the Navier-Stokes equations

In this work we consider the Navier-Stokes equations governing a two-dimensional,
steady, incompressible flow of constant fluid properties. These equations are written
in primitive variables as

−ν∆u+ (u · ∇)u+∇p = 0, in Ω,

divu = 0, in Ω,(1)

u = g, on Γ = ∂Ω,

where u = (u, v)t denotes the velocity vector, p is the pressure, and ν is the kine-
matic viscosity of the fluid. The Dirichlet boundary condition for the velocity is
given by g, which satisfies the following compatibility condition

(2)

∫

∂Ω

g · n dΓ = 0,

where n is the outward direction normal to the boundary.
Nonlinear problem (1) is linearized using a fixed point iteration, that is, given a

current iterate (un, pn), in each nonlinear iteration step a problem of the following
form has to be solved

−ν∆un+1 + (un · ∇)un+1 +∇pn+1 = 0, in Ω,

divun+1 = 0, in Ω,(3)

un+1 = g, on Γ = ∂Ω.

Problem (3) is known in the literature as the Oseen problem. We are going to
consider its discretization by finite element methods. For this purpose, let Th be
an admissible triangulation of the domain Ω, that is, Ω is decomposed into a set of
triangles {Ki}

N
i=1 in the way that

Ω =

N⋃

i=1

Ki,

and satisfying that the intersection Ki ∩Kj, for i 6= j, is either empty, a common
vertex, or a common edge. Problem (3) is discretized using P2−P1 finite elements,
where Pk is the space of piecewise polynomial continuous functions of degree k.
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Thus, the velocity is represented on each triangular element by its values at six
grid-points (the three vertices and the three midpoints of the edges of the triangle),
and it is interpolated by using quadratic polynomials. The pressure is represented
by the three nodes associated with the vertices, and it is interpolated by lineal
polynomials. This pair of finite element spaces guarantees the inf-sup stability
condition of Babuška-Brezzi, and thus, it ensures the unique solution of our discrete
problem, see [3]. Moreover, since here we consider flow problems with low Reynolds
numbers (e.g., less than 1000 for the 2D driven cavity, and less than 100 for the flow
around a cylinder), it is not necessary to apply stabilization techniques regarding
the convective term.
Thus, the linearization and the discretization of the incompressible Navier-Stokes
equations lead to large saddle point problems of the form

A

(
u

p

)
=

(
A B

Bt 0

)(
u

p

)
=

(
f

g

)
,

that must be solved at each iteration.

2.1. Stencil implementation. The purpose of this section is to present an effi-
cient stencil-based implementation of the finite element method proposed to dis-
cretize the Navier-Stokes equations on a structured grid arising on a triangular
domain. This mesh is obtained by applying to the initial triangle a number ℓ of
refinement levels, in the way that each refinement step consists of splitting each
triangle of the grid into four triangles by connecting the midpoints of its edges. In
such grid, a non-orthogonal coordinate system {e1, e2} can be fixed considering the
directions of two of the edges of the initial triangle, and according to the definition
of this spatial basis, a certain type of numbering the grid-points that is very con-
venient for identifying the neighboring nodes can be defined. This point, coming
from the structured character of the grid, allows an efficient implementation of the
finite element method, which provides advantages regarding the memory consump-
tion as well as in the speed of the computation. As we will see, a few stencils are
enough to represent the discrete operators associated with the linear terms of our
problem, since these are equal for all the interior nodes. Since quadratic finite ele-
ments are used to approximate the velocity vector, the unknowns are located at the
vertices of the triangulation, as well as at the midpoints of the edges. Therefore,
different equations and, consequently, different stencils are obtained depending on
the location of the grid-point. First, we will focus on the construction of the sten-
cils associated with a vertex of the triangulation. We denote such node as xn,m,

which is the center of a hexagon H composed of six congruent triangles, which form
the support of the corresponding basis function. Thus, all the unknowns located
at points of this hexagon can contribute to the stencils corresponding to the node
xn,m. This fact implies that we are going to work with (5×5)−stencils, see Figure 1.
For the computation of these stencils, we extend the philosophy presented in [6] to
the case of quadratic finite element methods. The strategy presented in such paper

consists of using a reference hexagon, Ĥ, centered at x̂0,0 = (0, 0), and with ver-
tices x̂1,0 = (1, 0), x̂1,1 = (1, 1), x̂0,1 = (0, 1), x̂−1,0 = (−1, 0), x̂−1,−1 = (−1,−1)

and x̂0,−1 = (0,−1). By considering the affine transformation mapping hexagon Ĥ

onto the arbitrary hexagon on which we wish to compute the stencil, the degrees

of freedom and basis functions on Ĥ can be translated to degrees of freedom and
basis functions on the arbitrary hexagon. In this way, we can obtain an expression
of the desired stencil as a function of certain stencils computed “a-priori” on the
reference hexagon. The application of this strategy to quadratic finite elements
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Figure 1. Stencil corresponding to a vertex interior to the grid.

becomes easy, since the affine transformation FH that we have to use is the stan-

dard one commonly used in the assembly process, that is, FH : Ĥ → H such that
x = FH(x̂) = BH x̂+ bH , with

BH =

(
xn+1,m − xn,m xn+1,m+1 − xn+1,m

yn+1,m − yn,m yn+1,m+1 − yn+1,m

)
, bH =

(
xn,m

yn,m

)
,

where (xn+k,m+l, yn+k,m+l) are the coordinates of xn+k,m+l. Therefore, FH(x̂k,l) =
xn+k,m+l is satisfied, for the vertices, as well as for the midpoints of the edges, see
Figure 2. After some computations analogous to those in [6], we can obtain expres-
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Figure 2. Reference hexagon and corresponding affine transfor-
mation FH .

sions for the discrete operators involved in our problem. Regarding the Laplace
operator, Sv

∆,ℓ, where ℓ is the number of refinement levels applied to obtain the
considered regular triangular grid, and v denotes that this operator is applied at
the vertices of the grid, we obtain the following expression

Sv
∆,ℓ = | detBH |(cH11Ŝ

v
xx + 2cH12Ŝ

v
xy + cH22Ŝ

v
yy),

where coefficients cHij are the elements of the matrix CH = B−1
H (B−1

H )t, and Ŝv
xx,

Ŝv
xy and Ŝv

yy are the stencils computed on the reference hexagon, associated with
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operators −∂xx, −∂xy and −∂yy, respectively. These reference stencils are given in
Figure 3, where the nodes involved in the stencil are surrounded by a circle, and
the contribution of each node to the stencil is also given.

-4/3 1/3 1/3 -4/3 2 
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-1/6 
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-1 
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-2/3 
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1/3 
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-4/3 
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Ŝv
xx Ŝv

xy Ŝv
yy

Figure 3. Stencils computed on the reference hexagon, Ŝv
xx, Ŝ

v
xy

and Ŝv
yy, associated with operators −∂xx, −∂xy and −∂yy applied

at the vertices of the triangulation.

Analogously, we can obtain the following counterpart expressions for the nodes
located at the midpoints of the edges

Sm
∆,ℓ = | detBH |(cH11Ŝ

m
xx + 2cH12Ŝ

m
xy + cH22Ŝ

m
yy),

where Ŝm
xx, Ŝ

m
xy and Ŝm

yy are given in Figure 4, where we illustrate the application
of these operators at the midpoints of the “horizontal” edges, that is, the edges in
the direction of vector e1 of the spatial basis. The corresponding operators at the
“vertical” edges (those in the direction of vector e2) and at “diagonal” edges (those
in the remaining direction) are analogous.

-4/3 

-4/3 8/3 

2/3 

2/3 -2/3 

2/3 

-2/3 

2/3 

-4/3 

-4/3 

-4/3 

8/3 

Ŝm
xx Ŝm

xy Ŝm
yy

Figure 4. Stencils computed on the reference hexagon, Ŝm
xx, Ŝ

m
xy

and Ŝm
yy, associated with operators −∂xx, −∂xy and −∂yy applied

at the midpoints of the “horizontal” edges of the triangulation.

Following the same strategy, it is easy to get the stencil expressions of discrete
operators appearing in the convective terms of the first equation. These terms cor-
respond to first derivatives ∂x and ∂y, and again we must distinguish the application
of these operators at the vertices of the triangulation or at the midpoints of the
edges. We denote the discrete operators corresponding to these first derivatives as
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Sv
∂x,ℓ

and Sv
∂y ,ℓ

for the vertices, and Sm
∂x,ℓ

and Sm
∂y ,ℓ

for the midpoints of the edges.

Following the same procedure as previously explained for the Laplace operator,
we can obtain the following expressions as a function of stencils computed in the
reference hexagon:

Sv
∂x,ℓ

= | detBH |(bH11Ŝ
v
x + bH21Ŝ

v
y ),

Sv
∂y ,ℓ

= | detBH |(bH12Ŝ
v
x + bH22Ŝ

v
y ),

Sm
∂x,ℓ

= | detBH |(bH11Ŝ
m
x + bH21Ŝ

m
y ),

Sm
∂y ,ℓ

= | detBH |(bH12Ŝ
m
x + bH22Ŝ

m
y ),

where the coefficients bHij are the entries of matrix B−1
H , and the corresponding ref-

erence stencils for ∂x, that is, Ŝ
v
x and Ŝm

x , are given in Figure 5. Note that again, for
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Ŝv
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x

Figure 5. Stencils computed on the reference hexagon, Ŝv
x, and

Ŝm
x , associated with operator ∂x, involved in the convective terms,

applied at the vertices and at the “horizontal” midpoints.

ease of presentation, in Figure 5, only the stencils corresponding to midpoints of the
“horizontal” edges are displayed. However, analogously to the case of the Laplace
operator which is illustrated in Figure 4, the stencils corresponding to vertical and
diagonal edges are given by the same expressions but centered in such points.

Finally, we must deal with the stencils associated with the divergence operator
of the velocity appearing in the second equation. Since this equation corresponds
to the pressure unknown, which is discretized by linear finite elements, there will
be only stencils associated with the vertices of the grid. Thus, denoting by Sv

∇x,ℓ

and Sv
∇y,ℓ

the operators corresponding to the first order derivatives appearing in

the divergence operator, we can obtain their expressions as a function of reference
stencils in the following way

Sv
∇x,ℓ

= | detBH |(bH11Ŝ
v
∇x

+ bH21Ŝ
v
∇y

),

Sv
∇y ,ℓ

= | detBH |(bH12Ŝ
v
∇x

+ bH22Ŝ
v
∇y

),

where the stencils corresponding to Ŝv
∇x

and Ŝv
∇y

are given as indicated in Figure 6.

Notice that this way of computing the stencil forms of the discrete operators as
a function of the reference stencils is very efficient. This is due to the fact that each
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Figure 6. Stencils computed on the reference hexagon, Sv
∇x,ℓ

and
Sv
∇y ,ℓ

associated with the divergence of the velocity appearing in

the second equation.

time that the stencil has to be computed, instead of assembling the contributions of
the six triangles around the corresponding grid-point, we must simply multiply the
coefficients obtained from the affine transformation by the stencils on the reference
hexagon, which have been computed and stored a-priori.

3. Vanka smoother based multigrid method

It is well known that the performance of a multigrid method strongly depends
on the choice of its components. In this section, the multigrid components consid-
ered in this work are presented. For the implementation of a geometric multigrid,
first a hierarchy of grids must be defined. Here, we apply to the triangular do-
main several steps of a regular refinement process, which consists of dividing each
triangle into four congruent triangles by connecting the midpoints of its edges. In
this way, a nested hierarchy of regular grids is obtained, which is very appropri-
ate for the application of a geometric multigrid method. Once the hierarchy of
grids has been built, suitable discrete operators on each coarse grid have to be
chosen for approximating the fine-grid discrete operator. Here, we use the direct
discretization of the equations on each coarse grid, since it gives rise to reasonable
approximations of the fine-grid discrete operator, ensuring the overall consistency
of the discrete problem. The choice of inter-grid transfer operators is, of course,
closely related to the chosen finite element. In this work, linear interpolation and
its adjoint are chosen for the pressure unknown, since linear finite elements are
used to approximate these unknowns. However, for the velocity unknowns, which
are approximated by quadratic finite elements, the quadratic interpolation and its
adjoint are preferred as inter-grid transfer operators. More concretely, in Figure 7,
we show the coefficients involved in the restriction of each type of the grid-points in
which the velocity unknowns are discretized. It is observed that for the midpoints
of the horizontal, vertical and diagonal edges, the coefficients of the corresponding
restriction operator are the same.

The smoother usually plays an important role in multigrid algorithms, above
all in the geometric approach. Therefore, the choice of a suitable smoother is an
important feature for the design of an efficient geometric multigrid method, and
even it requires special attention when one works with systems of PDEs, since the
smoother should smooth the error for all unknowns. Moreover, for the problem
we are dealing with, an additional difficulty appears, since it results in a system
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Figure 7. Restriction for the different types of grid-points where
velocity unknowns are located.

of saddle point type [1], with a zero block diagonal which renders impossible the
application of a collective point-wise relaxation. An overview of multigrid methods
for discretizations on rectangular grids of this type of problems is presented in [13],
where coupled or box-relaxation and decoupled distributive relaxation methods ap-
pear as the most suitable for this kind of problems. Due to the fact that for some
systems of equations it is a challenge to design an efficient distributive relaxation
scheme, box-relaxation seems to be the best option. This is performed by decom-
posing the mesh into small subdomains and treating them separately in a coupled
form, that is, all the equations corresponding to the points in each subdomain
are solved simultaneously as a system. This class of smoothers was introduced
by Vanka [19] to solve the finite difference discretization on rectangular grids of
the Navier-Stokes equations. Since then, much literature can be found about the
application of this type of smoothers, mainly in the field of Computational Fluid
Dynamics (CFD) [9, 10, 18]. These smoothers have been mainly applied on rectan-
gular grids, but here we present an extension of box-smoothers to triangular grids,
suitable for the Navier-Stokes equations. In particular, for each vertex of the grid,
the unknowns that we simultaneously solve are the pressure unknown located at
this vertex and the 38 velocity unknowns located at the hexagon around such ver-
tex, as we can see in Figure 8. Thus, the proposed smoother consists of visiting
the vertices of the grid in a lexicographic ordering and, for each vertex, solving the
resulting (39 × 39)−system corresponding to the box associated with that point.
This type of smoother turns out to be very costly, but it is necessary for the good
behavior of the multigrid method for our problem. A cheaper variant of this class of
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smoothers is the diagonal point-wise box Gauss-Seidel, which will be investigated
in the future.

  

  

 

 

Figure 8. Unknowns simultaneously updated in point-wise box
Gauss-Seidel smoother.

4. Numerical experiments: Triangular cavity problem

This section deals with the multigrid solution of the problem of steady incom-
pressible viscous flow within a driven triangular cavity discretized by P2-P1 finite
elements. Steady recirculating flow is of primary importance in computational fluid
dynamics, see [12, 15] and references therein. The most investigated case in the
literature is the cavity flow problem, in which a viscous fluid is enclosed by solid
motionless boundaries except for a translating segment which drives the recircula-
tion through shear stress. By far the most widely studied cavity flow problem is
that consisting of a two-dimensional square enclosure with one side translating with
uniform velocity, [7, 16]. Indeed, due to the simplicity of the geometry and bound-
ary conditions, it has become an important benchmark problem for testing new
computational algorithms. Fewer numerical studies of flow in non-rectangular cav-
ities have been carried out, [5, 12, 14, 20], despite their wide range of applications,
in which sharp corners are common. In this way, the problem under consideration
is that of steady two-dimensional flow in a solid walled triangular cavity, driven
by the uniform shearing motion of the upper side wall, [11, 15]. The boundary
conditions are no slip on sides of the triangle moving with a velocity of constant
magnitude, and on fixed sides the velocity is zero. This problem is solved on two
triangular domains with different geometries. In both cases a target fine grid has
been obtained by applying eight refinement levels. The first domain consists of a
unit equilateral triangle, as shown in Figure 9 (a), together with the boundary con-
ditions previously specified. The Reynolds number considered for the simulation is
Re=20. In Figure 9 (b), the streamtraces in the flowfield are shown together with
the velocity vectors. It is observed that a large central eddy covers most of the
cavity, except a small zone close to one vertex of the cavity, in which a small recir-
culating eddy appears. This simulation has been done using the multigrid method
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proposed on each iteration of the fixed point method. An F-cycle with three pre-
and three post-smoothing steps has been considered, giving rise to a very efficient
algorithm which achieves convergence factors close to 0.1. On the other hand, the

u=1, v=0 

u=0 u=0 

(a) (b)

Figure 9. (a) Geometry and boundary conditions for the equi-
lateral triangular cavity problem. (b) Streamtraces and velocity
vectors for the problem in the equilateral triangular domain, for
Reynolds number Re=20.

second test consists of solving the steady viscous flow problem in an isosceles trian-
gular cavity, characterized by a very small angle. More concretely, the domain of
the second experiment is an isosceles triangle with base angle of 75o, as depicted in
Figure 10 (a). The solution is shown in Figure 10 (b), where we can observe that
four eddies appear instead of the pair of eddies observed in the first test case, for
the equilateral triangular domain. However, regarding the efficiency of the multi-
grid method, a slight deterioration of the convergence factor is suffered due to the
anisotropy of the grid. In particular, a convergence factor about 0.2 is obtained. To
overcome this difficulty, line box-smoothers are required, but this will be considered
in future work.
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Cient́ıficas y Técnicas para la Defensa, Villa Martelli, Buenos Aires, Argentina

E-mail : elvioh@citefa.gov.ar


