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Abstract. In many applied problems, the individual components of the unknown vector are
interconnected and therefore splitting schemes are applied in order to get a simple problem for
evaluating unknowns at a new time level. On the basis of additive schemes (splitting schemes),
there are constructed efficient computational algorithms for numerical solving the initial value
problems for systems of time-dependent PDEs. The present paper deals with computational
algorithms that are based on using explicit-implicit approximations in time. Typically, additive
operator-difference schemes for systems of evolutionary equations are constructed for operators
that are coupled in space. Here we investigate more general problems, where we have coupling of
derivatives in time for components of the solution vector.
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1. Introduction

In solving applied problems, we deal with boundary value problems for systems
of time-dependent PDEs. To construct computational algorithms for such prob-
lems, we approximate the equations taking into account appropriate initial and
boundary conditions. Approximation in space is based on finite difference schemes,
finite element procedures or finite volume methods [8, 12, 19, 20]. Special require-
ments are applied to the approximation in time for numerical solving problems for
systems of equations [1, 9, 13]. In addition to general requirements to satisfy the
conditions of approximation and stability, it is necessary to keep in mind the issues
of computational implementation of the constructed schemes, i.e., the issue how to
solve of the corresponding discrete problem at a new time level. In this regard,
the most impressive results are associated with the construction of special additive
operator-difference schemes (splitting schemes) [15, 24].

Additive schemes (operator-splitting schemes) are used to solve various unsteady
problems [15, 20, 24, 30]. They are designed for the efficient computational imple-
mentation of the corresponding discrete problem defining the approximate solution
at a new time level. The transition to a chain of simpler problems allows us to
construct efficient difference schemes. We speak of splitting with respect to spatial
variables (locally one-dimensional schemes). In some cases, it is useful to separate
subproblems of distinct nature — we have splitting into physical processes. Region-
ally additive schemes (domain decomposition methods) are focused on constructing
computational algorithms for parallel computers.

The main theoretical results on stability and convergence of additive schemes
have been obtained for scalar evolutionary first-order equations and, in some cases,
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for second-order equations [15, 20, 24, 30]. In computational practice, it is essential
to construct splitting schemes for systems of evolutionary equations. For example,
vector problems have individual components of the unknown vector that are inter-
connected with each other. In this case, the use of appropriate splitting schemes is
intended to obtaining simple problems for the individual components of the solution
at a new time level.

For standard parabolic and hyperbolic systems of equations with a self-adjoint
elliptic operator, additive schemes have been constructed in [20] using the regular-
ization principle for difference schemes. Splitting schemes for systems of equations
can be constructed employing the triangular splitting of a problem operator in-
to the sum of operators adjoint to each other, i.e., using the alternating triangle
method developed by Samarskii. Additive schemes of this type were used in [14] for
dynamic problems of elasticity. A similar approach [25, 29] was applied to problems
of an incompressible fluid with a variable viscosity. Additive schemes for transient
problems of electrodynamics were considered in [27].

The above-mentioned classes of additive operator-difference schemes for evolu-
tionary equations are based on an additive splitting of the leading operator into
several terms. For many problems of practical interest, it is interesting to investi-
gate the problems that have an additive representation for the operator at the time
derivative. In the first publication on this subject [28], there were proposed and ex-
amined vector additive operator-difference schemes, where the operator at the time
derivative was split into the sum of self-adjoint and positive definite operators.

Among additive schemes, we highlight explicit-implicit schemes, where the d-
ifferent nature of terms of the problem operator is taken into account via inho-
mogeneous approximations in time. Explicit-implicit schemes are widely used for
the numerical solution of convection-diffusion problems. Various variants of in-
homogeneous discretization in time are given in [2]. One or another explicit ap-
proximation is applied to the convective transport operator, whereas the diffusive
transport operator is approximated implicitly. Thus, the most severe restrictions
on a time step due to diffusion are removed. In view of the subordination of the
convective transport operator to the diffusive transport operator, we have already
proved unconditional stability of the above-considered explicit-implicit schemes for
time-dependent convection-diffusion problems. Similar techniques are used in the
analysis of diffusion-reaction problems. In this case (see, e.g., [17]), the diffusive
transport is treated implicitly, whereas for reactions (source terms), explicit approx-
imations are used. Such explicit approximations demonstrate obvious advantages
for problems with nonlinear terms describing reaction processes. Detailed consider-
ation of the implicit-explicit (IMEX) algorithms is given in the book [11] containing
references to other works in this field of research.

In this paper, we propose splitting schemes for additive representation of the
leading operator of the problem, i.e., the operator at the time derivative. We sep-
arate the diagonal part of a problem operator matrix and employ explicit-implicit
approximations in time. The paper is organized as follows. In Section 1, we for-
mulate the initial-boundary value problem for a system of PDEs. After some dis-
cretization in time, we obtain the Cauchy problem for a system of evolutionary e-
quations. The standard two-level operator-difference scheme is discussed in Section
2. Section 3 deals with the construction of the explicit-implicit scheme by means of
separating the diagonal part of the leading operator of the problem. The general
problem of splitting the operator at the time derivative is discussed in Section 4.
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Explicit-implicit schemes of first-order approximation in time are constructed and
investigated.

2. Boundary Value Problems for Systems of Equations

We consider the boundary value problem for the system of coupled parabolic
equations in a bounded domain Ω. For the individual components uα(x, t), x ∈ Ω,
α = 1, 2, ..., p, we have

(1)

p∑

β=1

cαβ(x)
∂uβ
∂t

−

p∑

β=1

div(kαβ(x) graduβ) = fα(x, t), x ∈ Ω.

System of equations (1) is supplemented with the following boundary and initial
conditions, respectively:

(2) uα(x, t) = 0, x ∈ ∂Ω, 0 < t ≤ T,

(3) uα(x, 0) = u0α(x), x ∈ Ω, α = 1, 2, . . . , p.

We formulate the main restrictions on the coefficients for problem (1)–(3). The
system of parabolic equations is considered under the restrictions

cαβ = cβα,

p∑

α,β=1

cαβξαξβ ≥ δ

p∑

α=1

ξ2α, δ > 0,

kαβ = kβα,

p∑

α,β=1

kαβξαξβ ≥ κ

p∑

α=1

ξ2α, κ > 0.

For real matrices C = {cαβ} and K = {kαβ}, we have

C = C∗ ≥ δI, K = K∗ ≥ κI,

where I is the p× p identity matrix.
The above boundary value problems for systems of parabolic equations arise

in many applied problems. The first example is the system of coupled parabolic
equations of second order describing mass transfer in multicomponent media [7, 26].
The coefficients kαβ describe the diffusion phenomena: main-term diffusion at α =
β and cross-term diffusion coefficients at α 6= β. For multicomponent media, we
have cαβ = δαβcα, where δαβ is Kronecker’s delta. The second example concerns
fluid motion in porous media. The governing equations for a flow in fractured
porous media employ the multiple porosity model (see, e.g., [3, 4]). In this case,
uα(x, t) is the dynamic pore pressure in the p-porosity model. For these models, it
is the principal moment that cαβ 6= δαβcα. The third example of systems of coupled
diffusion equations is the diffusion-chemotaxis-reaction processes. Such problems
are studied numerically, for example, in [5, 6]. As in other applied problems, here
the matrix K is non-symmetric and the equations themselves are nonlinear.

After approximation in space, from problem (1) with boundary conditions (2), we
arrive at a system of ODEs. Let us formulate the corresponding Cauchy problem.
In this paper, we restricted ourselves to the formulation of stability conditions
for two- and three-level operator-difference schemes. Using the derived estimate
for stability, we can consider the corresponding problem for error and obtain the
estimate for convergence. Such an examination is appropriate to carry out taking
into account the selected approximations in space, the smoothness of the input data
and solution.

Let Hα, α = 1, 2, . . . , p be finite-dimensional real Hilbert (Euclidean) spaces of
grid functions, where the scalar product and the norm are denoted by (·, ·)α and



EXPLICIT-IMPLICIT SPLITTING SCHEMES 349

‖ · ‖α, α = 1, 2, . . . , p, respectively. The individual components of the solution are
denoted by uα(t) ∈ Hα, α = 1, 2, . . . , p for every t (0 ≤ t ≤ T, T > 0). We search
the solution for the system of evolutionary equations of first order:

(4)

p∑

β=1

Bαβ
duβ
dt

+

p∑

β=1

Aαβuβ = fα, α = 1, 2, . . . , p.

Here fα(t) ∈ L2(0, T ;Hα), α = 1, 2, . . . , p are specified, and Bαβ , Aαβ are linear
constant (independent of t) operators acting from Hβ onto Hα (Aαβ : Hβ → Hα,
Bαβ : Hβ → Hα) for all α, β = 1, 2, . . . , p. System of equations (4) is supplemented
with the initial data

(5) uα(0) = v0α, α = 1, 2, . . . , p.

We treat system of equations (4) as a single evolutionary equation for vector
u = {u1, u2, . . . , up}:

(6) B
du

dt
+Au = f(t), 0 < t ≤ T,

where f = {f1, f2, . . . , fp}, and the elements of the operator matrices A and B are
represented in the form

A = {Aαβ}, B = {Bαβ}, α, β = 1, 2, . . . , p.

On the direct sum of spaces [10] H = H1 ⊕H2 ⊕ · · · ⊕Hp, we put

(u,v) =

p∑

α=1

(uα, vα)α, ‖u‖2 =

p∑

α=1

‖uα‖
2
α.

In view of (5), we define

(7) u(0) = v0,

where v0 = {v01 , v
0
2 , . . . , v

0
p}.

Consider Cauchy problem (6), (7) under the condition that operators A and B
are self-adjoint and positive definite in H , i.e.,

(8) A = A∗ ≥ δAE, δA > 0, B = B∗ ≥ δBE, δB > 0,

where E is the identity operator in H . The self-adjointness is associated with the
fulfillment of the equalities

Aαβ = A∗
βα, Bαβ = B∗

βα, α, β = 1, 2, . . . , p

for the operators of the original system of equations (4).
Here is an elementary a priori estimate for the solution of Cauchy problem (6),

(7). We will use it as a guide in investigating the corresponding operator-difference
schemes. For D = D∗ > 0, we use notation HD for a space H equipped with the
scalar product (y,w)D = (Dy,w) and the norm ‖y‖D = (Dy,y)1/2.

Multiplying both sides of equation (6) scalarly in H by
du

dt
, we obtain

(
B
du

dt
,
du

dt

)
+

1

2

d

dt
(Au,u) =

(
f ,
du

dt

)
.

Taking into account (8) and using
(
f ,
du

dt

)
≤

(
B
du

dt
,
du

dt

)
+

1

4

(
B−1f ,f

)
,
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we derive the inequality
d

dt
‖u‖2

A
≤

1

2
‖f‖2

B−1 .

We get from it the following a priori estimate:

(9) ‖u(t)‖2A ≤ ‖v0‖2A +
1

2

∫ t

0

‖f(θ)‖2
B−1dθ,

which expresses the stability of the solution of problem (6), (7) with respect to the
initial data and the right-hand side.

3. Scheme with Weights

To solve numerically the operator-differential problem (6), (7), we use the stan-
dard scheme with weights. We introduce a uniform grid in time

ωτ = ωτ ∪ {T } = {tn = nτ, n = 0, 1, ..., N0, τN0 = T }

and, we denote yn = y(tn), tn = nτ . Let us approximate equation (6) by the
two-level difference scheme

(10) B
yn+1 − yn

τ
+A(σyn+1 + (1 − σ)yn) = ϕn,

where σ is a numerical parameter (weight) within 0 ≤ σ ≤ 1, and, e.g., ϕn =
f(σtn+1 + (1 − σ)tn). For simplicity, we restrict ourselves to the case of the same
weight for all equations in system (4). In view of (7), we supplement (10) with the
initial data

(11) y0 = v0.

A detailed study of the scheme with weights (the necessary and sufficient condition
for stability as well as the choice of a norm) was conducted in [20, 21]. Here
we restrict ourselves to an elementary estimate for stability of operator-difference
scheme (10), (11). Estimate (9) serves us as a guide in our study.

Theorem 1. If σ ≥ 1/2, then operator-difference scheme (10) is unconditionally
stable in HA, and the difference solution satisfies the levelwise estimate

(12) ‖yn+1‖2A ≤ ‖yn‖2A +
τ

2
‖ϕn‖2

(B+(σ− 1

2 )τA)
−1 .

Proof. Scheme (10) can be written in the form
(
B +

(
σ −

1

2

)
τA

)
yn+1 − yn

τ
+A

yn+1 + yn

2
= ϕn.

Multiplying both sides of this equation scalarly in H by 2(yn+1 − yn), we obtain
the equality

2τ

((
B +

(
σ −

1

2

)
τA

)
yn+1 − yn

τ
,
yn+1 − yn

τ

)

+ (Ayn+1,yn+1)− (Ayn,yn) = 2τ

(
ϕn,

yn+1 − yn

τ

)
.

Using the inequality
(
ϕn,

yn+1 − yn

τ

)
≤

((
B +

(
σ −

1

2

)
τA

)
yn+1 − yn

τ
,
yn+1 − yn

τ

)

+
1

4

((
B +

(
σ −

1

2

)
τA

)−1

ϕn,ϕn

)
,
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we derive the required estimate (12). �

Estimate (12) is just a discrete analog of estimate (9) and it ensures the uncon-
ditional stability of the difference scheme with weights (10), (11) under the natural
condition σ ≥ 1/2. Considering the corresponding problem for the error, we prove
the convergence O((2σ − 1)τ + τ2) of the solution of operator-difference problem
(6), (7) to the solution of operator-differential problem (6), (7) in HA under the
restriction σ ≥ 1/2. If σ = 1/2, then we have the second-order convergence rate
with respect to τ .

Operator-difference scheme (10) may be written in the canonical form for the
two-level schemes:

(13) (B + στA)
yn+1 − yn

τ
+Ayn = ϕn.

The transition to a new time level requires to solve the problem

(B + στA)yn+1 = ψn.

Concerning original problem (4), (5), we must solve the system of coupled equations

p∑

β=1

(Bαβ + στAαβ)y
n+1
β = ψn

α, α = 1, 2, . . . , p.

Various iterative methods can be used for this procedure [18, 23].
Another opportunity is to take into account the specific features of the above

unsteady problems and to construct splitting schemes, where the transition to a
new time level involves the solution of simpler problems. For the problems of type
(4), (5), it seems reasonable to employ the splitting schemes, where the transition
to a new time level is performed solving the problems

(Bαα + στAαα)y
n+1
α = ψ̃n

α, α = 1, 2, . . . , p.

This means that we have to invert only the diagonal part of the operator matrix
B + στA in our computations.

4. Schemes with a Diagonal Operator

We start with the case, where the problem of inversion of the operator B does
not exist. Such a situation occurs if the operator matrix B at the time derivatives
is diagonal, i.e.,

(14) Bαβ = δαβBα, α = 1, 2, . . . , p.

This class of problems appears in simulation of mass transfer in multicomponent
media. In this case, the components of the solution vector are coupled due to the
elements Aαβ , α 6= β in the operator matrix A.

Let us construct additive operator-difference schemes using the splitting of op-
erator A with separation of the diagonal part. In this case, we obtain

(15) A = A0 +A1, A0 = diag(A11, A22, ..., App).

In additive representation (15), we have

A0 =




A11 0 · · · 0
0 A22 · · · 0
· · · · · · · · · · · ·
0 0 · · · App


 , A1 =




0 A12 · · · A1p

A21 0 · · · A2p

· · · · · · · · · · · ·
Ap1 Ap2 · · · 0


 .
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In our problem, in view of (8), we get

(16) A0 +A1 ≥ δAE, δA > 0.

Let us consider problem (4), (5) under the additional assumption:

(17) A0 −A1 ≥ 0.

In some cases, property (17) follows from (16).
The properties of operator A are associated with the properties of matrix K,

i.e., with the coefficients kαβ , α, β = 1, 2, ..., p in the boundary value problem (1)–
(3). The positive definiteness of operator A follows from the positive definiteness
of matrix K. In view of (15), the fulfillment of (17) may be associated with

K̃ = K̃∗ ≥ 0, K̃ = {k̃αβ},

where

k̃αα = kαα, k̃αβ = −kαβ , α, β = 1, 2, ..., p.

For the system of two equations (p = 2), fromA0+A1 ≥ 0, it follows immediately
(17). For p = 3, we can highlight the case with non-positive off-diagonal coefficients:

kαβ ≤ 0, α, β = 1, 2, 3, α 6= β.

Under these restrictions, we have K̃ = {|kαβ |} ≥ 0 [16], which ensures the fulfill-
ment of (17). For general systems, we emphasize the case of diagonal dominance of
matrix K, where

kαα ≥

p∑

α6=β=1

|kαβ |.

These examples demonstrate the fulfillment of conditions (16), (17) in a number of
problems with the decomposition (15).

For numerical solving (6), (7) under constraints (14)–(16), we will use the two-
level scheme:

(18) B
yn+1 − yn

τ
+A0y

n+1 +A1y
n = ϕn.

This scheme with inhomogeneous approximation in time belongs to the class of
explicit-implicit schemes. Here only the diagonal part of the operator A is shifted
to the upper time level. The computational implementation of the explicit-implicit
scheme (18) is conducted by means of problems

(Bαα + τAαα)y
n+1
α = ψn

α, α = 1, 2, ..., p

at the new time level. For these individual problems, it is possible to arrange
independent (parallel) computing yn+1

α , α = 1, 2, ..., p.
The main result on stability of the explicit-implicit scheme is formulated as the

following statement.

Theorem 2. If (17) holds, then explicit-implicit difference scheme satisfying (8),
(15), (18) is unconditionally stable, and for the difference solution the following
levelwise estimate is valid:

(19) ‖yn+1‖2A ≤ ‖yn‖2A +
τ

2
‖ϕn‖2

(B+ τ

2
(A0−A1))

−1 .

Proof. For the proof, we write the explicit-implicit scheme in the form
(
B +

τ

2
(A0 −A1)

) yn+1 − yn

τ
+A

yn+1 + yn

2
= ϕn
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and we multiply it scalarly in H by 2(yn+1 − yn). Further arguments are similar
to the proof of Theorem 1. �

Estimate (19) for stability with respect to the initial data and the right-hand
side, proven for the explicit-implicit scheme (18), is not significantly different from
the estimate corresponding to the standard scheme with weights (see (12)).

Explicit-implicit scheme (18) approximates equation (6) with the first order with
respect to τ . It is possibile to construct unconditionally stable explicit-implicit
schemes with second-order approximation in time. Instead of (18), we can use the
three-level explicit-implicit scheme:

(20) B
yn+1 − yn−1

2τ
+A0(σy

n+1 + (1− 2σ)yn + σyn−1) +A1y
n = ϕn

with ϕn = f(tn). To calculate the first step, we can apply, e.g, the two-level scheme

B
y1 − y0

τ
+ (A0 +A1)

y1 + y0

2
=
ϕ1 +ϕ0

2
.

Investigation of stability is based on the following general statement from the theory
of stability (correctness) for three-level operator-difference schemes [20, 21, 22].

Lemma 1. Let in the three-level operator-difference scheme

(21) B
yn+1 − yn−1

2τ
+D

yn+1 − 2yn + yn−1

τ2
+Ayn = ϕn

operators A,B,D are constant (independent of n) and

(22) A = A∗ > 0, B = B∗ > 0, D = D∗ > 0.

If

(23) D >
τ2

4
A,

then scheme (21), (22) is unconditionally stable and its solution satisfies the esti-
mate

(24) En+1 ≤ En +
τ

2
(B−1ϕn,ϕn),

where

En =

∥∥∥∥
yn + yn−1

2

∥∥∥∥
2

A

+

∥∥∥∥
yn − yn−1

τ

∥∥∥∥
2

D− τ
2

4
A

.

Proof. Taking into account

yn =
1

4
(yn+1 + 2yn + yn−1)−

1

4
(yn+1 − 2yn + yn−1),

we write (21) as

B
yn+1 − yn−1

2τ
+

(
D −

τ2

4
A

)
yn+1 − 2yn + yn−1

τ2

+A
yn+1 − 2yn + yn−1

4
= ϕn.

(25)

Let

vn =
1

2
(yn + yn−1), wn =

yn − yn−1

τ
and rewrite (25) in the form

(26) B
wn+1 +wn

2
+R

wn+1 −wn

τ
+

1

2
A(vn+1 + vn) = ϕn,
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where

R = D −
τ2

4
A.

Multiplying scalarly both sides of (26) by

2(vn+1 − vn) = τ(wn+1 +wn),

we get the equality
τ

2
(B(wn+1 +wn),wn+1 +wn) + (R(wn+1 −wn),wn+1 +wn)

+ (A(vn+1 + vn),vn+1 − vn) = τ(ϕn,wn+1 +wn).
(27)

For the right-hand side, we use the estimate

(ϕn,wn+1 +wn) ≤
1

2
(B(wn+1 +wn) +

1

2
(B−1ϕn,ϕn).

This makes it possible to get from (27) the inequality

(28) En+1 ≤ En +
τ

2
(B−1ϕn,ϕn),

where we use the notation

En = (Avn,vn) + (Rwn,wn).

Inequality (28) is the desired a priori estimate (24), if we show that En defines
the squared norm of the difference solution. In view of the positivity of A, it is
sufficient to require the positivity for the operator R (see (23)). �

Scheme (20) may be written in the form (21) with

D = στ2A0.

Taking this fact into account, stability condition (23) takes the form

0 < 4σA0 −A = 4

(
σ −

1

2

)
A0 +A0 −A1.

Under assumptions (15), (17), this condition will be true for σ > 1/2. Thus, we
can formulate the following statement.

Theorem 3. Explicit-implicit scheme (20) satisfying (8), (15) and (17) is uncon-
ditionally stable for σ > 1/2, and the difference solution satisfies levelwise estimate
(24), where

En =

∥∥∥∥
yn + yn−1

2

∥∥∥∥
2

A

+ τ2
∥∥∥∥
yn − yn−1

τ

∥∥∥∥
2

σA0−
1

4
A

.

5. General Case

For problem (6), (7) with a common (not diagonal) operator B (Bαβ 6= δαβBα),
explicit-implicit difference schemes will be based on a decomposition of operator
B. Similarly to (15), we set

(29) B = B0 +B1, B0 = diag(B11, B22, ..., Bpp).

In addition to the positive definiteness of operatorB, we assume that the inequality

(30) B0 −B1 ≥ 0

holds. Thus, coefficients cαβ , α, β = 1, 2, ..., p of the matrix C in problem (1)–(3)
are considered under restrictions similar to the formulated above for the coefficients
kαβ , α, β = 1, 2, ..., p of matrix K.



REFERENCES 355

To solve numerically (6), (7) under the constraints (8), (15), (17), (29), (30), we
will use the three-level scheme:

B0
yn+1 − yn

τ
+B1

yn − yn−1

τ

+A0(σy
n+1 + (1− 2σ)yn + σyn−1) +A1y

n = ϕn.

(31)

Let us formulate the stability condition for this explicit-implicit scheme.

Theorem 4. Explicit-implicit difference scheme (31) satisfying (8), (15), (17),
(29), (30) is unconditionally stable for σ > 1/2, and difference solution satisfies
the levelwise estimate (24), where

En =

∥∥∥∥
yn + yn−1

2

∥∥∥∥
2

A

+ τ2
∥∥∥∥
yn − yn−1

τ

∥∥∥∥
2

1

2τ
(B0−B1)+σA0−

1

4
A

.

Proof. We employ Lemma 1. Scheme (31) may be written in the form (21) with

D =
τ

2
(B0 −B1) + στ2A0.

In the terms of this theorem, stability condition (23) will be valid for σ > 1/2. �

In many applied problems, conditions (17) and (30) are too strong. It is possible
to consider problems with weaker restrictions

A0 ≥ γAA1, B0 ≥ γBB1,

where γA ≥ 1, γB ≥ 1. Under these conditions it is possible to construct uncondi-
tionally stable explicit-implicit schemes, which are considered in the present paper
in detail.
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