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Abstract. In this paper, we present a fully discretized Calderón Calculus for the two dimen-
sional Helmholtz equation. This full discretization can be understood as highly non-conforming
Petrov-Galerkin methods, based on two staggered grids of mesh size h, Dirac delta distributions
substituting acoustic charge densities and piecewise constant functions for approximating acoustic

dipole densities. The resulting numerical schemes from this calculus are all of order h
2 provided

that the continuous equations are well posed. We finish by presenting some numerical experiments
illustrating the performance of this discrete calculus.
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1. Introduction

In this paper we present a very simple and compatible Nyström discretization of
all boundary integral operators for the Helmholtz equation in a smooth parametriz-
able curve in the plane. The discretization uses a näıve quadrature method for loga-
rithmic integral equations, based on two staggered grids, and due to Jukka Saranen
and Liisa Schroderus [13] (see also [15] and [2]). This is combined with an equally
simple staggered grid discretization of the hypersingular operator, recently discov-
ered in [8]. If the displaced grids used for the discretization of these two operators
are mutually reversed, then it is possible to combine these two discretizations with
a simple minded Nyström method for the double layer operator and its adjoint.
The complete set of operators is complemented with a fully discrete version of the
single and double layer potentials. We will explain the construction of the discrete
set and reinterpret it as a non-conforming Petrov- Galerkin discretization of the
operators (using Dirac deltas and piecewise constant functions) to which we apply
midpoint integration in every element integral.

Once the semivariational form has been reached we will show inf-sup conditions
for all discrete operators involved and consistency error estimates based on asymp-
totic expansions of the error in the style of [2, 5, 6]. We will finally state and sketch
the proof of some convergence error estimates. While some of the results, for in-
dividual equations (mainly based on indirect boundary integral formulations) had
already appeared in previous papers, this is the first time that the entire Calderón
Calculus is presented in its entirety. Let it be emphasized, that this is probably the
simplest form of discretizing simultaneously all the potentials and integral operators
for the Helmholtz equation in the plane and that the methods we obtain are of
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order two. Barring the conceptual difficulty of understanding the boundary inte-
gral operators, the methods have the simplicity of basic Finite Difference Methods
and require no effort in their implementation: all discrete elements are described in
full, natural data structures can be easily figured out from the way the geometry is
sampled, and no additional discretization step (quadrature, assembly by element,
mapping to a reference element) is required. The methods will be presented for the
case of a single curve, but we will hint at its immediate extension to the case of
multiple scatterers.

In a final section devoted to numerical experiments, we will show how to use the
methods for transmission problems and how to construct combined field integral
representations.

2. Calderón calculus for exterior Helmholtz boundary problems

2.1. Potentials and operators. Let Γ be a smooth simple closed curve given by
a regular 1-periodic positively oriented parametrization x = (x1, x2) : R→ Γ ⊂ R2.
Let n(t) := (x′2(t),−x′1(t)) be a non-normalized outward pointing normal vector at
x(t) ∈ Γ. The domain exterior to Γ will be denoted Ω+. As a reminder of the fact
that we are taking limits from this exterior domain, the superscript + will be used
in trace and normal derivative operators.

Let us introduce the exterior Helmholtz equation

(1) ∆U + k2U = 0 in Ω+, ∇U(z) · ( 1
|z|z)− ıkU(z) = o( 1√

|z|
), as |z| → ∞,

where k > 0 is the wavenumber. Given 1-periodic complex-valued functions η and
ψ, the (parametrized) single and double layer potentials for the Helmholtz equation
(1) are defined, respectively, with the formulas

(
S η

)
(z) :=

ı

4

∫ 1

0

H
(1)
0 (k|z− x(t)|)η(t) dt,

(
Dψ

)
(z) :=

ık

4

∫ 1

0

H
(1)
1 (k|z− x(t)|) (z − x(t)) · n(t)

|z− x(t)| ψ(t) dt

for arbitrary z ∈ R2 \ Γ. (Here H
(1)
n is the Hankel function of the first kind and

order n.) The single and double layer potentials define radiating solutions of the

Helmholtz equation for any η, ψ. Moreover, if U is a C1(Ω+) solution of (1) and
we define

(2) ϕ = γ+U := U |Γ ◦ x, λ = ∂+
n
U := ((∇U)|Γ ◦ x) · n,

then [9, 14]

(3) U(z) = (Dϕ)(z) − (Sλ)(z), z ∈ Ω+.

We note that the representation formula (3), depending on parametrized Cauchy
data (2), can be extended to any locally H1 solution of (1). In this work we will
restrict our attention to smooth solutions though.

Associated to the layer potentials we have three integral operators.

(Vη)(s) :=
ı

4

∫ 1

0

H
(1)
0 (k|x(s) − x(t)|)η(t) dt,(4a)

(Kψ)(s) :=
ık

4

∫ 1

0

H
(1)
1 (k|x(s)− x(t)|) (x(s) − x(t)) · n(t)

|x(s) − x(t)| ψ(t) dt,(4b)

(Jη)(s) :=
ık

4

∫ 1

0

H
(1)
1 (k|x(s)− x(t)|) (x(t) − x(s)) · n(s)

|x(s)− x(t)| η(t) dt,(4c)



334 V. DOMÍNGUEZ, S. LU, AND F. SAYAS

as well as the integrodifferential operator

(4d) Wψ := −(Vψ′)′ − k2Vnψ,

where

(Vnψ)(s) :=
ı

4

∫ 1

0

H
(1)
0 (k|x(s)− x(t)|)

(
n(t) · n(s)

)
ψ(t) dt.

The operators in (4) are respectively called single layer, double layer, adjoint double
layer, and hypersingular operator. The operator W admits a different expression
in terms of finite parts integrals (see [14, Lemma 2.5.6]), which is where its name
comes from.

Layer operators and potentials are related via the so-called jump relations [9,
11, 14], namely, the exterior parametrized boundary values of the layer operators
are given by the formulas

(5)
γ+S η = Vη, γ+Dψ = 1

2ψ +Kψ,
∂+
n
S η = − 1

2η + Jη, ∂+
n
Dψ = −Wψ.

The matrix of operators

C+ :=

[
1
2 I + K −V
−W 1

2 I− J

]

is the exterior Calderón projector. It follows from (3) and (5), that if (ϕ, λ) are the
parametrized Cauchy data (2) for a solution of (1), then C+(ϕ, λ)⊤ = (ϕ, λ)⊤ or,
equivalently

(6) D+

[
ϕ
λ

]
:=

[
1
2 I−K V
W 1

2 I + J

] [
ϕ
λ

]
=

[
0
0

]
.

Note that K and J are transposed of each other, while V and W are symmetric.

2.2. Boundary integral equations for exterior problems. We next summa-
rize a collection of boundary integral equations leading to the solution of (1) with
a given boundary condition:

(7) γ+U = β0 or ∂+
n
U = β1.

The data functions in the right-hand side of (7) are 1-periodic functions and the
boundary operators are those of (2). Recall that the Dirichet or Neumann exterior
problem for the Helmholtz equation with Sommerfeld radiation condition at infinity
are uniquely solvable.

A direct method for solving the exterior Dirichlet problem starts in the represen-
tation formula (3), equates ϕ = β0, and then uses one of the two identities in (6) to
set up an integral equation in order to find λ. Similarly, for the Neumann problem,
we impose λ = β1, and then use one of the equations in (6) in search of ϕ. The
resulting integral equations are collected in Table 1.

An indirect method based on the single layer potential representation looks for
U = Sη and then uses the expressions in the first column of (5) to set up an integral
equation depending on which boundary data is known. Similarly, we can look for
U = Dψ and use the boundary integral operators that appear in the right column
of (5) to build an equation. These equations are gathered in Table 2.

Proposition 2.1 (See [12, Section 3.2]). Let Ω be the domain interior to Γ.

(a) Equations (dN01), (iN01), (dD01), and (iD01) are uniquely solvable if and
only if −k2 is not a Dirichlet eigenvalue of the Laplace operator in Ω.

(b) Equations (dN02), (iN02), (dD02), and (iD02) are uniquely solvable if and
only if −k2 is not a Neumann eigenvalue of the Laplace operator in Ω.
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Table 1. BIEs for direct formulations. The representation formu-
la is (3). All these equations are solvable. Uniqueness is discussed
in Proposition 2.1.

Dirichlet
Vλ = − 1

2ϕ+Kϕ ϕ = β0 (dD01)

1
2λ+ Jλ = −Wϕ, ϕ = β0 (dD02)

Neumann
− 1

2ϕ+Kϕ = Vλ, λ = β1 (dN01)

−Wϕ = 1
2λ+ Jλ, λ = β1 (dN02)

Table 2. BIEs for indirect formulations. The potential represen-
tation is given next to the boundary integral equation. Unique
solvability of these equations is discussed in Proposition 2.1.

Dirichlet
Vη = β0, U = S η (iD01)

1
2ψ +Kψ = β0, U = Dψ (iD02)

Neumann
− 1

2η + Jη = β1, U = S η (iN01)

Wψ = −β1, U = Dψ (iN02)

The equations of Tables 1 and 2 involve the four operators of the matrix D+ in
(6) and their transposes. The operators in the first row of D+ are invertible when
−k2 is not an interior Dirichlet eigenvalue. The operators in the second row of D+

are invertible when −k2 is not an interior Neumann eigenvalue. The precise Sobolev
space setting where these equations are well posed will be explained in Section 4.1.
In addition to these equations, the Calderón Calculus, given by the jump relations
(5) and the identities (6), can be used to construct combined integral equations and
several other associated boundary integral equations, some of which are invertible
for all values of k.

3. The fully discrete calculus

3.1. Matrix representation. Let N be a positive integer, h := 1/N , and let us
consider the uniform grid in parametric space

si := (i− 1
2 )h, ti := ih, i ∈ Z,

thus defined so that ti is the midpoint of the interval (si, si+1). The following
quantities will be all the geometric elements of Γ that will be used in the discrete
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Calculus:

(8)
mi := x(ti), bi := x(si),
ni := hn(ti), ℓi := |ni| = h|x′(ti)|, si = h2x′′(ti).

These quantities make up the main discretization grid. Note that they are defined
for i ∈ Z, modulo N . For practical reasons, we will need a discrete function n(i),
that gives the next index in a rotating (modulo N) form, so that n(i) = i + 1 for
i ≤ N − 1 and n(N) = 1. We now take ε ∈ (−1/2, 1/2) \ {0} and repeat the same
construction with the displaced grid in parametric space:

tεi = (i+ ε)h, sεi = (i + ε− 1
2 )h.

The quantities mε
i , b

ε
i , n

ε
i , ℓ

ε
i , and sεi are defined accordingly. They constitute the

companion grid.
Given column vectors η = (η1, . . . , ηN )⊤ ∈ CN , ψ = (ψ1, . . . , ψN )⊤ ∈ CN , we

consider the discrete single and double layer potentials:

Sh(z)η :=
N∑

j=1

ı

4
H

(1)
0 (k|z−mε

j |)ηj ,(9a)

Dh(z)ψ :=

N∑

j=1

ık

4
H

(1)
1 (k|z−mj |)

(z−mj) · nj
|z−mj |

ψj .(9b)

We also consider four N ×N matrices Vh, Kh, Jh and Wh, given by

Vij =
ı

4
H

(1)
0 (k|mi −mε

j |),(10a)

Kij :=





si · ni
4πℓ2i

, i = j,

ık

4
H

(1)
1 (k|mi −mj |)

(mi −mj) · nj
|mi −mj|

, i 6= j,
(10b)

Jij :=





sεi · nεi
4π(ℓεi )

2
, i = j,

ık

4
H

(1)
1 (k|mε

i −mε
j |)

(mε
j −mε

i ) · nεi
|mε

i −mε
j |

, i 6= j,
(10c)

Wij := Ṽn(i),n(j) + Ṽij − Ṽn(i),j − Ṽi,n(j) − k2(nεi · nj)Vji,(10d)

where
Ṽij =

ı

4
H

(1)
0 (k|bεi − bj |).

Note that the diagonal values in Kh and Jh are defined using the limit values in
the kernels of the integral operators K and J as |s− t| → 0.

Remark 3.1. As can be seen from (9) and (10), the structure of the matrices and
operators does not remember where the discrete geometric data come from. The
formulas (9) and (10) use discrete data {mi,ni,bi, ℓi, si} and {mε

i ,n
ε
i ,b

ε
i , ℓ

ε
i , s

ε
i},

sampled from the curve. It is immaterial whether these data have been sampled from
a simple curve or several simple non-intersecting curves. The next-index function
n(i) used in Wh has to be adapted to contain cycles of nodes showing the different
connected components of the collection of curves.

Discretization of the integral equations in Tables 1 and 2 is almost straightfor-
ward based on these matrices and potentials. The Dirichlet and Neumann data in
(7) are discretized by vectors of samples:

(11) β0 := (β0(t1), . . . , β0(tN ))⊤ β1 := h (β1(t
ε
1), . . . , β1(t

ε
N ))⊤.
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The different scaling of these vectors will be clear from the interpretation of these
methods that we will give in Section 3.2. At this stage, it can be justified with
some arguments of dimensional analysis, given the fact that β1 corresponds to data
of a derivative of the function. By the definition of the parametrized boundary
operators (2), of the Cauchy data (7) and of the discrete quantities (8), we can
similarly write

β0 = (U(m1), . . . , U(mN ))⊤ β1 = (∇U(mε
1) · nε1, . . . ,∇U(mε

N ) · nεN )⊤.

The discrete direct methods use a representation formula

(12) Uh(z) = Dh(z)ϕ− Sh(z)λ

and one of the linear systems of Table 3. The discrete indirect methods appear
collected in Table 4, including the corresponding potential representation.

Table 3. Discrete direct methods, with representation formula (12).

Dirichlet
Vhλ = − 1

2ϕ+Khϕ ϕ = β0 (dD01h)

1
2λ+ Jhλ = −Whϕ, ϕ = β0 (dD02h)

Neumann
− 1

2ϕ+Khϕ = Vhλ, λ = β1 (dN01h)

−Whϕ = 1
2λ+ Jhλ, λ = β1 (dN02h)

Table 4. Discrete indirect methods.

Dirichlet
Vhη = β0, Uh = Sh η (iD01h)

1
2ψ +Khψ = β0, Uh = Dhψ (iD02h)

Neumann
− 1

2η + Jhη = β1, Uh = Sh η (iN01h)

Whψ = −β1, Uh = Dhψ (iN02h)

3.2. Reinterpretation as non-conforming Petrov-Galerkin methods. Our
method can be understood as a collection of non-conforming Petrov-Galerkin meth-
ods with a very simple quadrature rule for approximating any integral appearing in
the scheme. The basic idea is the following: the input of D (and therefore W and
K) will be approximated with a piecewise constant function on the main grid; the
input of S (and therefore V and J) will be approximated with a linear combination
of Dirac deltas on the companion grid; tests related to Dirichlet problems will be
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carried out by Dirac deltas on the main grid; tests related to Neumann problems
will be done with piecewise constants on the companion grid; finally, all integrals
will be broken into subintervals of the grid and approximated with a midpoint rule.

In order to write the methods of Section 3.1 in the form where we will develop
their convergence analysis, we need to define some new discrete elements. First of
all, we consider the (periodic) Dirac delta distribution δz at a point z. Its action
on any periodic function that is continuous around z will be denoted {δz, ρ} =
{ρ, δz} := ρ(z). Given an interval I ⊂ R, we will denote by χI the periodized
characteristic function of I, i.e., the characteristic function of the set I + Z. We
then consider four discrete spaces

Sh := span{χ(si−1,si) : i = 1, . . . , N}, Sh,ε := span{χ(sε
i−1

,sε
i
) : i = 1, . . . , N},

S−1
h := span{δti : i = 1, . . . , N}, S−1

h,ε := span{δtε
i
: i = 1, . . . , N}.

For elements of these spaces we will identify the vector of their coefficients –with
respect to the basis that has been used to define the space–, using the same letter
in boldface font. For example,

S−1
h ∋ µh =

N∑

j=1

µjδtj ←→ µ = (µ1, . . . , µN)
⊤ ∈ CN .

The two discrete operators

Q−1
h ρ := h

N∑

j=1

ρ(tj)δtj Q−1
h,ερ := h

N∑

j=1

ρ(tεj)δtεj

complete the collection of elements needed for a variational description of the dis-
crete Calderón Calculus. They will be used to denote midpoint quadrature approx-
imations. For example,

{Q−1
h ρ, φ} = h

N∑

j=1

ρ(tj)φ(tj) ≈
∫ 1

0

ρ(t)φ(t)dt.

The discrete potentials (9) can be easily described in this language:

S−1
h,ε ∋ ηh 7→ Sh(·)η = Sηh, Sh ∋ ψh 7→ Dh(·)ψ = DQ−1

h ψh.

Observe how in the double layer potential we are just applying the midpoint rule
to approximate Dψh, while no additional integration is needed in the already fully
discrete expression for Sηh.

The matrices (10) have their variational counterparts as bilinear forms:

S−1
h × S−1

h,ε ∋ (µh, ηh) 7−→ v(µh, ηh) := {µh,Vηh} = µ⊤Vhη,

S−1
h × Sh ∋ (µh, ψh) 7−→ k(µh, ψh) := {µh,KQ−1

h ψh} = µ⊤Khψ,

Sh,ε × S−1
h,ε ∋ (φh, ηh) 7−→ j(φh, ηh) := {Q−1

h,εφh, Jηh} = φ⊤Jhη,

Sh,ε × Sh ∋ (φh, ψh) −→ w(φh, ψh) := φ
⊤Whψ.

The bilinear form w can be understood as follows

w(φh, ψh) = {φ′h,Vψ′
h} − k2{Q−1

h,εφh,VnQ
−1
h ψh},

just by noticing that χ′
(si−1,si)

= δsi−1
− δsi and that a change of sign has to be

applied to the leading integrodifferential part of W (see (4d)) when changing the
differentiation to the test function. The rationale behind this choice of spaces can
be observed in the matrix of operators D+ in (6). As trial spaces we are considering
Sh × S−1

h,ε, while the rows of D+ are respectively tested with S−1
h and Sh,ε. This
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means that the operators of the second kind (± 1
2 I+K and ± 1

2 I+ J) are discretized
on a single grid (each of them on a different grid though), while the operators of
the first kind (V and W) use two grids. This is actually a requirement due to the
fact that the kernels of V and Vn cannot be evaluated in the diagonal s = t, where
they have a logarithmic singularity. Once this choice of trial and test spaces has
been taken as a first step in the discretization of the four operators in (6), midpoint
integration is applied to all remaining integrals. The operators Q−1

h and Q−1
h,ε are

used as a way of enforcing full discretization of every operator acting on a piecewise
constant function.

To describe variationally the equations in Tables 3 and 4 we first cast the data
function (β0 for the Dirichlet problem and β1 for the Neumann problem) in the
discrete spaces

βh0 :=

N∑

j=1

β0(tj)χ(sj−1,sj) ∈ Sh, βh1 := Q−1
h,εβ1 = h

N∑

j=1

β1(t
ε
j)δtεj ∈ S

−1
h,ε,

so that their coefficients coincide with the sample vectors (11). The equations
(dN01h) correspond then to writing λh = βh1 , solving

(13) ϕh ∈ Sh s.t. − 1
2{µh, ϕh}+ k(µh, ϕh) = v(µh, λh) ∀µh ∈ S−1

h ,

and finally using Uh = DQ−1
h ϕh − Sλh as discrete representation formula. The

indirect method (iN02h) corresponds to solving

ψh ∈ Sh s.t w(φh, ψh) = −{βh1 , φh} = −{Q−1
h,εφh, β1} ∀φh ∈ Sh,ε,

for a potential representation Uh = DQ−1
h ψh. The indirect method (iD01h) is

equivalent to solving

ηh ∈ S−1
h,ε s.t. v(µh, ηh) = {µh, βh0 } = {µh, β0} ∀µh ∈ S−1

h .

The remaining five discrete equations in Tables 3 and 4 can be easily rewritten
using these same elements.

4. Numerical analysis

4.1. Stability. Analysis of the methods in Section 3.1 is carried out in the form
given in Section 3.2, in the frame of periodic Sobolev spaces. For s ∈ R we de-
fine the space Hs as the completion of the space of trigonometric polynomials
span {exp(2πım · ) : m ∈ Z} with respect to the norm

‖ρ‖2s = |ρ̂(0)|2 +
∑

m 6=0

|m|2s|ρ̂(m)|2, ρ̂(m) :=

∫ 1

0

ρ(t) exp(−2πımt) dt.

An extensive treatment of these spaces can be found in [14]. The operators (4) can
be extended to act on all Sobolev spaces Hs. In particular, the following result
holds (see [9, Table 2.1.1] and [12, Section 3.2]).

Proposition 4.1. The operators

(14) ± 1
2 +K, ± 1

2 + J : Hs → Hs, V : Hs → Hs+1, W : Hs → Hs−1

are bounded for all s. If, in addition, −k2 is neither a Dirichlet nor a Neumann
eigenvalue of the Laplacian in Ω (cf. Proposition 2.1), then all of them are invert-
ible.
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Proposition 4.2. Assume that −k2 is neither a Dirichlet nor a Neumann eigen-
value of the Laplacian in Ω and let ε ∈ (−1/2, 1/2) \ {0}. Then there exist positive
numbers cV, cK, cJ, cW > 0 so that for all h small enough

inf
06=ηh∈S

−1

h,ε

sup
06=µh∈S

−1

h

|v(µh, ηh)|
‖µh‖−1‖ηh‖−1

≥ cV,(15)

inf
06=ψh∈Sh

sup
06=µh∈S

−1

h

| ± 1
2{µh, ψh}+ k(µh, ψh)|
‖µh‖−1‖ψh‖0

≥ cK,(16)

inf
06=ηh∈S

−1

h,ε

sup
06=φh∈Sh,ε

| ± 1
2{φh, ηh}+ j(φh, ηh)|
‖φh‖0‖ηh‖−1

≥ cJ,(17)

inf
06=ψh∈Sh

sup
06=φh∈Sh,ε

|w(φh, ψh)|
‖φh‖0‖ψh‖0

≥ cW.(18)

The constants can depend on ε.

Proof. Condition (15) was proved in [2, Proposition 8], although it is based on a
stability result (phrased in different terms) given in [13]. Condition (18) has been
proven in [8, Theorem 1]. With minor modifications, the proof of [7, Theorem 2]
can be used to prove (17). It is then easy to note that this result would also hold
for the spaces S−1

h and Sh (it all amounts to displacing the grid for both test and
trial functions). Then, by an easy transposition argument, (16) holds. �

The value ε = 0 is not a practicable option for the choice of the grids: in this
case both grids coincide and we are obliged to evaluate the singular kernels in their
diagonal. The choices ε = ±1/2 lead to a discretization of V (they give the same
one) that is not stable, i.e., the inf-sup condition does not hold. The proof of the
inf-sup condition for the discretization of W in [8] requires also that ε 6= ±1/2,
because it is based on the result for V, although numerical evidence points to this
being just a technical restriction, which is not in the case of V. Note finally that
dependence of the methods on ε is 1-periodic.

4.2. Consistency analysis via asymptotic expansions. We next study the
consistency of the approximation of the bilinear forms associated to the four opera-
tors (4) by their discrete counterparts, as well as the approximation of the identity
operators that appear in the equations of Tables 1 and 2. The consistency error
analysis is carried out by comparison with a quasioptimal projection of the corre-
sponding unknown (the input of the integral operator) in the discrete space. These
projections are defined by matching the central Fourier coefficients:

S−1
h,ε ∋ D−1

h,εη, D̂−1
h,εη(m) = η̂(m), −N/2 < m ≤ N/2,

Sh ∋ Dhψ, D̂hψ(m) = ψ̂(m), −N/2 < m ≤ N/2.
The operator Dh was studied in [1], while D−1

h,ε proceeds from [2]. It is proved in
those references that

‖Dhψ − ψ‖s ≤ Cs,rhr−s‖ψ‖r s ≤ r ≤ 1, s < 1/2,(19a)

‖D−1
h,εη − η‖s ≤ Chr−s‖η‖r s ≤ r ≤ 0, s < −1/2.(19b)

Proposition 4.3. For all η ∈ H3 and ψ ∈ H4 it holds

|{φh, D−1
h,εη} − {φh, Q−1

h,εη}| ≤ Ch3‖η‖3‖φh‖0, ∀φh ∈ Sh,ε,
|{µh, Dhψ} − {µh, ψ}+ h2 1

24{µh, ψ′′}| ≤ Ch3‖ψ‖4‖µh‖−1, ∀µh ∈ S−1
h .
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The constants in the bounds are independent of ε.

Proof. The second expansion follows from [2, Theorem 7]. To prove the first one,
note that by [2, Lemma 5]

(20) D−1
h,εη −Q−1

h,εη = Q−1
h,εEhη, where Ehη :=

∑

−N
2
<m≤N

2

η̂(m) exp(2πım·)− η.

A direct computation (see also [8, Lemma 9]) shows then that

|{φh, Q−1
h,εEhη}| ≤ ‖φh‖0‖Ehη‖0 +

∣∣∣{φh, Q−1
h,εEhη} −

∫ 1

0

φh(t)(Ehη)(t)dt
∣∣∣

≤ ‖φh‖0(‖Ehη‖0 + πh‖Ehη‖1) ≤ Ch3‖φh‖0‖η‖3,
where the last inequality follows from the fact that ‖Ehη‖s ≤ Cht−s‖η‖t for all
t ≥ s [14, Theorem 8.2.1]. �

For simplicity, in what follows we will write P ∈ E(n) when P is a periodic
pseudodifferential operator of order n, i.e., P : Hs → Hs−n is bounded for all s.

Proposition 4.4. There exists Pk ∈ E(1) so that for all η ∈ H3 and ψ ∈ H4,

|j(φh, D−1
h,εη)− {Q−1

h,εφh, Jη}| ≤ Ch3‖η‖3‖φh‖0, ∀φh ∈ Sh,ε,
|k(µh, Dhψ)− {µh,Kψ} − h2{µh,Pkψ}| ≤ Ch3‖ψ‖4‖µh‖−1, ∀µh ∈ S−1

h .

The coefficient Pk and the constants in the bounds do not depend on ε.

Proof. We refer to [7], where similar expansions are derived. �

The study of the approximation properties of V and W is strongly influenced by
the parameter ε. We write

C1(ε) :=
1

2πı
log(4 sin2(πε)) C2(ε) :=

1

2

∫ ε

0

C1(t)dt,

and note that C1(±1/6) = 0.

Proposition 4.5. There exists a smooth function av and operators Lv ∈ E(1),
L1
w ∈ E(2), L2a

w ,L
2b
w ∈ E(3) such that for all η ∈ H3 and ψ ∈ H4,

|v(µh, D−1
h,εη)− {µh,Vη} − hC1(ε){µh, avη}

−h2C2(ε){µh,Lvη}| ≤ Ch3‖η‖3‖µh‖−1, ∀µh ∈ S−1
h ,

|w(φh, Dhψ)− {Q−1
h,εφh,Wψ} − hC1(ε){Q−1

h,εφh,L
1
wψ}

−h2{Q−1
h,εφh, (C2(ε)L

2a
w + L2b

w )ψ}
∣∣ ≤ Ch3‖ψ‖4‖φh‖0, ∀φh ∈ Sh,ε.

Proof. The first expansion is given in [2, Theorem 7], while the second one is proved
in [8, Proposition A.4]. �

The key fact at this point is that by letting ε = ±1/6 all the expansions start at
h2. This will be crucial since, as we will see in the next subsection, we can identify
the order of the method with the first power of h appearing in the consistency
expansion. The relevance of identifying the h2 term of the asymptotic expansion
of the consistency error in Propositions 4.3, 4.4 and 4.5 is related to the possibility
of moving from the norms given by the inf-sup conditions in Proposition 4.2 to
stronger norms when producing estimates of the convergence error. (See Theorem
4.7 below.)
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Remark 4.6. If in Propositions 4.3, 4.4 and 4.5 we only assume that η ∈ H2 and
ψ ∈ H3, and we eliminate the h2 term from the left-hand side of the bounds, then
the result holds with a bound of the form Ch2‖η‖2 or Ch2‖ψ‖3.
4.3. Convergence estimates. We collect in this subsection the convergence re-
sults for all the numerical schemes presented in this paper.

Theorem 4.7. Assume that k satisfies the hypothesis of Proposition 4.2 and ε =
±1/6. Let (λh, ϕh) ∈ S−1

h,ε × Sh be the pair associated to the solution (λ,ϕ) of any

of (dD01h), (dD02h), (dN01h) or (dN02h). Then

‖ϕh −Dhϕ‖0 + ‖λh − λ‖−1 ≤ Ch2(‖ϕ‖3 + ‖λ‖2).
Moreover,

max
j
|ϕj − β0(tj)|+max

j
|h−1λj − β1(tj)| ≤ Ch2(‖ϕ‖4 + ‖λ‖4).

Proof. We will only show the case (dN01h), all others being very similar. Using
the variational representation of (dN01h) in (13), we can write

− 1
2{µh, ϕh}+ k(µh, ϕh) = {µh,− 1

2ϕ+Kϕ}+ {µh,V(Q−1
h,ελ− λ)} ∀µh ∈ S−1

h .

Using now Propositions 4.3 (second bound), 4.4 (second bound) and 4.5 (first
bound) –see also Remark 4.6– and (20), it follows that

| − 1
2{µh, ϕh −Dhϕ}+ k(µh, ϕh −Dhϕ)| ≤ Ch2‖µh‖−1(‖ϕ‖3 + ‖λ‖2)

+|v(µh, Q−1
h,εEhλ)| ∀µh ∈ S−1

h .

Using [2, Lemma 13] and the fact that

‖Q−1
h,εη‖−1 ≤ C(‖η‖0 + h‖η‖1),

(see [2, Lemma 6]) we can prove that

|v(µh, Q−1
h,εEhλ)| ≤ C‖µh‖−1(‖Ehλ‖0 + h‖Ehλ‖1) ≤ Ch2‖µh‖−1‖λ‖2 ∀µh ∈ S−1

h .

Therefore, by Proposition 4.2, the bound for ‖ϕh −Dhϕ‖0 follows. The bound for

‖λ− λh‖−1 = ‖λ−Q−1
h,ελ‖−1 ≤ ‖λ−D−1

h,ελ‖−1 + ‖D−1
h,ελ−Q−1

h,ελ‖−1

follows from (19b) and (20). The uniform estimates require including the h2 term
of the consistency error expansion: see [2, Corollary 11] and [8, Theorem 6.4] for
very similar arguments. �

Theorem 4.8. Assume that k satisfies the hypothesis of Proposition 4.2 and ε =
±1/6. Let ψh ∈ Sh be associated to the solution ψ of (iD02h) or (iN02h) and let
ηh ∈ S−1

h,ε be associated to the solution η of (iD01h) or (iN01h). Then

‖Dhψ − ψh‖0 ≤ Ch2‖ψ‖3 ‖η − ηh‖−1 ≤ Ch2‖η‖2.
Proof. The proof is very similar to the one of Theorem 4.7. The absence of integral
operators in the right hand side makes the arguments slightly simpler. �

In all cases it is possible to prove that the estimates can be transferred to the
computation of potential, with the direct representation (12) in the case of direct
methods, or the associated layer potential in the case of indirect methods. In all
cases, we can prove |U(z)− Uh(z)| ≤ C(z)h2.
Remark 4.9. If we take ε 6= ±1/6, the methods involving Vh or Wh are of order
one.
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5. Experiments

In the following experiments we consider a single elliptical obstacle with bound-
ary

1
4 (x− 0.1)2 + (y − 0.2)2 = 1.

We will check solutions in two observation points inside the ellipse x1 = (0.2, 0.4)
and x2 = (−0.2,−0.4). The examples will use more complicated integral equations
than those explained in the previous sections, in order to put the discrete Calderón
Calculus to a more demanding test.

5.1. A transmission problem. Consider the coupling of the exterior Helmholtz
equation (1) with an interior equation with different wave number

∆V + (k/c)2V = 0 in Ω

(here c > 0) and transmission conditions

γ+U + β0 = γ−V, ∂+
n
U + β1 = α∂−

n
V

(with α > 0). Data are taken so that the exact solution is

U(z) = H
(1)
0 (k|z− x0|), V (z) = exp(ı(k/c)z · d) x0 ∈ Ω, |d| = 1.

We use the symmetric formulation of Martin Costabel and Ernst Stephan [4] (see
also [10]). The main unknowns are ϕ− = γ−V and λ− = α∂−

n
V . The system they

satisfy is

(21)

[
Wk + αWk/c Jk + Jk/c

−Kk −Kk/c Vk +
1
αVk/c

] [
ϕ−

λ−

]
=

[
Wk

1
2 I + Jk

1
2 I−Kk Vk

][
β0

β1

]
,

where we have tagged the integral operators with the corresponding wave number.
The potential representation for the exterior and interior fields is

(22) U = −Sk(λ− − β1) + Dk(ϕ
− − β0), V = α−1Sk/cλ

− −Dk/cϕ
−.

Discretization is carried out by simply substituting the elements of (21) and (22) by
their discrete counterparts: the data functions are sampled with (11), the integral
operators are build with (10) and the potentials with (9). We solve and tabulate
the following errors:

Eλh := max
j
|h−1λ−j − α∂+n V (tεj)| Eϕh := max

j
|ϕ−
j − γ−V (tj)|

EVh := max
ℓ=1,2

|Vh(xℓ)− V (xℓ)|

These experiments are reported in Tables 5 and 6. The parameters are k = 3,
c = 2/3 and α = 3/2.

5.2. Burton-Miller integral equation. Consider now the exterior Helmholtz
equation (1) with boundary condition γ+U + γUinc = 0, where ∆Uinc + k2Uinc = 0
in a neighborhood of the interior domain Ω. The well known Burton-Miller integral
equation [3, Section 3.9] is

(23) 1
2ξ + Jξ + cVξ = ∂nUinc + cγUinc.

The exterior normal derivative can be computed after solving this equation and
there are two potential representations of the solution

λ = ξ − ∂nUinc U = −Sξ = −Sλ−DγUinc.
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Table 5. Errors Eλh (left column) and Eϕh (right column) for the
Transmission Problem in Experiment 1.

N error e.c.r

10 4.6842E(+000)
20 1.2470E(+000) 1.9093
40 3.7207E(−001) 1.7448
80 9.4663E(−002) 1.9747
160 2.3768E(−002) 1.9938
320 5.9518E(−003) 1.9976
640 1.4886E(−003) 1.9994

N error e.c.r

10 5.8671E(−001)
20 1.9979E(−001) 1.5542
40 4.9104E(−002) 2.0246
80 1.2376E(−002) 1.9883
160 3.1081E(−003) 1.9934
320 7.7699E(−004) 2.0001
640 1.9423E(−004) 2.0001

Table 6. Error EVh (potential solution V at two interior observa-
tion points) for the Transmission Problem in Experiment 1.

N error e.c.r

10 1.8729E(−001)
20 2.0779E(−002) 3.1721
40 4.0885E(−003) 2.3455
80 9.6559E(−004) 2.0821

160 2.4527E(−004) 1.9770
320 6.1837E(−005) 1.9878
640 1.5527E(−005) 1.9937

The value c = −ık is the usual choice in (23). For this value, the equation (23) is
uniquely solvable independently of the frequency. Since Sξ = Uinc in the interior
domain, we compare errors

EUh := max
ℓ=1,2

|Sh(xℓ)ξ − Uinc(xℓ)|

We also compare the density ξ with the solution of Problem (dD01h) (Table 3)
computing the compared error

Eξh := max
j
| h−1λj︸ ︷︷ ︸
(dD01h)

− (h−1ξj − ∂nUinc(t
ε
j))︸ ︷︷ ︸

Burton-Miller I.E.

|.

In our numerical experiments we have taken Uinc(x) = exp(ıkd ·x), i.e. an acoustic

plane wave, with direction given by the unit vector d = (1, 1)/
√
2 and wave number

k = 2. The results are gathered in Table 7.

5.3. Conclusions. We have presented a collection of compatible discretizations of
the two potentials and four boundary integral operators associated to the Helmholtz
equation on smooth parametrizable curves in the plane. We have shown discrete
stability of the discrete versions for all the operators in absence of resonances.
We have also given convergence estimates for eight integral equations that solve
the exterior Dirichlet and Neumann problems, with direct and indirect boundary
integral equations. Finally, we have tested the methods in more complicated cases,
such as systems of boundary integral equations arising from transmission problems
and combined field integral equations.
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Table 7. Errors EUh (left columns) and Eξh (right columns) for the
Burton-Miller integral equation in Experiment 2.

N error e.c.r

10 1.7205E(−001)
20 3.6082E(−002) 2.2535
40 1.1990E(−002) 1.5894
80 3.7936E(−003) 1.6602

160 1.0571E(−003) 1.8435
320 2.7581E(−004) 1.9384
640 7.2185E(−005) 1.9339

N error e.c.r

10 7.6790E(+000)
20 1.8790E(+000) 2.0310
40 4.1656E(−001) 2.1734
80 8.5219E(−002) 2.2893

160 1.4703E(−002) 2.5351
320 2.2452E(−003) 2.7112
640 7.1749E(−004) 1.6458
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