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Abstract. We consider very weak solutions of a nonlinear version (non-Hookean materials) of
the beam stationary Bernoulli-Euler equation, as well as the similar extension to plates, involving
the bi-Laplacian operator, with Navier (hinged) boundary conditions. We are specially interested
in the case in which the usual Sobolev space framework cannot be applied due to the singularity
of the load density near the boundary. We present some properties of such solutions as well as
some numerical experiences illustrating how the behaviour of the very weak solutions near the
boundary is quite different to the one of more regular solutions corresponding to non-singular load
functions.
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1. Introduction

Given a linear boundary value problem on a bounded regular open set Ω of RN

(PL)

{
Lu = f(x) in Ω,
+ boundary conditions ≡ (BC) on ∂Ω,

where Lu denotes an elliptic differential operator (of order 2m, m ∈ N) in divergence
form, the usual notion of weak solution is defined by introducing the associated
”energy space”, V ⊂ Hm(Ω) (the Sobolev space or order m, i.e. Dαu ∈ L2(Ω) for
any α ∈ N

N , |α| ≤ m), and then, assumed that

(1) f ∈ V ′,

we introduce the associated bilinear form a : V ×V → R, and require the condition

a(u, ζ) = 〈f, ζ〉V ′V , for any ζ ∈ V

(see [17], [1] and their many references).
A weaker notion of solution can be given leading to a correct mathematical

treatment for a more general class of data f (i.e. for f not necessarily in V ′). For
instance, for f ∈ L1

loc(Ω) the notion of very weak solution of problem (PL) can be
introduced by integrating 2m−times by parts (and not merely m−times as before)
and by requiring, merely, that u ∈ L1(Ω) and that

∫

Ω

u(x)L∗ζ(x)dx =

∫

Ω

f(x)ζ(x)dx,

for any ζ ∈ W := {ζ ∈ C2m(Ω): ζ satisfies (BC)}
W 2m,∞(Ω)

, once we assume that
∫

Ω

|f(x)ζ(x)| dx < ∞, for any ζ ∈ W.

Here L∗ denotes the adjoint operator of L.
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Most of the theory on very weak solutions available in the literature deals with
second order equations. Recently, sharper results have been obtained, to this case,
when f ∈ L1(Ω : δ), with δ = dist (x, ∂Ω). That was originally proved by Haim
Brezis, in the seventies, in a famous unpublished manuscript concerning Dirichlet
boundary conditions (see also a 1996 paper [5]). For more recent references see [29],
[20], [21] and [22]).

The main goal of my past lecture at Jaca 2010 (see [18]) was to present some
new results proving that in the case of higher order equations the class of L1

loc(Ω)
data for which the existence and uniqueness of a very weak solution can be obtained
is, in general, larger than L1(Ω : δ) (the optimal class for the case of second order
equations). For instance, for the case of the beam equation with Dirichlet boundary
conditions (u = u′ = 0 on the boundary) I proved that the optimal class of data is
the space L1(Ω : δ2) but, for instance, for the simply supported beam (u = u′′ = 0
on the boundary) the optimal class of data is again L1(Ω : δ). One of my main
arguments was the use of the Green function G(x, y) associated to the corresponding
boundary value problem.

An important open problem in our days is the searching of solutions (beyond the
class of weak solutions) for the case in which the operator L is nonlinear. Obviously,
we cannot integrate 2m−times by parts and, which seems to be more important,
we do not have any kind of Green function associated to the problem.

The main goal of this paper is to present some new results concerning very weak
solutions for nonlinear problems. Moreover, we shall give here some indications
about their numerical approximation. We point out that, without loss of generality
we can assume that the beam is represented by the interval (0, L) with L = 1 (which
we shall do in the rest of the lecture). To fix ideas I will concentrate my attention
in the nonlinear beam equation with simply supported boundaries

(BSS)





φ(u′′(x))′′ = f(x) in Ω = (0, 1),
u(0) = φ(u′′)(0) = 0,
u(1) = φ(u′′)(1) = 0,

where φ : R → R is a continuous strictly increasing function such that φ(0) = 0. A
standard example corresponds to the linear case φ(s) = EIs for any s ∈ R (E, I
positive constants) but many other cases arise in the more diverse applications
(case of non-Hookean materials such as cat iron, stone, rubber, bioelastic materials,
concrete and most of the composite materials). Again, by dimensional analysis we
can assume equal to one any constant arising in the constitutive law of the material.

So, for instance, a very often treated case in the literature is φ(s) = |s|
α−1

s for
some α > 0 (notice that α = 1 corresponds to the linear case: see [1]).

We shall also make some few comments on the case of a nonlinear cantilever
beam

(BCant)





φ(u′′(x))′′ = f(x) in Ω = (0, 1),
u(0) = u′(0) = 0,

φ(u′′)(1) = φ(u′′)′(1) = 0.

In the last section we shall consider a hinged plate (i.e. with the Navier boundary
conditions) or more in general, the N -dimensional problem

(PNd)

{
−∆φ(−∆u(x)) = f(x) in Ω ⊂ R

N ,
u = φ(−∆u) = 0, on ∂Ω.
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2. Very weak solutions and the optimal class of data for the nonlinear
beam equation with simply supported boundaries

Consider the nonlinear beam equation with simply supported boundaries

(BSS)





φ(u′′(x))′′ = f(x) in Ω = (0, 1),
u(0) = φ(u′′)(0) = 0,
u(1) = φ(u′′)(1) = 0,

where

(2) φ : R → R is a continuous strictly increasing function such that φ(0) = 0.

Definition 2.1. Given f ∈ L1
loc(0, 1) a function u ∈ W 2,1

loc (0, 1) is a distributional
solution of the differential equation φ(u′′(x))′′ = f(x) in D′(0, 1) if φ(u′′(x)) ∈
L1
loc(0, 1) and 〈

φ(u′′(x)),
d2ζ

dx2

〉

D′D

= 〈f, ζ〉D′D

for any ζ ∈ D(0, 1) = C∞
c (0, 1).

Let us denote the boundary conditions by

(BC) ≡

{
u(0) = φ(u′′)(0) = 0,
u(1) = φ(u′′)(1) = 0.

Definition 2.2. Given f ∈ L1(0, 1 : δ) ≡ L1(Ω : δ), with δ = dist (x, ∂Ω),

a function u ∈ W 2,1
loc (0, 1) is a ”very weak solution” of (BSS) if u ∈ W 2,1(0, 1) ∩

W 1,1
0 (0, 1), φ(u′′(x)) ∈L1(0, 1) and for any ζ ∈ W 2,∞(0, 1) ∩W 1,∞

0 (0, 1) we have
∫ 1

0

φ(u′′(x))
d2ζ

dx2
(x)dx =

∫ 1

0

f(x)ζ(x)dx.

The main result of this section is the following:
Theorem 2.1. a) Sufficiency. Assumed (2), for any f ∈ L1(Ω : δ) there

exists a unique very weak solution of (BSS). Moreover, the (nonlocal) operator
D : L1(Ω : δ) → L1(Ω) defined by D(f) = u satisfies that if D(g) = v then the
weak maximum principle holds:

f(x) ≤ g(x) implies that

− u′′(x) ≤ −v′′(x) and so that u(x) ≤ v(x) a.e. x ∈ Ω.

Moreover, if we assume additionally that φ is locally Lipschitz continuous, i.e., for
any K > 0 there exists a constant L(K) > 0 such that

(3) |φ(r1)− φ(r2)| ≤ L(K) |r1 − r2| for any r1, r2 ∈ [−K,K],

then we have the estimate

(4)

∫ 1

0
[u(x)− v(x)]+ dx

≤ C(K̂)
∫ 1

0

[∫ 1

0 [f(σ)− g(σ)]+ G(x, σ)dσ
]
dx

for some positive constant C(K̂) depending on K̂ = max
{
‖f‖L1(Ω:δ) , ‖g‖L1(Ω:δ)

}
,

where, in general, h+ = max(0, h) and G(s, σ) is the Green function for the operator

− d2

dx2 with homogeneous Dirichlet boundary conditions on (0, 1): i.e.

G(t, σ) =

{
t(1 − σ) 0 ≤ t ≤ σ ≤ 1,
σ(1 − t) 0 ≤ σ ≤ t ≤ 1.
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Finally,u is smoother than said at Definition 2.2 since, at least, u ∈ C2([0, 1]) and
φ(u′′(x)) ∈C1((0, 1)) ∩ C0([0, 1]).
b) Strong maximum principle. Let f ∈ L1(Ω : δ) with f ≥ 0 a.e. x ∈ (0, 1),
f 6= 0. Then the very weak solution satisfies that

(5) φ(u′′)(x) ≤ C

(∫ 1

0

[∫ 1

0

f(σ) (−G(s, σ)) dσ

]
δ(s)ds

)
δ(x) < 0,

for any x ∈ (0, 1), and
(6)

u(x) ≥ −C(

∫ 1

0

φ−1

{
C

(∫ 1

0

[∫ 1

0

f(σ) (−G(s, σ)) dσ

]
δ(s)ds

)
δ(t)dt

}
δ(x) > 0,

for any x ∈ (0, 1) and for some positive constant C independent of f.
c) Necessity. Assume that f ∈ L1

loc(0, 1), such that f ≥ 0 a.e. x ∈ (0, 1). Then if∫ 1

0
f(x)δ(x)dx = +∞ it cannot exist any u ∈ C2([0, 1]) with φ(u′′(x)) ∈C0([0, 1])

satisfying the boundary conditions (BC) and being also solution in D′(0, 1) of the
differential equation.
Remark. 2.1. Theorem 2.1 improves some previous results in the literature on the
nonlinear formulation (see, e.g. [28] and its references) and contains also some slight
improvements with respect to the mentioned results in our previous paper [18] for
the linear case for which there is a great amount of previous results in the literature:
(Gupta (1988), Agarwal (1989), Bernis (1996), Yao (2008),...). We also point out

that the integral
∫ 1

0
f(x)δ(x)dx is ”equivalent ” to the integral

∫ 1

0
f(x)x(1 − x)dx

since x(1−x) ≤ δ(x) ≤ 2x(1−x). The optimal growth condition on the data can be
easily understood in terms of the physical modelling. For instance, the assumption
f ∈ L1(Ω : δ) is equivalent to the global integrability of the stress function m(x) of
the beam (m ∈ L1(0, 1)): see the proof of Theorem 3.1).
Remark. 2.2. Estimate (4) is new in the literature. Notice this estimate
implies not only the usual weak maximum principle (for instance, if f(x) ≥ 0 a.e.
x ∈ (0, 1) then, necessarily u(x) ≥ 0 for any x ∈ (0, 1)) but also a new stronger
conclusion: functions u and u′′ have constant sign once we merely know that the
function satisfies

(7) x →

∫ 1

0

f(σ)G(x, σ)dσ is ≥ 0 a.e. on Ω.

This generalization with respect to the usual version of the weak maximum principle
is quite surprising since (it is not difficult to show that) there is a continuum of
changing sign functions f(x) satisfying property (7). Indeed: we have

(8)

∫ 1

0

f(σ)G(x, σ)dσ = (1− x)

∫ x

0

f(σ)σdσ + x

∫ 1

x

f(σ)(1 − σ)dσ.

Then, if we define

g(x) =

∫ x

0

f(σ)σdσ,

we get that f ∈ L1(Ω : δ) implies that g ∈ W 1,1(0, 1) with g(0) = 0 and g′(s) =
f(s)s for a.e. s ∈ (0, 1). So, since there is a continuum of functions g ∈ W 1,1(0, 1)
(non necessarily being increasing), such that g(0) = 0 and g(s) ≥ 0 on (0, 1), we
arrive to our conclusion by taking f(s) := g′(s)/s for such a given function g (note
that, of course, f can be discontinuous). A similar argument applies to the second
term of (8).
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Remark 2.3. The estimates (5) and (6) implying the strong maximum are new in
the literature (even for the linear case). We also point out that the nonexistence
result can be also obtained by showing that if m ∈ C0([0, 1]) ∩ C1(0, 1), m′′ ∈

L1
loc(0, 1) and m′′ ≥ 0 a.e. x ∈ (0, 1), then necessarily

∫ 1

0
m′′(x)x(1 − x)dx < +∞.

Indeed, by Taylor formula applied to x = 1/2 we have that

m(x) = m

(
1

2

)
−

(
1

2
− x

)
m′

(
1

2

)
+

∫ 1/2

x

(σ − x)m′′(σ)dσ.

Since the integral has a constant sign, letting x → 0 we get that

∫ 1/2

0

m′′(σ)σdσ < +∞.

Analogously we get that the convergence of the other integral

∫ 1

1/2

m′′(σ)(1 − σ)dσ < +∞

is similar.
Remark 2.4. The mathematical results for the case of the cantilever beam (BCant)
can be derived by adapting the results of ([18]) to the nonlinear framework in a
similar way to the proof of Theorem 2.1. In that case, the optimal growth condition
on f(x) becomes now

φ−1

[∫ 1

x

∫ 1

s

f(σ)dσds

]
∈ L1(0, 1),

which obviously depends of the constitutive law function φ (in contrast with the case
of the simply supported beam problem (BSS) for which, unexpectedly, the optimal

class of data is independent of φ). For instance, if f(x) = cxa and φ(s) = |s|α−1 s
for some α > 0, then the optimal solvability condition for problem (BSS) is a > −2
(for any value of α !!) but for problem (BCant) the optimal solvability condition is
a > −(α + 1) (which depends on α). Notice that, in both cases, the solvability of
the boundary value problem is possible beyond the condition f ∈ L1(0, 1) (which
would require to assume a > −1).
Remark 2.5. The case of a nonlinear beam equation with clamped boundaries

(BClam)





φ(u′′(x))′′ = f(x) in Ω = (0, 1),
u(0) = u′(0) = 0,
u(1) = u′(1) = 0,

seems to be more delicate. When φ is linear, it was shown in [18] that the optimal
set of data is L1(Ω : δ2), i.e.

∫ 1

0

|f(x)|x2(1− x)2dx < +∞.

We conjecture that in the case of a nonlinear constitutive equation the solvability
requires two kinds of conditions: one independent of φ, f ∈ L1(Ω : δ), and another
one depending on φ,

φ−1

[∫ x

0

∫ 1

s

f(σ)dσds

]
∈ L1(Ω : δ).
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3. Main idea of the proofs: a key representation formula

The proof of the part a) (sufficiency) of Theorem 2.1 will made use of the fol-
lowing representation formula:

Theorem 3.1. Assume f ∈ L1(Ω : δ). Then the unique very weak solution u
of (BSS) is given through the (nonlocal) operator D : L1(Ω, δ) → L1(Ω), defined
by the representation formula D(f) = u,

(9) u(x) = −

∫ 1

0

φ−1

(∫ 1

0

−f(σ)G(s, σ)dσ

)
G(x, s)ds for any x ∈ [0, 1],

where

G(t, σ) =

{
t(1 − σ) 0 ≤ t ≤ σ ≤ 1,
σ(1 − t) 0 ≤ σ ≤ t ≤ 1.

Proof. If we denote by u(x), w(x),m(x), q(x) and f(x) the deflection, the rotation
of the beam, the curvature, the shear and the load density at point x, respectively,
then, from the beam differential equation we get the system of four first order
differential equations

(10)





q′(x) = f(x),
m′(x) = q(x),
w′(x) = φ−1(m(x)),
u′(x) = w(x).

In fact, this is the mathematical model in terms of differential equations, when we
are interested in q,m,w and u. It is well known that the system (10) of four first
order differential equations is equivalent to the fourth order differential equation of
(BSS). But since {

m′′(x) = f(x) in Ω = (0, 1),
m(0) = m(1) = 0,

and f ∈ L1(Ω : δ), we know that

(11) m(x) = −

∫ 1

0

f(σ)G(x, σ)dσ for any x ∈ [0, 1].

Thus

(12)

{
u′′(x) =φ−1(−

∫ 1

0 f(σ)G(x, σ)dσ) in Ω = (0, 1),
u(0) = u(1) = 0,

and since φ−1(
∫ 1

0 f(σ)G(x, σ)dσ) ∈ C([0, 1]) ⊂ L1(Ω : δ) we get formula (9).
Remark 3.1. In [8] other different representation formulae will be obtained. For
instance, if we assume f ∈ L1(Ω) then the unique very weak solution u of (BSS) is
given trough the representation formula

(13)

u(x) =

x∫

0

{

θ∫

0

φ−1(

t∫

0

(t− r)f(r)dr − t

1∫

0

(1 − σ)f(σ)dσ)dt

−

1∫

0

s∫

0

φ−1




t∫

0

(t− r)f(r)dr − t

1∫

0

(1− σ)f(σ)dσ


 dtds}dθ.

Proof of the part a) (sufficiency) of Theorem 2.1. The existence of a very weak
solution of (BSS) and the definition of the (nonlocal) operator D : L1(Ω : δ) →



NON HOOKEAN BEAMS AND PLATES 321

L1(Ω) defined by D(f) = u is a consequence of (9) given in Theorem 3.1. In order
to prove the uniqueness let D(g) = v. Then, since

{
(mf−mg)

′′
(x) = f(x)− g(x) in Ω = (0, 1),

(mf −mg)(0) = (mf−mg)(1) = 0,

and f, g ∈ L1(Ω : δ) we know that

(mf−mg)(x) = −

∫ 1

0

(f(σ)− g(σ))G(x, σ)dσ for any x ∈ [0, 1].

Thus

[−φ(u′′)(x) + φ(v′′)(x)]+ =

[∫ 1

0

(f(σ)− g(σ))G(x, σ)dσ

]

+

.

In particular, f(x) ≤ g(x) implies that φ(u′′)(x) ≥ φ(v′′)(x) and, as φ is strictly
increasing, −(u− v)′′(x) ≤ 0 on Ω = (0, 1). But, since u− v = 0 on ∂Ω we deduce
the comparison u(x) ≤ v(x) on Ω. Obviously this implies the uniqueness of very
weak solution.
To get the quantitative estimate (4) we can adapt the argument already used in
[18] for the linear case by arguing in two steps. Indeed, from the representation
formula for m(x) we get that

(14)

∫ 1

0

m(x)dx = −

∫ 1

0

[∫ 1

0

f(σ)G(x, σ)dσ

]
dx.

Now we shall apply the following result:
Lemma 3.1 (Crandall-Tartar [15]). Let X,Y two vector lattices and λX , λY be

nonnegative linear functionals on X and Y respectively. Let C ⊆ X and f, g ∈ C
imply f ∨ g ∈ C. Let T : C → Y satisfy λX(f) = λY (T (f)) for f ∈ C. Then
(a) ⇒ (b) ⇒ (c) where (a), (b), (c) are the properties:(a) f, g ∈ C and f ≤ g
imply T (f) ≤ T (g),(b) λY ((T (f) − T (g))+) ≤ λX((f − g)+) for f, g ∈ C, (c)
λY (|T (f)− T (g)|) ≤ λX(|f − g|). Moreover, if λY (F ) > 0 for any F > 0, then
(a), (b), (c) are equivalent.

Then, by taking C = X = L1(Ω : δ), Y = L1(0, 1), λY (e) =
∫ 1

0 e(x)dx, T (f) =
D(f) and

λX(f) = −

∫ 1

0

[∫ 1

0

f(σ)G(x, σ)dσ

]
dx,

thanks to (14) and the weak maximum principle we get (b) of Lemma 3.1 which
implies that

∫ 1

0

[−mf(x) +mg(x)]+ dx ≤

∫ 1

0

[∫ 1

0

[f(σ)− g(σ)]+ G(x, σ)dσ

]
dx.

But we know that u′′(x) = φ
−1

(mf (x)) and v′′(x) = φ
−1

(mg(x)). Then, since
φ−1(mf (x)) and φ−1(mg(x)) are in C([0, 1]) the same happens with u and v. Taking

K = max
{
‖u‖L∞(0,1) , ‖v‖L∞(0,1)

}
we can apply the locally Lipschitz assumption

on φ to conclude that
∫ 1

0

[−u′′(x) + v′′(x)]+ dx ≤ L(K)

∫ 1

0

[∫ 1

0

[f(σ)− g(σ)]+ G(x, σ)dσ

]
dx.

Finally, applying the same arguments than before but now for u and v instead

mf and mg we get estimate (4) for some positive constant C(K̂) depending on

K̂ = max
{
‖f‖L1(Ω:δ) , ‖g‖L1(Ω:δ)

}
.
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With respect to the additional regularity of the very weak solution it is enough to
use that, from (11) m = φ(u′′) ∈ C1((0, 1))∩C0([0, 1]) and thus using (12) and the
above regularity we get that u ∈ C2([0, 1]).
The proof of the strong maximum principle uses the following estimate: if

{
−U ′′(x) = F (x) in Ω = (0, 1),
U(0) = U(1) = 0,

with F ∈ L1(Ω : δ), F ≥ 0 then there exists a positive constant C such that

U(x) ≥ C(

∫ 1

0

F (s)δ(s)ds)δ(x) > 0 for any x ∈ (0, 1).

That was proved first by J.M. Morel and L. Oswald (in an unpublished manuscript
communicated to this author in 1985) and later developed in [4]. Thus, applying it
to function m(x) we get the strong negativeness for φ(u′′), estimate (5), and apply-
ing it again, now to (12), we conclude the strict positivity of u, i.e. estimate (6).
To prove part c), and more specifically the complete blow up (in the whole inter-
val (0, 1)) when f /∈ L1(Ω : δ) we truncate f generating the sequence fn(x) =
min(f(x), n). Now, if un is the associated solution (notice that fn ∈ L∞(0, 1) ⊂
L1(Ω : δ)) then un(x) ≥ α(‖fn‖L1(0,1:δ))δ(x), for a suitable increasing function α

such that α(‖fn‖L1(0,1:δ)) ր +∞ as n ր +∞, which implies that un(x) ր +∞ for

any x ∈ (0, 1). The proof of Theorem 2.1 is now completed.

4. Remarks on the numerical analysis of very weak solutions

Remark 4.1. Given N ∈ N, it takes sense to search for some discrete approxi-
mations DN [f ] of the nonlocal operator D[f ]) given in Theorem 3.1 (but without
approximating the function f) allowing to compute an approximation uN of the
solution u in a faster way. So DN : L1(Ω : δ) → SN , where SN is a specialized
(finite dimensional) subspace of L1(Ω). In the linear case (φ(s) = s) the nonlocal
operator is given by the direct Green function GL associated to the (linear) operator
L on the open interval Ω = (0, 1) and with the corresponding boundary conditions

u(x) = D[f ](x) =

∫ 1

0

f(s)GL (x, s)ds,

and so the approximation DN [f ] can be now searched through the notion of ”Dis-
crete Green Function” GN

L (x, s) leading to

uN (x) = DN [f ](x) =

∫ 1

0

f(s)GN
L (x, s)ds,

where we impose now that uN ∈ SN .
This point of view (which is very closely related with the study of the discrete

maximum principle) was adopted by many authors: Ciarlet [11], Ciarlet and Varga
[13], Deeter and Gray [16], Mugler [26], Chung and Yau [10] and Vejchodský and
Soĺın [32], among others.

For instance, we can take as SN the L-spline subspace Sp0(L,Π
N , z) satisfying

the homogeneous boundary conditions (see [13]), but many other finite dimensional
subspaces can be considered as well.

The continuous dependence estimate (4) obtained in Theorem 2.1 allows to ex-
tend to the nonlinear case (corresponding to constitutive laws φ non necessarily
linear) the theory on the Discrete Variational Green’s Function (usually restricted
to functions f in L2(Ω)) and on the optimal solvability space L1(Ω : δ):
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Corollary 4.2 Let φ : R → R be a continuous strictly increasing function such
that φ(0) = 0 and let f ∈ L1(Ω : δ). For any k > 0 let Tk : L1(Ω : δ) → L∞(Ω) be
the truncation operator

Tk(f)(x) =

{
min(f(x), k), if f(x) ≥ 0,
max(f(x),−k), if f(x) ≤ 0.

Let SN be a finite dimensional subspace of H1
0 (Ω) and let GN

∆ be the discrete
variational Green function (in the sense of [13]) associated to the problem

{
−U ′′(x) = F (x) in Ω = (0, 1),
U(0) = U(1) = 0.

For any k > 0 and N ∈ N consider the discrete version of the nonlocal operator
DN : L∞(Ω) → SN given by

DN [f ](x) = −

∫ 1

0

φ−1

(∫ 1

0

−f(σ)GN
∆ (s, σ)dσ

)
GN

∆ (x, s)ds.

Let uN
k and u be the discrete and continuous very weak solutions corresponding to

Tk(f) and f respectively (i.e. uN
k = DN [Tk(f)] and u = D[f ]). Then uN

k → u, in
L1(Ω : δ), as k and N → +∞.
Proof. We have∥∥DN [Tk(f)]−D[f ]

∥∥
L1(Ω:δ)

≤
∥∥DN [Tk(f)]−D[Tk(f)]

∥∥
L1(Ω:δ)

+ ‖D[Tk(f)]−D[f ]‖L1(Ω:δ) .

Then, the first term goes to zero (and even when the norm is replaced by the L∞

norm) asN → +∞ thanks to [13] and the continuity of the function φ−1. Moreover,
the second term goes to zero as k → +∞ thanks to the estimate (4) obtained in
Theorem 2.1 (because Tk(f) → f in L1(Ω : δ) as k → +∞).

Some additional results on the discrete maximum principle for the discrete fourth
order problem are presently in progress.
Remark 4.2. Another general subject on the numerical approach of problem
(BSS) have a different nature and, in fact, it is the main goal of the paper [8].
One of the main points in the approximation of the solution u of a boundary value
problem by a finite differences algorithm giving uh is the study of the convergence
uh → u when the step h of the discretization goes to zero. It is well know (see,
for instance the book by Ciarlet [12] page 41) that, at least, in the case of linear
problems as, for instance,

(15)

{
m′′(x) = f(x) in Ω = (0, 1),
m(0) = m(1) = 0,

if ϕh = (ϕi)
i=N+1
i=0 , h = 1

N+1 is the solution of the approximate problem

ϕi+1 − 2ϕi + ϕi−1

h2
= bh,i

with bh,i = f(xi), xi = ih, then, in fact, we have

m(xi) = ϕi,

if we assume that f(x) is a constant. Indeed, in that case m′′′(x) = 0 and then
it is enough to apply Taylor formula. Obviously, in general m(xi) 6= ϕi since in
the discretization of the second derivative operator there is a non zero remaining
term. A curious fact, which seems to be very few analyzed in the literature (except
in references [6] and [7]), is that we can produce other finite differences algorithms
{uh} for which uh(xi) ≡ u(xi) for any i (and any h small enough) even when f is
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merely integrable (and in fact for very weak solutions of the problem). The prize
we must pay to that is to replace the discrete values bh,i = f(xi) of the data f(x)
on the points xi by the values of the nonlocal operator D(f) (given in Theorem
3.1) in these points D(f)(xi). Obviously, since we know a formula for the own
solution, u = D[f ], this only has a marginal interest. Nevertheless, for the sake of
the curiosity of the reader we state this direct consequence:

Corollary 4.2 Let φ : R → R be a continuous strictly increasing function such
that φ(0) = 0 and let f ∈ L1(Ω : δ) and h = 1

N+1 . Consider the finite difference

algorithm associated to problem (BSS) :

∆∗
hφ(∆

∗
hu) = Hh,

where ∆∗
h denotes the progressive difference operator (∆∗

hu(x) = u(x + h)− u(x))
and

Hh(x) = ∆∗
hφ(∆

∗
hD[f ])(x).

Here D : L1(Ω : δ) → L1(Ω) is the nonlocal operator given in Theorem 3.1. Then

uh(xi) ≡ u(xi) for any i (and any h ∈ (0, 1)).

In the linear case we get the “fourth order” functional equation

(16)
u(x+ 4h) = 4u(x+ h)− 6u(x+ 2h) + 4u(x+ 3h)− u(x)+

−4D(x+ h) + 6D(x+ 2h)− 4D(x+ 3h) +D(x+ 4h),

where D(y) = D[f ])(y). In fact, if we use the notation (10) for u(x), w(x),m(x) and
q(x) then we can prove similar results for the associate finite differences schemes
of “third”, “second” and “first” order for w(x), m(x) and q(x), respectively. For
instance, in the linear case we get

w(x + 3h) = w(x) − 3w(x + h) + 3w(x + 2h)
+3C(x, h)− 3C(x, 2h) + C(x, 3h),

(17) m(x+ 2h) = 2m(x+ h)−m(x)− 2B(x, h) +B(x, 2h),

(18) q(x+ h) = q(x) +A(x, h),

for suitable functions A(x, h), B(x, h) and C(x, h) (see [6] and [7]). Such functional
equations give the exact solution at the interpolating points for any h = ∆x.
Remark 4.3. Some numerical experiences on very weak solution for the problem
(BSS) corresponding to different constitutive laws functions φ are presented in
Figure 1 (see [8] for more details).

5. Further remarks

Remark 5.1. Some other boundary conditions. In the cantilever case we have:
Theorem 5.1. If we assume

(19) φ−1[

∫ 1

x

∫ 1

s

f(σ)dσds] ∈ L1(0, 1),

then the unique very weak solution u of (BCant) is given by the representation
formula

(20) u(x) =

x∫

0




σ∫

0



φ−1[

1∫

s

1∫

t

f(r)drdt]



 ds


 dσ.
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Figure 1

Proof. As in Theorem 3.1, since

{
m′′(x) = f(x) in Ω = (0, 1),
m(1) = m′(1) = 0,

and f satisfies (19) (and in particular f is integrable near x = 1) we know, by
simply integration, that

m(x) =

1∫

x




1∫

t

f(r)dr


 dt for any x ∈ [0, 1].

Thus





u′′(x) =φ−1[
1∫
x

(
1∫
t

f(r)dr

)
dt] in Ω = (0, 1),

u(0) = u′(0) = 0,
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and so, since φ−1(
1∫
x

(
1∫
t

f(r)dr

)
dt) is integrable near x = 0 (thanks to (19)),

formula (20) is well justified (notice that the function

x →

x∫

0



φ−1[

1∫

s

1∫

t

f(r)drdt]



 ds

is automatically integrable near x = 0 once we impose that (19) holds).
We send the reader to [8] for other different representation formulae concerning

problem (BCant). We also point out that in the linear case we have that u(x)
δ(x) ∈

W 1,1
0 (Ω), thanks to the results of [9], which gives a very rich information near the

boundary.
Remark 5.2. Concentrated charges: measures as right hand side. The existence
result holds also in the more general class of Radon measures f ∈ M(Ω : δ) (some-
thing very useful to justify the engineers study when the load is concentrated in
isolated points). Notice that although the usual Radon measure space (without
weight) M(0, 1) is a subset of the dual space H−2(0, 1) it is not always true that

the duality 〈f, ζ〉H−2(0,1),H2
0
(0,1) coincides with the 〈f, ζ〉M(0,1),C0([0,1]) =

∫ 1

0
ζ(x)df

duality. See [21] for some results related to the second order case.
Remark 5.3. The associated parabolic problems. Like in the linear case ([18]), the
above results lead to interesting results on the existence and asymptotic behaviour
of solutions of parabolic problems of the type

(HP )





∂u

∂t
+

∂2

∂x2
φ(

∂2

∂x2
u) = f(t, x) t ∈ (0, T ), x ∈ (0, L),

+ boundary conditions, t ∈ (0, T ),
u(0, x) = u0(x) x ∈ (0, L).

We shall develop it elsewhere.
Remark 5.4. General higher (2mth-order) equations. Like in Bernis [3], the above
results remain valid for other 2mth-order equations with similar nonlinearities (for
instance on the derivatives of the mth-order). Such type of problems appear in
many different applications (lubrication, semiconductors, ...).
Remark 5.5. Perturbed nonlinear problems. Many applications can be obtained
to nonlinear perturbed problems of the type

(NLSP )





φ(u′′(x))′′ + β(u) = f(x) x ∈ Ω = (0, 1),
u(0) = φ(u′′)(0) = 0,
u(1) = φ(u′′)(1) = 0,

in the same spirit than in the linear case (see [18]). Some other references (always
with β(0) = 0) concerning the linear case can be found in [25], and for the nonlinear
case in [28]. Nevertheless, it is also possible to consider the case in which the
nonlinear term β(u) becomes singular at u = 0 as for instance

P (a, b; g)





φ(u′′(x))′′ =
h(x)

ua
x ∈ Ω = (0, 1),

u(0) = φ(u′′)(0) = 0,
u(1) = φ(u′′)(1) = 0,

h(x) =
g(x)

δ(x)b
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with g ∈ L∞(Ω) such that

0 < Cg ≤ g(x),

and a, b ≥ 0. We can prove the existence of the (positive) very weak solutions for

problem P (a, b; g) in the sense that we ask for u ∈ W 2,1
loc (0, 1), with u(x) > 0 a.e.

x ∈ Ω, such that δ−bu−a ∈ L1(Ω, δ), u ∈ W 2,1(0, 1)∩W 1,1
0 (0, 1), φ(u′′(x)) ∈L1(0, 1)

and satisfying, for any ζ ∈ W 2,∞(0, 1) ∩W 1,∞
0 (0, 1),

∫ 1

0

φ(u′′(x))
d2ζ

dx2
(x)dx =

∫ 1

0

g(x)

dbua
(x)ζdx.

By applying the techniques of [19] we easily get the following result:
Corollary 5.1. i) Let a + b > 1 with b ∈ [0, 2). Then there exists a very weak

solution u of P (a, b; g). Moreover φ(u′′(x)) ∈ C(Ω)∩W 2,p
loc (Ω) for any p ∈ [1,+∞).

ii) Let a + b < 1.Then there exists a very weak solution u of P (a, b; g). Moreover

φ(u′′(x)) ∈ W 1
0 (Ω, | · |N(γ),∞)∩W 2,p

loc (Ω), for any γ ∈]0, 1[ and for any p ∈ [1,+∞).
We point out that if b ≥ 2 no very weak solution of P (a, b; g) may exists (since

any very weak solution of problem (15), for a certain f associated to g(x)
δbua , can not

exists). Moreover, once we have existence of very weak solutions they are unique
since the uniqueness result of Crandall, Rabinowitz and Tartar [14] (for second
order singular problems) can be easily adapted to our framework (see [19] for the
adaptation to very weak solutions of other second order singular equations).

6. On the N-dimensional formulation

For the N -dimensional problem on a bounded open set Ω of RN

(PNd)

{
−∆φ(−∆u(x)) = f(x) in Ω ⊂ R

N ,
u = ∆u = 0, on ∂Ω,

the notion of very weak solution can be stated in the following terms:
Definition 6.1. Given f ∈ L1(Ω : δ), with δ = dist (x, ∂Ω), a function

u ∈ W 2,1
loc (Ω) is a ”very weak solution” of (PNd) if u ∈ W 2,1(Ω) ∩ W 1,1

0 (Ω),

φ(−∆u)) ∈L1(Ω) and for any ζ ∈ W 2,∞(Ω) ∩W 1,∞
0 (Ω) we have

∫

Ω

φ(−∆u(x))(−∆ζ(x))dx =

∫

Ω

f(x)ζ(x)dx.

This time the representation formula (similar to the one given in Theorem 3.1)
becomes

(21) u(x) =

∫

Ω

φ−1

(∫

Ω

f(σ)GΩ(s, σ)dσ

)
GΩ(x, s)ds for a.e. x ∈ Ω,

once we know the existence (and positivity) of the Green function GΩ(x, ξ) (see, e.
g. the books by Stakgold [31],(1998) and Friedman [23]).

Theorem 6.1. a) Sufficiency. Assume (2) as well as

(22) |r| ≤ C1 |φ(r)|+ C2 for any r ∈ R.

Then, for any f ∈ L1(Ω : δ) there exists a unique very weak solution of (PNd).
Moreover, the (nonlocal) operator D : L1(Ω : δ) → L1(Ω) defined by D(f) = u in
(21) satisfies that if D(g) = v then the weak maximum principle holds:

f(x) ≤ g(x) a.e. in Ω

implies

−∆u(x) ≤ −∆v(x)
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and so

u(x) ≤ v(x) a.e. x ∈ Ω.

Moreover, we have the estimate

∫

Ω

[u(x)− v(x)]+ dx(23)

≤

∫ [∫

Ω

φ−1

(∫

Ω

[f(σ)− g(σ)]+ GΩ(s, σ)dσ

)
GΩ(x, s)ds

]
dx(24)

where, in general, h+ = max(0, h), and GΩ(x, ξ) is the Green function associated
to the operator −∆ with homogeneous boundary conditions on ∂Ω. Moreover u is
smoother than said at Definition 6.1 since, at least, u ∈ W 1,s

0 (Ω) for any 1 ≤ s <
(N − 1) and if f ∈ L1(Ω, δα) for some 0 ≤ α < 1 then |∇φ(−∆u(x))| belongs to

the space L
N

N−1+α (Ω).
b) Strong maximum principle. Let f ∈ L1(Ω : δ) with f ≥ 0 a.e. x ∈ Ω, f 6= 0.
Then the very weak solution satisfies that

(25) φ(−∆u)(x) ≥ C

(∫

Ω

[∫

Ω

f(σ)GΩ(s, σ)dσ

]
δ(s)ds

)
δ(x) > 0,

a.e. x ∈ Ω, and
(26)

u(x) ≥ C

(∫

Ω

φ−1

{
C

(∫

Ω

[∫

Ω

f(σ)GΩ(s, σ)dσ

]
δ(s)ds

)
δ(y)dy

})
δ(x) > 0,

a.e. x ∈ Ω, for some positive constant C independent of f.
c) Necessity. Assume that f ∈ L1

loc(Ω), such that f ≥ 0 a.e. x ∈ Ω. Then if∫
Ω f(x)δ(x)dx = +∞ it can not exists any very weak solution of (PNd).
The proof follows the same type of arguments than the proof of Theorem 2.1.

Which is now much harder than in the one-dimensional case is the question of
the regularity of the very weak solution. Nevertheless, since the function m(x) :=
φ(−∆u(x)) is a very weak solution of the second order problem

(P2)

{
−∆m= f(x) in Ω ⊂ R

N ,
m = 0, on ∂Ω,

we can apply the results by [20] and [21], which justify the regularity stated
φ(−∆u(x)). Thanks to the assumption (22) we know that −∆u(x) = F with F ∈
L1(Ω) given by F := φ−1(m) and (in fact it is enough to know that F ∈ L1(Ω : δ))
so we can apply well known results in the literature to end the proof of the regular-

ity stated in Theorem 6.1 (in particular the regularity in the space L
N

N−1+α (Ω) is
a consequence of the results of [22]). The rest of the arguments (the strong max-
imum and its consequences) remains valid in the N-dimensional case (see details
and improvements in [2]).

Remark 6.1. It was kindly communicated by J.M. Rakotoson to the author
that an alternative proof of the necessity part of Theorems 2.1 and 6.1 can be
obtained more directly by using the first eigenvalue ϕ1 of the Dirichlet problem

{
−∆ϕ1=λ1ϕ1 in Ω,

ϕ1 = 0, on ∂Ω.

Indeed, if, for instance, we consider the one-dimensional case, then
∫ 1

0

φ(u′′(x))ϕ1(x)dx =

∫ 1

0

f(x)ϕ1(x)dx.
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But in dimension one we know, explicitly, that ϕ1(x) = sin(πx), x ∈ (0, 1), and one
can see that ϕ1(x) is equivalent to πx as x → 0 and to π(1−x) as x → 1. Therefore
ϕ1(x) ∼ δ(x) (something which is also true in higher dimensions). Thus, under the
condition φ(u′′) ∈ C[0, 1], for f ≥ 0, we get that necessarily

0 ≤

∫ 1

0

f(x)δ(x)dx ≤ C |φ(u′′)|∞

∫ 1

0

ϕ1(x)dx < ∞.

Remark 6.2. We can avoid the additional growth condition (22) getting the
existence for any φ satisfying (2) if we know that m ∈ L∞(Ω) since then F :=
φ−1(m) ∈ L∞(Ω). Obviously this requires some additional information on f(x).
For instance, it is enough to know that f ∈ Lp(Ω : δ) for p > (N − 1) (see [29]) or,
that

0 ≤ f(x) ≤ δ(x)−β for some β < 2, a.e. x ∈ Ω,

because then 0 ≤ m(x) ≤ δ(x)θ for some θ > 0 ([19]). Of course that, in that
case u becomes much more regular than stated in Theorem 6.1. We also point
that some additional regularity can be obtained by applying some results in [27]
(see [2]). For some results on a singular perturbation problem, but for the case of
Dirichlet boundary conditions, see [24].

Remark 6.3. Some numerical experiences. Figures 2-9 (taken from [2]) illus-
trate the behaviour near the boundary of the very weak solution u, and ∆u, for a
linear problem on Ω = (0, 1)× (0, 1) corresponding to the load function

f(x, y) =
1

|x+ ε|k |x+ ε− 1|k |y + ε|k |y + ε− 1|k
.

Notice that if ε = 0 and k = 1 then f /∈ L1(Ω) but f ∈ L1(Ω : δ).
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[4] H. Brezis and X. Cabré, Some simple nonlinear PDE’s without solutions, Bull UMI, 1(1998),

223–262
[5] H. Brezis, T. Cazenave, Y. Martel, A. Ramiandrisoa, Blow up for ut −∆u = g(u) revisited,

Advance in Diff. Eq. 1, (1996), 73-90.
[6] E. Castillo, A. Iglesias and R. Ruiz-Cobo. Functional Equations in Applied Sciences. Elsevier,

2004
[7] E. Castillo and R. Ruiz-Cobo. Ecuaciones Funcionales en la Ciencia, la Economı́a y la

Ingenieŕıa. Editorial Reverté, Barcelona, 1993.
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