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Abstract. A singularly perturbed linear system of second order ordinary differential equations of
reaction-diffusion type with discontinuous source terms is considered. A small positive parameter
multiplies the leading term of each equation. These singular perturbation parameters are assumed
to be distinct. The components of the solution exhibit overlapping boundary and interior layers.
A numerical method is constructed that uses a classical finite difference scheme on a piecewise
uniform Shishkin mesh. It is proved that the numerical approximations obtained by this method
are essentially first order convergent uniformly with respect to all of the perturbation parameters.
Numerical illustrations are presented in support of the theory.
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1. Introduction

A singularly perturbed linear system of second order ordinary differential e-
quations of reaction - diffusion type with discontinuous source terms is consid-
ered in the interval Ω = {x : 0 < x < 1}. A single discontinuity in the
source terms is assumed to occur at a point d ∈ Ω. Introduce the notation
Ω− = (0, d), Ω− = [0, d], Ω+ = (d, 1), Ω+ = [d, 1] and denote the jump at d in
any function ~ω by [~ω](d) = ~ω(d+) − ~ω(d−). The corresponding self-adjoint two
point boundary value problem is

(1) −E~u′′(x) +A(x)~u(x) = ~f(x) on Ω− ∪Ω+, ~u given on Γ and ~f(d−) 6= ~f(d+)

where Γ = {0, 1}, Ω = Ω∪Γ. The norms ‖ ~V ‖= max1≤k≤n |Vk| for any n-vector ~V ,
‖ y ‖= sup0≤x≤1 |y(x)| for any scalar-valued function y and ‖ ~y ‖= max1≤k≤n ‖ yk ‖
for any vector-valued function ~y are introduced. Here ~u is a column n−vector, E
and A(x) are n×n matrices, E = diag(~ε), ~ε = (ε1, · · · , εn) with 0 < εi ≤ 1
for all i = 1, . . . , n. The εi are assumed to be distinct and, for convenience, to
have the ordering

ε1 < · · · < εn.

For simplicity, cases with some of the parameters coincident are not considered
here. In these cases the number of layer functions is reduced and, consequently,
the number of transition parameters in the Shishkin mesh defined in Section 4 is
reduced. The methods of proof are essentially the same.
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The problem can also be written in the operator form

~L~u = ~f on Ω− ∪ Ω+, ~u given on Γ and ~f(d−) 6= ~f(d+)

where the operator ~L is defined by

~L = −ED2 +A, D2 =
d2

dx2
.

For all x ∈ Ω, it is assumed that the components aij(x) of A(x) satisfy the inequal-
ities

aii(x) >

n
∑

j 6=i

j=1

|aij(x)| for 1 ≤ i ≤ n and aij(x) ≤ 0 for i 6= j(2)

and, for some α,

0 < α < min
x∈[0,1]

1≤i≤n

(

n
∑

j=1

aij(x)).(3)

It is assumed that aij ∈ C(2)(Ω), fi ∈ C(2)(Ω− ∪ Ω+) for i, j = 1, . . . , n.

Then (1) has a solution ~u ∈ C(Ω) ∩ C(1)(Ω) ∩ C(4)(Ω− ∪ Ω+). Because ~f
is discontinuous at d, the solution ~u(x) does not necessarily have a continuous
second order derivative at the point d. Thus ~u(x) /∈ C2(Ω), but the first derivative
of the solution exists and is continuous. In Section 2, for the construction of the
solution in Theorem 2.1 and in the definition of the singular component, we need
the Schur product of two n− vectors, which is defined by

(4) ~µ · ~η = (µ1η1, µ2η2, . . . , µnηn) ∈ R
n

for ~µ = (µ1, µ2, . . . , µn) and ~η = (η1, η2, . . . , ηn) ∈ R
n. It is also assumed that

√
εn ≤

√
α

6
.(5)

Throughout the paper C denotes a generic positive constant, which is independent
of x and of all singular perturbation and discretization parameters. Furthermore,
inequalities between vectors are understood in the componentwise sense.

For a general introduction to parameter-uniform numerical methods for singular
perturbation problems, see for example [1], [2] and [3]. Parameter-uniform numer-
ical methods for scalar problems with discontinuous data are reported in [4], [5],
[6] and [7]. The present paper extends the results in [4] for a single equation to a
general system of equations.

The plan of the paper is as follows. In the next two sections, the analytical re-
sults of the continuous problem are given. In Section 4 piecewise-uniform Shishkin
meshes, which are fitted to resolve the interior and boundary layers, are introduced.
In Section 5 the discrete problem is defined and the corresponding maximum prin-
ciple and stability result are established. In Section 6 the statement and proof
of the parameter-uniform error estimate are given. Section 7 contains numerical
illustrations.



REACTION-DIFFUSION SYSTEM WITH DISCONTINUOUS SOURCE TERMS 387

2. Standard analytical results

Theorem 2.1. Problem (1) has a solution ~u ∈ C(Ω) ∩ C(1)(Ω) ∩ C(4)(Ω− ∪ Ω+).

Proof. The proof is by construction. Let ~y1, ~y2 be particular solutions of the
differential equations

−E~y′′1 (x) +A(x)~y1(x) = ~f(x), x ∈ Ω−

and

−E~y′′2 (x) +A(x)~y2(x) = ~f(x), x ∈ Ω+.

Consider the function

(6) ~y(x) =

{

~y1(x) + (~u(0)− ~y1(0)) · ~φ1(x) + ~A1 · ~φ2(x), x ∈ Ω−

~y2(x) + ~B1 · ~φ1(x) + (~u(1)− ~y2(1)) · ~φ2(x), x ∈ Ω+

where ~φ1(x), ~φ2(x) are the solutions of the boundary value problems

−E~φ′′1 (x) +A(x)~φ1(x) = ~0, x ∈ Ω, ~φ1(0) = ~1, ~φ1(1) = ~0

−E~φ′′2 (x) +A(x)~φ2(x) = ~0, x ∈ Ω, ~φ2(0) = ~0, ~φ2(1) = ~1

and ~A1, ~B1 are constant vectors to be chosen so that ~y ∈ C(1)(Ω). In fact, the

constants ~A1 and ~B1 are derived from the conditions

~y(d−) = ~y(d+) and ~y ′(d−) = ~y ′(d+).

These conditions lead to a system of 2n equations in the unknowns A1,i, B1,i,
i = 1, 2, . . . , n, given by

(

~φ2(d) −~φ1(d)
~φ′2(d) −~φ′1(d)

)

(

~A1

~B1

)

=

(

~k1
~k2

)

where
~k1 = [~u(1)− ~y2(1)] · ~φ2(d)− [~u(0)− ~y1(0)] · ~φ1(d)
~k2 = [~u(1)− ~y2(1)] · ~φ′2(d)− [~u(0)− ~y1(0)] · ~φ′1(d).

Using the definition given in (4), the above could be rewritten as

φ2,i(d)A1,i − φ1,i(d)B1,i = k1,i,
φ′2,i(d)A1,i − φ′1,i(d)B1,i = k2,i,

}

for i = 1, 2, . . . , n.

Note that on the open interval (0, 1), 0 < ~φ1, ~φ2 < 1. Thus ~φ1, ~φ2 cannot have
an internal maximum or minimum and also

~φ′1 < ~0,
~φ′2 > ~0, x ∈ (0, 1).

Hence φ1,i(d)φ
′
2,i(d) − φ2,i(d)φ

′
1,i(d) > 0, i = 1, 2, . . . , n, ensures the existence of

~A1 and ~B1. �

The operator ~L satisfies the following maximum principle.

Lemma 2.2. Let A(x) satisfy (2) and (3). Let ~ψ be any vector-valued function

in the domain of ~L such that ~ψ ≥ ~0 on Γ, ~L~ψ ≥ ~0 on Ω− ∪ Ω+ and

[~ψ](d) = ~0, [~ψ′](d) ≤ ~0, then ~ψ ≥ ~0 on Ω.
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Proof. Let i∗, x∗ be such that ψi∗(x
∗) = min

i,x
ψi(x). If ψi∗(x

∗) ≥ 0, there is nothing

to prove. Suppose therefore that ψi∗(x
∗) < 0, then the proof is completed by

showing that this leads to a contradiction. With the above assumption on the
boundary values, either x∗ ∈ Ω− ∪ Ω+ or x∗ = d. In the first case ψ′′

i∗(x
∗) ≥ 0 and

so

(~L~ψ)i∗(x
∗) = −εi∗ψ′′

i∗(x
∗) +

n
∑

j=1

ai∗,j(x
∗)ψj(x

∗) < 0,

which is false. In the second case the argument depends on whether or not ψi∗

is differentiable at d. If ψ′
i∗(d) does not exist, then [ψ′

i∗ ](d) 6= 0 and because
ψ′
i∗(d−) ≤ 0, ψ′

i∗(d+) ≥ 0 it is clear that [ψ′
i∗ ](d) > 0, which is a contradiction.

On the other hand, let ψi∗ be differentiable at d. As (A~ψ)i∗(d) < 0 and all
entries of A and all ψj are in C(Ω), there exists an interval [d1, d] on which

(A~ψ)i∗(x) < 0. If ψ′′
i∗(x̂) ≥ 0 at any point x̂ ∈ [d1, d), then (~L~ψ)i∗(x̂) < 0,

contradicting the hypotheses of the lemma. Thus we can assume that ψ′′
i∗(x) < 0

on [d1, d). But this implies that ψ′
i∗(x) is strictly decreasing on [d1, d) and we know

already that ψ′
i∗(d) = 0 and ψ′

i∗ ∈ C(Ω), so ψ′
i∗(x) > 0 on [d1, d). Consequently

the continuous function ψi∗(x) cannot have a minimum at x = d, which contradicts
our earlier assumption that x∗ = d. This completes the proof. �

Let Ã(x) be any principal sub-matrix of A(x) and ~̃L the corresponding operator.

To see that any ~̃L satisfies the same maximum principle as ~L, it suffices to observe
that the elements of Ã(x) satisfy a fortiori the same inequalities as those of A(x).

As a consequence of the maximum principle, there is established the stability result
for the problem (1) in the following

Lemma 2.3. Let A(x) satisfy (2) and (3). If ~ψ is any vector-valued function in

the domain of ~L, then for each i, 1 ≤ i ≤ n and x ∈ Ω,

|ψi(x)| ≤ max

{

‖ ~ψ ‖Γ,
1

α
‖ ~f ‖Ω−∪Ω+

}

.

Proof. Define the two functions

~θ±(x) = max

{

‖ ~ψ ‖Γ,
1

α
‖ ~f ‖Ω−∪Ω+

}

~e ± ~ψ(x)

where ~e = (1, . . . , 1)T is the unit column n−vector. Using the properties of

A it is not hard to verify that ~θ± ≥ ~0 on Γ and ~L~θ± ≥ ~0 on Ω− ∪ Ω+.
Furthermore, since ~u ∈ C(1)(Ω),

[~θ±](d) = ±[~ψ](d) = ~0 and [~θ±,′](d) = ±[~ψ′](d) = ~0.

It follows from Lemma 2.2 that ~θ± ≥ ~0 on Ω. �

Standard estimates of the exact solution and its derivatives are contained in the
following lemma.

Lemma 2.4. Let A(x) satisfy (2) and (3) and let ~u be the exact solution of (1).
Then, for each i = 1, . . . , n, x ∈ Ω− ∪Ω+ and k = 0, 1, 2,

|u(k)i (x)| ≤ Cε
− k

2
i (||~u||Γ + ||~f ||Ω−∪Ω+),

|u(3)i (x)| ≤ Cε
− 1

2
1 ε−1

i (||~u||Γ + ||~f ||Ω−∪Ω+ +
√
ε1||~f ′||Ω−∪Ω+)
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and

|u(4)i (x)| ≤ Cε−1
1 ε−1

i (||~u||Γ + ||~f ||Ω−∪Ω+ + ε1||~f ′′||Ω−∪Ω+).

Proof. The proof is similar to the proof of Lemma 3 in [10]. �

The reduced solution ~u0 of (1) is the solution of the reduced equation A~u0 = ~f .
The Shishkin decomposition of the exact solution ~u of (1) is ~u = ~v + ~w

where the smooth component ~v is the solution of ~L~v = ~f on Ω− ∪ Ω+

with ~v = ~u0 on Γ, ~v(d−) = (A(d))−1 ~f(d−), ~v(d+) = (A(d))−1 ~f(d+) and

the singular component ~w is the solution of ~L~w = ~0 on Ω− ∪ Ω+ with
[~w](d) = −[~v](d), [~w′](d) = −[~v′](d), ~w = ~u− ~v on Γ.

For convenience, the singular component is given a further decomposition

~w(x) =

{

~wL
1 (x) + ~wR

1 (x) on Ω−

~wL
2 (x) + ~wR

2 (x) on Ω+

where ~wL
1 (x) = ~w(0) · ~ψ1(x), ~w

R
1 (x) = ~A2 · ~ψ2(x), ~w

L
2 (x) = ~B2 · ~ψ3(x), ~w

R
2 (x) =

~w(1) · ~ψ4(x) with

−E ~ψ′′
1 (x) +A(x)~ψ1(x) = ~0 on Ω−, ~ψ1(0) = ~1, ~ψ1(d) = ~0

−E ~ψ′′
2 (x) +A(x)~ψ2(x) = ~0 on Ω−, ~ψ2(0) = ~0, ~ψ2(d) = ~1

−E ~ψ′′
3 (x) +A(x)~ψ3(x) = ~0 on Ω+, ~ψ3(d) = ~1, ~ψ3(1) = ~0

−E ~ψ′′
4 (x) +A(x)~ψ4(x) = ~0 on Ω+, ~ψ4(d) = ~0, ~ψ4(1) = ~1.

Here too, ~A2 and ~B2 are constants, independent of x and ~ε, to be chosen in a

way similar to that used in determining ~A1 and ~B1 in Theorem 2.1.

Bounds on the smooth component and its derivatives are contained in the following
lemma.

Lemma 2.5. Let A(x) satisfy (2) and (3). Then the smooth component ~v and its
derivatives satisfy, for all x ∈ Ω− ∪ Ω+, i = 1, . . . , n and k = 0, . . . , 4,

|v(k)i (x)| ≤ C(1 + ε
1− k

2

i ).

Proof. Using the techniques given in [10] on the intervals Ω− and Ω+ separately,
it is not hard to see that the above estimate holds. �

3. Improved estimates

The layer functions BL
1,i, B

R
1,i, B

L
2,i, B

R
2,i, B1,i, B2,i, i = 1, . . . , n, , associated

with the solution ~u, are defined by

BL
1,i(x) = e−x

√
α/

√
εi , BR

1,i(x) = e−(d−x)
√
α/

√
εi , B1,i = BL

1,i +BR
1,i on Ω−,

BL
2,i(x) = e−(x−d)

√
α/

√
εi , BR

2,i(x) = e−(1−x)
√
α/

√
εi , B2,i = BL

2,i +BR
2,i on Ω+.

The following elementary properties of the layer functions BL
1,i, BR

1,i, for all
1 ≤ i < j ≤ n and 0 ≤ x < y ≤ d, should be noted:
(a) BL

1,i(x) < BL
1,j(x), BL

1,i(x) > BL
1,i(y), 0 < BL

1,i(x) ≤ 1.

(b) BR
1,i(x) < BR

1,j(x), BR
1,i(x) < BR

1,i(y), 0 < BR
1,i(x) ≤ 1.

(c) BL
1,i(x) (BR

1,i(x)) is monotone decreasing (increasing) for increasing x ∈ [0, d2 ]



390 M. PARAMASIVAM, J. MILLER, AND S. VALARMATHI

([d2 , d]).

(d) B1,i(x) ≤ 2BL
1,i(x) for x ∈ [0, d2 ] and B1,i(x) ≤ 2BR

1,i(x) for x ∈ [d2 , d].

Similar properties for BL
2,i, B

R
2,i, for all 1 ≤ i < j ≤ n and d ≤ x < y ≤ 1, hold

good.

Remark: In [10], a sequence of points x
(s)
i,j are introduced, which lead to novel

estimates for the derivatives of the singular components. These are used to prove
second order convergence of the method. In [8], Linss and Madden use a single
point of this kind with s = 1/2.

Here too, if x
(s)
i,j and 1 − x

(s)
i,j are those points of the boundary layers then

d − x
(s)
i,j and d + x

(s)
i,j play the same role in case of the interior layers. In this

paper, result of first order convergence is established for the method. But, using
these points, finding a second order convergent method could be done in future.
For the interested readers, the properties of these points are stated below.

Definition 3.1. For BL
1,i, B

L
1,j, each i, j, 1 ≤ i 6= j ≤ n and each s, s > 0, the

point x
(s)
i,j is defined by

(7)
BL

1,i(x
(s)
i,j )

εsi
=
BL

1,j(x
(s)
i,j )

εsj
.

It is remarked that

(8)

BR
1,i(d− x

(s)
i,j )

εsi
=
BR

1,j(d− x
(s)
i,j )

εsj
,

BL
2,i(d+ x

(s)
i,j )

εsi
=
BL

2,j(d+ x
(s)
i,j )

εsj
,

BR
2,i(1− x

(s)
i,j )

εsi
=
BR

2,j(1− x
(s)
i,j )

εsj
.

In the next lemma the existence and uniqueness of the points x
(s)
i,j are shown.

Various properties are also established.

Lemma 3.2. For all i, j such that 1 ≤ i < j ≤ n and 0 < s ≤ 3/2, the points x
(s)
i,j

exist, are uniquely defined and satisfy the following inequalities

(9)
BL

1,i(x)

εsi
>
BL

1,j(x)

εsj
, x ∈ [0, x

(s)
i,j ),

BL
1,i(x)

εsi
<
BL

1,j(x)

εsj
, x ∈ (x

(s)
i,j , d].

Moreover

(10) x
(s)
i,j < x

(s)
i+1,j , if i+ 1 < j and x

(s)
i,j < x

(s)
i,j+1, if i < j.

Also

(11) x
(s)
i,j < 2s

√
εj√
α

and x
(s)
i,j ∈ (0,

d

2
) if i < j.

Analogous results hold for BR
1,i, B

L
2,i and B

R
2,i and the points d− x

(s)
i,j , d+ x

(s)
i,j , 1−

x
(s)
i,j .

Proof. The proof is similar to the proof of Lemma 5 in [10]. �

Bounds on the singular component ~w of ~u and its derivatives are contained in
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Lemma 3.3. Let A(x) satisfy (2) and (3).Then there exists a constant C, such
that, for i = 1, . . . , n and x ∈ Ω−,

∣

∣wL
1,i(x)

∣

∣ ≤ CBL
1,n(x),

∣

∣

∣
wL,′

1,i (x)
∣

∣

∣
≤ C

n
∑

q=i

BL
1,q(x)√
εq

,
∣

∣

∣
wL,′′

1,i (x)
∣

∣

∣
≤ C

n
∑

q=i

BL
1,q(x)

εq
,

∣

∣

∣w
L,(3)
1,i (x)

∣

∣

∣ ≤ C
n
∑

q=1

BL
1,q(x)

ε
3/2
q

,
∣

∣

∣εiw
L,(4)
1,i (x)

∣

∣

∣ ≤ C
n
∑

q=1

BL
1,q(x)

εq
.

Analogous results hold for wR
1,i, w

L
2,i and wR

2,i and their derivatives.

Proof. The argument used in Lemma 7 of [10] are applied on Ω− and Ω+ sepa-
rately to obtain the required bounds of ~w. �

Using the bounds of ~w and Lemma 2.5, it is not hard to see that the smooth
component and its derivatives can be bounded by the sharper estimates given in
the following

Lemma 3.4. Let A(x) satisfy (2) and (3). Then the smooth component ~v of
the solution ~u of (1) satisfies for i = 1, . . . , n, k = 0, 1, 2, 3,

|v(k)i (x)| ≤ C































1 +

n
∑

q=i

B1,q(x)

ε
k
2 −1
q

on Ω−

1 +
n
∑

q=i

B2,q(x)

ε
k
2 −1
q

on Ω+.

4. The Shishkin mesh

A piecewise uniform Shishkin mesh with N mesh-intervals is now constructed

on Ω− ∪Ω+ as follows. Let ΩN = Ω−N ∪Ω+N
where Ω−N

= {xj}
N
2 −1
j=1 , Ω+N

=

{xj}N−1
j=N

2 +1
and xN

2
= d. Then Ω−N

= {xj}
N
2

j=0, Ω+
N

= {xj}Nj=N
2

, Ω−N ∪

Ω+
N

= Ω
N

= {xj}Nj=0 and ΓN = Γ. The interval [0, d] is subdivided into 2n+1
sub-intervals

[0, τ1] ∪ · · · ∪ (τn−1, τn] ∪ (τn, d− τn] ∪ (d− τn, d− τn−1] ∪ · · · ∪ (d− τ1, d].

The n parameters τr, which determine the points separating the uniform meshes,
are defined by τ0 = 0, τn+1 = d

2 ,

(12) τn = min

{

d

4
, 2

√
εn√
α

lnN

}

and, for r = n− 1, . . . , 1,

(13) τr = min

{

rτr+1

r + 1
, 2

√
εr√
α

lnN

}

.

Clearly

0 < τ1 < . . . < τn ≤ d

4
.

Then, on the sub-interval (τn, d−τn] a uniformmesh with N
4 mesh points is placed

and on each of the sub-intervals (τr, τr+1] and (d−τr+1, d−τr], r = 0, 1, . . . , n−1,
a uniform mesh of N

8n mesh points is placed. In particular, when all the parameters

τr, r = 1, . . . , n, take their left-hand value, the Shishkin mesh Ω−N
becomes a
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classical uniform mesh throughout from 0 to d.
Similarly the interval [d, 1] is subdivided into 2n+ 1 sub-intervals

[d, d+σ1]∪· · ·∪(d+σn−1, d+σn]∪(d+σn , 1−σn]∪(1−σn, 1−σn−1]∪· · ·∪(1−σ1, 1].
The n parameters σr, which determine the points separating the uniform meshes,
are defined by σ0 = 0, σn+1 = 1−d

2 ,

σn = min

{

1− d

4
, 2

√
εn√
α

lnN

}

and, for r = n− 1, . . . , 1,

σr = min

{

rσr+1

r + 1
, 2

√
εr√
α

lnN

}

.

Clearly

0 < σ1 < . . . < σn ≤ 1− d

4
.

Then, on the sub-interval (d+σn, 1−σn] a uniform mesh with N
4 mesh points is

placed and on each of the sub-intervals (d+σr, d+σr+1] and (1−σr+1, 1−σr], r =
0, 1, . . . , n− 1, a uniform mesh of N

8n mesh points is placed. In particular, when
all the parameters σr, r = 1, . . . , n, take their left-hand value, the Shishkin mesh

Ω+
N

becomes a classical uniform mesh throughout from d to 1.
When d = 1/2 and when all the transition parameters τr and σr, r = 1, . . . , n,

take their left-hand value then the mesh Ω
N

is the classical uniform mesh with
step size N−1 throughout from 0 to 1. In practice, it is convenient to take

(14) N = 8nk, k ≥ 2,

where n is the number of distinct singular perturbation parameters involved in (1).

This construction leads to a class of 2n+1 piecewise uniform Shishkin meshes Ω
N
.

From the above construction of Ω−N
, it is clear that the transition points {τr, d−

τr}nr=1 are the only points at which the mesh-size can change and that it does not
necessarily change at each of these points. The following notation is introduced: if
xj = τr, then h

−
r = xj − xj−1, h

+
r = xj+1 − xj , J = {τr : h+r 6= h−r }. In general, for

each point xj in the mesh-interval (τr−1, τr],

(15) xj − xj−1 = 8nN−1(τr − τr−1).

Also, for xj ∈ (τn,
d
2 ], xj−xj−1 = 4N−1(d−2τn) and for xj ∈ (0, τ1], xj−xj−1 =

8nN−1τ1. Thus, for 1 ≤ r ≤ n− 1, the change in the step-size at the point xj = τr
is

(16) h+r − h−r = 8nN−1((r + 1)dr − rdr−1),

where

(17) dr =
rτr+1

r + 1
− τr

with the convention d0 = 0. Notice that dr ≥ 0, that Ω−N
is the classical uniform

mesh when dr = 0 for all r = 1, . . . , n and, from (12) and (13), that

(18) τr ≤ C
√
εr lnN, 1 ≤ r ≤ n.

It follows from (15) and (18) that for r = 1, . . . , n− 1,

(19) h−r + h+r ≤ C
√
εr+1N

−1 lnN.
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Also

(20) τr =
r

s
τs when dr = · · · = ds = 0, 1 ≤ r ≤ s ≤ n.

Similar results hold good for Ω+
N

and σr, r = 1, . . . , n.
The results in the following lemma are used later.

Lemma 4.1. Assume that dr > 0 for some r, 1 ≤ r ≤ n. Then the following
inequalities hold

(21) BL
1,r(d− τr) ≤ BL

1,r(τr) = N−2,

(22) x
(s)
r−1,r ≤ τr − h−r for 0 < s ≤ 3/2, 1 < r ≤ n,

(23) BL
1,q(τr − h−r ) ≤ CBL

1,q(τr) for 1 ≤ r ≤ q ≤ n,

(24)
BL

1,q(τr)√
εq

≤ C
1√

εr lnN
for 1 ≤ q ≤ n, 1 ≤ r ≤ n.

Analogous results hold for BR
1,r, B

L
2,r, B

R
2,r.

Proof. Using the definitions of BL
1,r(x) and τr, (21) follows.

By Lemma 3.2,

x
(s)
r−1,r < 2s

√
εr√
α

=
sτr
lnN

≤ τr
2
.

Also, by (14) and (15),

h−r = 8nN−1(τr − τr−1) =
(τr − τr−1)

k
<
τr
2
.

It follows that x
(s)
r−1,r + h−r ≤ τr as required.

To verify (23) note, from (15), that

h−r = 8nN−1(τr − τr−1) ≤ 8nN−1τr = 24nN−1

√
εr√
α

lnN.

But

e
24nN−1

√
εr√
α

lnN ≤ (N
1
N )16n ≤ C.

Since r ≤ q, √
α√
εq
h−r ≤

√
εr√
εq

8nN−1τr ≤ 16nN−1 lnN

√
εr√
α
.

It follows that

BL
1,q(τr − h−r ) = BL

1,q(τr)e

√
α√
εq

h−
r ≤ CBL

1,q(τr)

as required.
To verify (24), if q ≥ r the result is trivial. On the other hand, if q < r,

BL
1,q(τr) = e

−
√

α√
εq

τr
= e

−2
√

εr√
εq

lnN ≤ C

lnN

√
εq√
εr
,

where the inequality is obtained by using the result e−t ≤ 1
t for all t ≥ 0. �
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5. The discrete problem

In this section a classical finite difference operator with an appropriate Shishkin
mesh is used to construct a numerical method for (1), which is shown later to be
essentially first order parameter-uniform convergent.
The discrete two-point boundary value problem is now defined to be the finite
difference method

(25)
−Eδ2~U(x) +A(x)~U (x) = ~f(x) on ΩN ,

~U = ~u on ΓN , D−~U(xN/2) = D+~U(xN/2).

This is used to compute numerical approximations to the exact solution of (1).
Note that (25) can also be written in the operator form

~LN ~U = ~f on ΩN , ~U = ~u on ΓN , D−~U(xN/2) = D+~U(xN/2)

where
~LN = −Eδ2 +A

and δ2, D+ and D− are the classical finite difference operators as in [10].
The following discrete results are analogous to those for the continuous case.

Lemma 5.1. Let A(x) satisfy (2) and (3). Then, for any vector-valued mesh

function ~Ψ, the inequalities ~Ψ ≥ ~0 on ΓN , ~LN ~Ψ ≥ ~0 on ΩN and D+~Ψ(xN/2)−
D−~Ψ(xN/2) ≤ ~0 imply that ~Ψ ≥ ~0 on Ω

N
.

Proof. Let i∗, j∗ be such that Ψi∗(xj∗) = mini,j Ψi(xj) and assume that the lemma
is false. Then Ψi∗(xj∗ ) < 0. From the hypotheses we have j∗ 6= 0, N and Ψi∗(xj∗)−
Ψi∗(xj∗−1) ≤ 0, Ψi∗(xj∗+1)−Ψi∗(xj∗ ) ≥ 0, so δ2Ψi∗(xj∗ ) ≥ 0. It follows that

(

~LN ~Ψ
)

i∗
(xj∗) = −εi∗δ2Ψi∗(xj∗) +

n
∑

k=1

ai∗, k(xj∗)Ψk(xj∗) < 0.

If xj∗ ∈ ΩN , this leads to a contradiction. Because of the boundary values, the
only other possibility is that xj∗ = xN/2. Then

D−Ψi∗(xN/2) ≤ 0 ≤ D+Ψi∗(xN/2) ≤ D−Ψi∗(xN/2)

and so

Ψi∗(xN
2 −1) = Ψi∗(xN/2) = Ψi∗(xN

2 +1) < 0.

Then
(

~LN ~Ψ
)

i∗
(xN

2 −1) < 0, which provides the desired contradiction. �

An immediate consequence of this is the following discrete stability result.

Lemma 5.2. Let A(x) satisfy (2) and (3). Then, for any vector-valued mesh

function ~Ψ defined on Ω
N

such that D+~Ψ = D−~Ψ at xN/2,

|~Ψ(xj)| ≤ max

{

||~Ψ||ΓN ,
1

α
||~LN ~Ψ||Ω−N∪Ω+N

}

, 0 ≤ j ≤ N.

Proof. Define the two functions

~Θ±(xj) = max

{

||~Ψ||ΓN ,
1

α
||~LN ~Ψ||Ω−N∪Ω+N

}

~e± ~Ψ(xj)
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where ~e = (1, . . . , 1)T is the unit column n−vector. Using the properties of A it

is not hard to verify that ~Θ± ≥ ~0 on ΓN , for xj 6= xN/2, ~L
N ~Θ± ≥ ~0 on ΩN and at

xj = xN/2,

(D+ −D−)~Θ±(xj) = ±(D+ −D−)~Ψ(xj) = 0.

It follows from Lemma 5.1 that ~Θ± ≥ ~0 on Ω
N
. �

6. Error estimate

Analogously to the continuous case, the discrete solution ~U can be decomposed

into ~V1 and ~W1 on Ω−N
and ~V2 and ~W2 on Ω+N

which are defined to be
the solutions of the following discrete problems

(~LN ~V1)(xj) = ~f(xj), xj ∈ Ω−N
, ~V1(0) = ~v(0), ~V1(xN/2) = ~v(d−),

(~LN ~V2)(xj) = ~f(xj), xj ∈ Ω+N
, ~V2(1) = ~v(1), ~V2(xN/2) = ~v(d+)

and

(~LN ~W1)(xj) = ~0, xj ∈ Ω−N
, ~W1(0) = ~w(0),

(~LN ~W2)(xj) = ~0, xj ∈ Ω+N
, ~W2(1) = ~w(1),

~W1(xN/2) + ~V1(xN/2) = ~W2(xN/2) + ~V2(xN/2),

D− ~W1(xN/2) +D−~V1(xN/2) = D+ ~W2(xN/2) +D+~V2(xN/2).

The error at each point xj ∈ Ω
N

is denoted by ~e(xj) = ~U(xj) − ~u(xj). Then the

local truncation error ~LN~e(xj), for j 6= N/2, has the decomposition

~LN~e(xj) = ~LN (~V − ~v)(xj) + ~LN ( ~W − ~w)(xj).

The smooth and singular error components are bounded in the following theorems.

Theorem 6.1. Let A(x) satisfy (2) and (3). If ~v denotes the smooth component of

the exact solution of (1) and ~V the smooth component of the solution of the discrete
problem (25), then, for j 6= N/2,

(26) |(~LN (~V − ~v))i(xj)| ≤ C (N−1 lnN)2.

Proof. Following the techniques in [10] and using Lemma 3.4, it is not hard to see
that (26) holds. �

Theorem 6.2. Let A(x) satisfy (2) and (3). If ~w denotes the singular component

of the exact solution of (1) and ~W the singular component of the solution of the
discrete problem (25), then, for j 6= N/2,

(27) |(~LN ( ~W − ~w))i(xj)| ≤ C (N−1 lnN)2.

Proof. Following the techniques in [10] and using Lemmas 3.3 and 4.1, it is not
hard to see that (27) holds. �

At the point xj = xN/2, for i = 1, . . . , n,

(D+ −D−)ei(xN
2
) = (D+ −D−)(Ui − ui)(xN

2
)

= (D+ −D−)Ui(xN
2
)− (D+ −D−)ui(xN

2
).
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Recall that (D+ −D−)Ui(xN
2
) = 0. Let h∗ = max{h−N/2, h

+
N/2}.

Then

|(D+ −D−)ei(xN
2
)| = |(D+ −D−)ui(xN

2
)|

≤ |(D+ − d

dx
)ui(xN

2
)|+ |(D− − d

dx
)ui(xN

2
)|

≤ 1

2
h+N/2 |u

′′
i (η)|η∈Ω+ +

1

2
h−N/2 |u

′′
i (ξ)|ξ∈Ω−

≤ C h∗ max
x∈Ω−∪Ω+

|u′′i (x)| .

Therefore,

(28) |(D+ −D−)ei(xN
2
)| ≤ C

h∗

εi
.

From now on, we have the general setting hk = xk −xk−1 and hk+1 = xk+1 −xk

for any xk ∈ Ω
N

= {xk}Nk=0.

Define, for i = 1, . . . , n, a set of discrete barrier functions on [0, 1] by

ωi(xj) =































Πj
k=1(1 +

√
αhk/

√
2εi)

Π
N/2
k=1(1 +

√
αhk/

√
2εi)

, 0 ≤ j ≤ N/2

ΠN−1
k=j (1 +

√
αhk+1/

√
2εi)

ΠN−1
k=N/2(1 +

√
αhk+1/

√
2εi)

, N/2 ≤ j ≤ N.

Note that

(29) ωi(0) = 0, ωi(d) = 1, ωi(1) = 0

and, for 0 ≤ j ≤ N,

(30) 0 ≤ ωi(xj) ≤ 1.

It is not hard to see that, for xj ∈ Ω−N
,

(31) D+ωi(xj) =

√
α√
2εi

ωi(xj), D−ωi(xj) =

√
α√

2εi(1 +
√
αhj/

√
2εi)

ωi(xj)

and, for xj ∈ Ω+
N
,

(32) D+ωi(xj) = −
√
α√

2εi(1 +
√
αhj+1/

√
2εi)

ωi(xj), D−ωi(xj) = −
√
α√
2εi

ωi(xj).

In particular, at xj = xN/2,

(33) (D+ −D−)ωi(xj) ≤ − C√
εi
.

We now state and prove the main theoretical result of the paper.

Theorem 6.3. Let ~u(xj) be the solution of the continuous problem (1) and ~U(xj)
be the solution of the discrete problem (25). Then,

‖ ~U(xj)− ~u(xj) ‖≤ C N−1 lnN.
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Proof. Consider the mesh function ~Ψ given by

Ψi(xj) = C1N
−1 lnN + C2

h∗√
εi
ωi(xj)± ei(xj), 1 ≤ i ≤ n, 0 ≤ j ≤ N,

where C1 and C2 are constants. Then, for appropriate choices of C1 and C2, using
Theorems 6.1, 6.2 and the fact that h∗ ≤ C

√
ε1N

−1 lnN,

(~LN ~Ψ)i(xj) = C1

n
∑

j=1

aij(x)N
−1 lnN + C2

h∗√
εi
(~LN~ω)i(xj)± (~LN~e)i(xj)

≥ 0, for j 6= N/2, using (31) and (32)

and

D+Ψi(d) −D−Ψi(d) ≤ −C2
Ch∗

εi
± C

h∗

εi
, using (28) and (33)

≤ 0.

Also, using (29), Ψi(0) = C1N
−1 lnN ≥ 0, Ψi(1) = C1N

−1 lnN ≥ 0.

Therefore, using Lemma 5.1 for ~Ψ, it follows that Ψi(xj) ≥ 0 for all i =
1, . . . , n, 0 ≤ j ≤ N. As, from (30), ωi(xj) ≤ 1 for 1 ≤ i ≤ n, 0 ≤ j ≤ N, for N
sufficiently large,

‖ ~U − ~u ‖≤ CN−1 lnN,

which completes the proof. �

Remark: It may be conjectured that a more accurate finite difference operator
could lead to an improvement in the parameter-uniform error estimate. However,
the authors know of no results in this direction, even for the simplest system with
one equation.

7. Numerical results

The above numerical method is applied to the following singularly perturbed
boundary value problems.

Example 7.1. Consider

−E~u′′(x) +A(x)~u(x) = ~f(x) for x ∈ (0, 0.5) ∪ (0.5, 1), ~u(0) = ~0, ~u(1) = ~0

where E = diag(ε1, ε2), A =

(

6 + x −1
x− 1 6

)

, ~f = (2, 2)T for 0 < x < 0.5

and ~f = (1, 1)T for 0.5 < x < 1. It is seen that both components of the

source function ~f have a discontinuity at x = 0.5. For various values of
ε1, ε2, N = 16k, k = 2r, r = 1, · · · , 7, and α = 3.9, the ~ε–uniform order
of convergence and the ~ε–uniform error constant are computed using the general
methodology from [3]. The results are presented in Table 1.
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Table 1. Values of DN
ε , D

N , pN , p∗ and CN
p∗ for ε1 =

η

8
, ε2 = η.

η Number of mesh points N
32 64 128 256 512 1024

20 0.251E-02 0.122E-02 0.602E-03 0.299E-03 0.149E-03 0.743E-04
2−4 0.257E-02 0.684E-03 0.175E-03 0.441E-04 0.134E-04 0.660E-05
2−8 0.102E-01 0.761E-02 0.259E-02 0.687E-03 0.176E-03 0.443E-04
2−12 0.319E-02 0.204E-02 0.119E-02 0.835E-03 0.619E-03 0.289E-03
2−16 0.319E-02 0.204E-02 0.118E-02 0.833E-03 0.619E-03 0.289E-03
2−20 0.319E-02 0.204E-02 0.118E-02 0.833E-03 0.618E-03 0.289E-03
2−24 0.318E-02 0.204E-02 0.118E-02 0.833E-03 0.618E-03 0.289E-03
2−28 0.318E-02 0.204E-02 0.118E-02 0.833E-03 0.618E-03 0.289E-03

DN 0.102E-01 0.761E-02 0.259E-02 0.835E-03 0.619E-03 0.289E-03
pN 0.418E+00 0.156E+01 0.163E+01 0.431E+00 0.110E+01
CN

p 0.172E+00 0.172E+00 0.782E-01 0.337E-01 0.334E-01 0.209E-01

The order of ~ε -uniform convergence p∗ = 0.418
Computed ~ε -uniform error constant, CN

p∗ = 0.172

Example 7.2. Consider

−E~u′′(x) +A(x)~u(x) = ~f(x) for x ∈ (0, 0.5) ∪ (0.5, 1), ~u(0) = ~2, ~u(1) = ~2

where E = diag(ε1, ε2, ε3), A =





8 −1 −2
−x 6 + x −1
−1 −(1 + x2) 7 + x



 , ~f = (1 + 2x, 2,

1 + x)T for 0 < x < 0.5 and ~f = (2x + 3, 0, 2 − x2)T for 0.5 < x < 1. It is

seen that all the three components of the source function ~f have a discontinuity
at x = 0.5. For various values of ε1, ε2, ε3, N = 24k, k = 2r, r = 2, . . . , 7, and
α = 4.9, the ~ε–uniform order of convergence and the ~ε–uniform error constant
are computed using the general methodology from [3]. The results are presented in
Table 2.
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