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ON NON-UNIFORM MESHES

MINDAUGAS RADZIUNAS, RAIMONDAS ČIEGIS, AND ALEKSAS MIRINAVIČIUS

(Communicated by F.J. Gaspar)

This paper is dedicated to Prof. Francisco Lisbona

Abstract. In the present paper a general technique is developed for construction of compact
high-order finite difference schemes to approximate Schrödinger problems on nonuniform meshes.
Conservation of the finite difference schemes is investigated. The same technique is applied to
construct compact high-order approximations of the Robin and Szeftel type boundary conditions.
Results of computational experiments are presented.
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1. Introduction

High power high brightness edge-emitting semiconductor lasers and optical am-
plifiers are compact devices and they can serve a key role in different laser tech-
nologies such as free space communication [3], optical frequency conversion [11],
printing, marking materials processing [16], or pumping fiber amplifiers [13].

To simulate the generation and/or propagation of the optical fields along the
cavity of the considered device one can use a 2+1 dimensional system of PDEs
which is based on the traveling wave (TW) equations for slowly varying in time
longitudinally counter-propagating and laterally diffracted complex optical fields
E±(z, x, t) [2], which are nonlinearly coupled to the linear ODEs for the complex
induced polarization functions p±(z, x, t) and to the diffusion equation for the real
carrier density N(z, x, t) [17]:

∂E±

∂t
± ∂E±

∂z
= − i

2

∂2E±

∂x2
− iβ(N, |E±|2)E± − iκ∓E∓ − gp(E

± − p±),

∂p±

∂t
= iωpp

± + γp
(
E± − p±

)
,
1

µ

∂N

∂t
=

∂

∂x

(
D
∂N

∂x

)
+ ℜeN

(
N,E±, p±

)
.

Here, t ∈ R+, z ∈ [0, L] and x ∈ R denote temporal, longitudinal and lateral
coordinates, respectively. Functions β, N and parameters gp, κ

∓, ωp, γp, D, µ
represent the propagation factor, injected current and nonlinear carrier recombi-
nation, Lorentzian gain amplitude, field coupling coefficient, gain peak detuning,
Lorentzian half-width at half maximum, carrier diffusion coefficient, photon/carrier
life time relation, respectively. Optical field functions E± satisfy the following
reflection-injection conditions at the longitudinal boundaries of the domain:

E+(0, x, t) = r0(x)E
−(0, x, t) + a0(x, t),

E−(L, x, t) = rL(x)E
+(L, x, t) + aL(x, t).

Received by the editors November 14, 2012 and, in revised form, May 24, 2013.
2000 Mathematics Subject Classification. 65M06.

303



304 M. RADZIUNAS, R. ČIEGIS, AND A. MIRINAVIČIUS

The initial conditions (if properly stated) are not very important, since after some
transients the simulated trajectories approach one of the existing stable attractors.

A large scale system implied by a discretization of the computational domain
and an appropriate approximation of artificially imposed lateral boundary con-
ditions can be solved effectively with the help of parallel computing [17, 4, 10].
However, for the precise dynamic simulations of long and broad devices and tun-
ing/optimization of the model with respect to one or several parameters, a further
speedup of computations is still desired.

Since, in general, the carrier dynamics is slow (0 < µ ≪ 1), and in the most cases
the polarization equations have only a small impact on the overall dynamics of the
optical fields (0 ≤ gp/γp ≪ 1), a proper construction of numerical schemes for the
diffractive field equations plays a decisive role. Here we note, that for the tem-
porarily fixed distribution of the propagation factor β, neglected polarization and
absent coupling between counter-propagating fields (vanishing distributed coupling
κ± = 0 as well as field reflectivities at the longitudinal boundaries r0 = rL = 0), the
equation for the forward (backward) propagating field on the characteristic lines
t − z = t0 (or t − (L − z) = t0) is given by a linear 1+1 dimensional Schrödinger
equation

∂u

∂ν
= − i

2

∂2u

∂x2
− iB(ν, x)u,

where the field u(ν, x) = E+(z, x, t) (or u(ν, x) = E−(L − z, x, t)), and the initial
condition u(0, x) is defined by the optical injection function a0(x, t) (or aL(x, t)).
Thus, a construction of the effective numerical schemes for the full model is closely
related to the construction of the schemes for above given linear Schrödinger prob-
lem. One of the main challenges in this case is an implementation of the appropriate
boundary conditions (BCs) [1]. In our previous paper [6] we have investigated the
performance of the standard Crank-Nicolson scheme supplemented with the exact
discrete transparent boundary conditions (DTBCs) [8], with the approximate
DTBCs suggested by Szeftel [18] as well as with simple Dirichlet boundary condi-
tions.

The main goal of the present paper is to develop a general technique for construc-
tion of compact high-order finite difference schemes for approximation of Schrödin-
ger problems on nonuniform meshes. All these schemes can be of practical interest
when dealing with broad lasers having a relatively high regularity of transversal
heterostructures. In this case, due to enhanced spatial approximation precision, we
can use a relatively sparse mesh in the transversal spatial direction, and, never-
theless, obtain the numerical solutions with a required precision. We note that in
the case of uniform meshes, for the compact high-order finite difference scheme the
corresponding exact DTBCs are derived in [12, 15]. We note that using the same
ideas exact DTBCs can be constructed for the compact high-order finite difference
schemes on non-uniform meshes, but such BCs are non-local in time and are not
very efficient for applied problems described above.

The rest of the paper is organized as follows. In Section 2 we construct compact
finite difference schemes on uniform and nonuniform meshes. On uniform mesh
this high-order finite difference scheme coincides with the Numerov approximation.
The conservation laws of the constructed finite difference schemes are investigat-
ed. For non-uniform meshes these laws can be violated due to non-symmetrical
approximation of the source terms.

In Section 3, by using the technique from the previous section, we construct com-
pact high-order approximations of the Robin type BCs, which can be interpreted



COMPACT HIGH ORDER FINITE DIFFERENCE SCHEMES 305

as an approximation of the DTBCs suggested by Szeftel [18]. For Neumann type
BC, which is a particular case of the Robin BC, a stability analysis of the obtained
compact high-order schemes is done. It is shown that the finite difference scheme is
unconditionally stable in this case. Finally, in Section 4 we present several compu-
tational experiments which confirm the theoretical convergence rate of the compact
high-order finite difference schemes and lateral boundary conditions.

2. Compact high-order finite difference schemes

We consider the following linear Schrödinger problem in the laterally unbounded
domain:

(1)
−d

∂2u

∂x2
= f(x, t) + B(x, t)u− i

∂u

∂t
, (x, t) ∈ R× R+,

u(x, 0) = u0(x), x ∈ R,

where coefficient d represents the field diffraction.
It is easy to show, that once u0(x) ∈ W 1,2(R), potential B(x, t) is real, and

∂u(x,t)
∂x or u(x, t) are vanishing with x → ±∞, then the homogeneous Schrödinger

equation (f ≡ 0) preserves in time the following integral:

(2) I1(t) :=

∫

R

|u(x, t)|2 dx = const, t ≥ 0.

If, in addition, function B(x, t) is globally bounded and independent on time, the
following integral is also preserved:

(3) I2(t) := d

∫

R

∣∣∣∂u(x, t)
∂x

∣∣∣
2

dx−
∫

R

B(x)|u(x, t)|2 dx = const, t ≥ 0.

In this section we describe very briefly the technique for derivation of compact
high-order approximations to Eq. (1), investigating also the conservation of discrete
analogues of the integrals (2) and (3).

In the first step we restrict to the Method of Lines (MOL), when PDE is dis-
cretized only in space and we get semi-discrete schemes. For this reason we intro-
duce a non-uniform spatial mesh

ωh = {xj : xj = xj−1 + hj− 1
2
, j ∈ Z},

min
j∈Z

|xj | = x0, hj =
hj− 1

2
+ hj+ 1

2

2
, h := max

j∈Z

(hj),

and define the first and the second order difference operators for spatially discrete
functions ηj

∂xηj :=
ηj − ηj−1

hj− 1
2

, ∂2
xηj :=

1

hj

(
∂xηj+1 − ∂xηj

)
,

as well as mesh counterparts of the inner product and norm in the complex space
L2(R):

(η, ζ)h =
∑

j∈Z

ηjζ
∗
j hj , ‖η‖ =

√
(η, η)h,

(∂xη, ∂xζ]h =
∑

j∈Z

∂xηj ∂xζ
∗
j hj− 1

2
, ‖∂xη]| =

√
(∂xη, ∂xη]h.
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In the next step we perform a discretization of the resulting equations in time
by using the Crank-Nicolson method. For this reason we introduce a uniform time
mesh

ωτ =
{
tn : tn = nτ, n ∈ N

∗
}
, where N

∗ = N ∪ {0},
and define the forward difference quotient and symmetric averaging in time for
spatially and temporarily discrete functions ηnj

∂tη
n
j =

ηn+1
j − ηnj

τ
, η

n+ 1
2

j =
1

2

(
ηn+1
j + ηnj

)
.

Let us consider the linear Schrödinger problem (1) with f ≡ 0. The correspond-
ing compact high-order finite difference schemes will be constructed on a spatially
non-uniform mesh. In practical computations we should restrict our considerations
to the truncated domain (x, t) ∈ ΩT = [−X,X ]× [0, T ] and therefore the truncated
mesh ΩT

h is defined

(4)
ΩT

h = ωT
h × ωT

τ , where ωT
τ := ωτ ∩ [0, T ],

ωT
h := ωh ∩ [−X,X ] = {xj ∈ ωh, j = Jl, . . . , Jr}.

2.1. Second order approximation on non-uniform mesh. The first exam-
ple is selected to demonstrate the basic technique for derivation of finite difference
schemes of high approximation order when a given stencil of the mesh is used. We
consider the following family of three-point semi-discrete finite difference approxi-
mations to the Schrödinger equation (1):

(5) ajUj−1 + cjUj + bjUj+1 = Vj ,

where Uj , Vj are mesh functions approximating u(x, t) and v(x, t) = −∂2u
∂x2 at

x = xj , respectively. In order to find coefficients (aj , bj , cj) we require that corre-
sponding pairs of test functions

(
U(x), V (x)

)

U(x) = {1, (x− xj), (x− xj)
2}, V (x) = {0, 0, −2}

would satisfy the discrete scheme (5) exactly. Then we get a system of linear
equations 




aj + cj + bj = 0,

−hj− 1
2
aj + hj+ 1

2
bj = 0,

h2
j− 1

2

aj + h2
j+ 1

2

bj = −2.

By solving it and using the equality

(6) dVj = fj + BjUj − i
dUj

dt
,

we get the standard Finite Volume Method (FVM) semi-discrete scheme of approx-
imation order O(h2):

(7) −d ∂2
xUj = fj + BjUj − i

dUj

dt
.

Here Uj(t) is an approximation to u(xj , t). It is easy to prove that for f ≡ 0 and
real B the solution of this scheme satisfies the condition ‖U(t)‖2 = const, t ≥ 0,
which is the discrete analogue of Eq. (2). If, additionally, B is globally bounded
and time-independent, then d‖∂xU(t)]|2 − (BU(t), U(t))h = const, t ≥ 0, i.e. the
discrete analogue of Eq. (3) holds as well.
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Let us introduce the discrete function Un
j which is an approximation to u(xj , t

n).
A corresponding Crank-Nicolson finite difference scheme

−d ∂2
xU

n+ 1
2

j = Bn+ 1
2

j U
n+ 1

2

j − i∂tU
n
j

under the same assumptions on function B satisfies similar discrete conservation
laws:

‖Un‖2 = const, d‖∂xUn]|2 − (BUn, Un)h = const, n ≥ 0.

2.2. High-order approximation on uniform mesh. Now we consider a family
of compact semi-discrete finite difference schemes, that are defined on the following
three-point template:

(8) aUj−1 +
2

h2
Uj + bUj+1 = αVj−1 + γVj + βVj+1.

In order to find coefficients (a, b, α, β, γ) we require that the corresponding pairs of
test functions

U(x) = {1, (x− xj), (x− xj)
2, (x− xj)

3, (x− xj)
4},(9)

V (x) = {0, 0, −2, −6(x− xj), −12(x− xj)
2}

would satisfy the discrete scheme (8) exactly. Then we get a system of linear
equations 




a+ b = −2,

h(a− b) = 0,

h2(a+ b) = −2(α+ γ + β),

−h3(a− b) = 6h(α− β),

h4(a+ b) = −12h2(α+ β).

By solving it and using equality (6), we derive the following semi-discrete scheme

(10) −d∂2
xUj = Ah

(
fj + BjUj − i

dUj

dt

)
,

where the averaging operator Ah is defined as

Ahηj :=
1

12
ηj−1 +

10

12
ηj +

1

12
ηj+1 =

(
I +

h2

12
∂2
x

)
ηj .

This scheme coincides with the well-known Numerov scheme of higher order O(h4),
see also [14].

The conservation of a discrete approximation to Schrödinger equation, i.e., con-
servation of discrete analogues of integrals (2) and (3), is a desired property of any
finite difference scheme. For a self-completeness of this paper, we present basic
results on the conservation of the semi-discrete scheme (10) with f ≡ 0, as well as
of corresponding high-order Crank-Nicolson finite difference scheme

(11) −d∂2
xU

n+ 1
2

j =

(
I +

h2

12
∂2
x

)(
Bn+ 1

2

j U
n+ 1

2

j − i∂tU
n
j

)
.

For more results, see [1].

Theorem 1. Let the real mesh function Bj(t) be bounded for all t ≥ 0 and xj ∈ ωh.

Then the semi-discrete finite difference scheme (10) with f ≡ 0 and the finite

difference scheme (11) preserve the discrete analogue of (2) in time

(12) ‖U(t)‖2 = const, t ≥ 0, ‖Un‖2 = const, n ≥ 0.
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If, additionally, function B is constant, then the discrete version of the second

integral (3) is also preserved

(13)
d ‖∂xU(t)]|2 − B‖U(t)‖2 = const, t ≥ 0,

d ‖∂xUn]|2 − B‖Un‖2 = const, n ≥ 0.

Proof. First we consider the case Bj(t) = B. Doing the inner product on both
sides of equation (10) with −2iUj(t), using summation by parts and taking the real
part, we obtain

d

dt

(
‖U(t)‖2 − h2

12
‖∂xU(t)]|2

)
= 0.

Similarly, when doing the same operations with Eq. (10) and 2 d
dtUj(t) we get

d

dt

((
d+

h2

12
B
)
‖∂xU(t)]|2 − B‖U(t)‖2

)
= 0.

From these two equalities we get

d

dt
‖U(t)‖2 =

d

dt
‖∂xU(t)]|2 = 0,

what proves the first part of (12) and (13).
For a general case of mesh function Bj we use the technique from [15]. Since

I + h2

12∂
2
x ≥ 2

3I > 0, we can rewrite the semi-discrete scheme (10) with f ≡ 0 as
follows:

i
d

dt
Uj(t) = Bj(t)Uj(t) + dA−1

h ∂2
xUj(t), A−1

h :=
(
I +

h2

12
∂2
x

)−1

.

After taking the inner product on both sides of this scheme with −2iUj(t), using
summation by parts and taking the real parts we get

d

dt
‖U(t)‖2 = 2dℑm

(
A∂2

xUj(t), Uj(t)
)
.

Operators A and ∂2
x have a common system of eigenvectors, they commute and are

self-adjoint. Thus, A∂2
x is also a self adjoint operator and the right-hand side of

the last equality vanishes. This completes the proof of (12) for the semi-discrete
scheme (10).

The fully discrete version of conservation laws (12) and (13) are obtained af-
ter performing similar operations with difference scheme (11) and grid functions

−2iU
n+1

2

j or 2τ∂tU
n
j , n = 0, 1, . . . 2

In general, the derived scheme (10) is similar to the scheme presented in [7]

(14) −d ∂2
xUj = Ch[1]fj + Ch[B]Uj − iCh[1]

dUj

dt
,

where the averaging operator Ch is given by

Ch[w]ηj :=
1

12
wj− 1

2
ηj−1 +

10

12

wj− 1
2
+ wj+ 1

2

2
ηj +

1

12
wj+ 1

2
ηj+1.

We see that averaging operator Ch[w] is self-adjoint for any w, and, therefore, the
scheme (14) satisfies discrete analogues of conservation laws (2) and (3) even for
non-uniform potential B. Since Ch[1] ≡ Ah, for constant B both finite difference
schemes (10) and (14) coincide, but for general non-constant B, however, the ap-
proximation order of the scheme (14) is only O(h2), since

Ch[B]u−AhBu = h2
( 1

24

∂2B
∂x2

u− ∂B
∂x

∂u

∂x

)
.
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2.3. High-order approximation on non-uniform mesh. In this section we
apply the same technique to construct a high-order compact semi-discrete finite
difference scheme on non-uniform mesh. It is defined on the same three-point
template:

ajUj−1 +
2

hj− 1
2
hj+ 1

2

Uj + bjUj+1 = αjVj−1 + γjVj + βjVj+1.

Applying corresponding pairs of test functions (9) as approximation order condi-
tions and solving the obtained system of linear equations, we get the semi-discrete
high-order finite difference scheme

−d ∂2
xUj = Ãh

(
fj + BjUj − i

dUj

dt

)
,(15)

where the averaging operator Ãh is defined as

Ãhηj := αjηj−1 + (1− αj − βj)ηj + βjηj+1,

αj =
h2
j− 1

2

+ hj+ 1
2
(hj− 1

2
− hj+ 1

2
)

12hjhj− 1
2

, βj =
h2
j+ 1

2

+hj− 1
2
(hj+ 1

2
− hj− 1

2
)

12hjhj+ 1
2

.

Since for non-uniform meshes the condition of self-adjoint operators hjα
∗
j =

hj−1βj−1 is, in general, not satisfied, we can not prove conservation estimates,
similar to (12) and (13). Computational experiments have also confirmed that the
related Crank-Nicolson finite difference scheme

(16) −d∂2
xU

n+ 1
2

j = Ãh

(
Bn+ 1

2

j U
n+ 1

2

j − i∂tU
n
j

)

on the arbitrary non-uniform mesh is not conservative.

The finite difference scheme (15) on non-uniform mesh reminds the scheme pre-
sented in [7]:

−d ∂2
xUj = C̃h[1]fj + C̃h[B]Uj − iC̃h[1]

dUj

dt
,

where the averaging operator C̃h[w] is defined as

C̃h[w]ηj :=
hj−1/2

12hj
wj−1/2ηj−1 +

10

12
ŵjηj +

hj+1/2

12hj
wj+1/2ηj+1,(17)

ŵj :=
hj−1/2

2hj
wj−1/2 +

hj+1/2

2hj
wj+1/2.

It is noteworthy that this averaging operator is self-adjoint, and the difference
scheme possesses discrete analogues of the conservation laws (12) and (13). How-
ever, even in the case of constant mesh function w the scheme (17) differs from the
high-order approximation (15) and has approximation accuracy O(h2).

3. DTBCs for compact high-order finite difference scheme

In this section we consider the linear Schrödinger problem (1) with f ≡ 0. The
corresponding compact high-order finite difference scheme (16) is constructed on
a spatially non-uniform mesh. As was mentioned above, we should restrict to the
truncated domain (x, t) ∈ ΩT = [−X,X ] × [0, T ] and the truncated mesh (4).
Without loss of generality we assume, that outside of the computational domain
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[xJl
, xJr

] the spatial mesh ωh is determined by the uniform steps hJl+
1
2
and hJr−

1
2

(18) ωh =





xj = xJl
+ (j − Jl)hJl+

1
2

if j < Jl

xj ∈ ωT
h if j = Jl, . . . , Jr

xj = xJl
+ (j − Jr)hJr−

1
2

if j > Jr

,

and the finite difference scheme (16) in these outer regions coincide with the Nu-
merov scheme (11).

To close the system (16) defined on the inner part of the finite mesh ΩT
h we

need to define the boundary conditions for field function Un
j at the left and right

spatial boundary point xJl
and xJr

. In this section we will construct compact high-
order discrete boundary conditions admitting nearly reflection-free field propagation
through the boundary of the truncated domain.

Let us assume that outside of the computational bounds the initial function
u0 = 0 and the potential function B is constant:

(19) u0(x) ≡ 0 if x ∈ R \ [xJl+1, xJr−1], B(t, x) =
{
B̄l, if x ≤ xJl+1

B̄r, if x ≥ xJr−1

.

First of all, we construct a compact high-order approximation for the Robin type
BCs at the lateral bounds x = ±X of the truncated domain ΩT :

(20) −
√
d
∂u(−X, t)

∂x
+ irlu(−X, t) = µl,

√
d
∂u(X, t)

∂x
+ irru(X, t) = µr,

where rl, rr are the parameters defined from the special reflection function, µl, µr

are the given fluxes of the solution on the boundary.
In order to derive a compact high-order approximation of BCs, we apply the same

technique as in previous sections. In addition to functions u and v = −∂2u(x,t)
∂x2 ,

let us define w = ∂u(x,t)
∂x . Now we use the following two-point template with the

maximal number of free parameters:

akUJk
+ bkUJk+νk = WJk

+ γkVJk
+ βkVJk+νk , k ∈ {l, r}, νl = 1, νr = −1.

Thus we can take the corresponding triples of test functions

U(x) = {1, x− xj , (x − xj)
2, (x− xj)

3},
W (x) = {0, 1, 2(x− xj), 3(x− xj)

2},
V (x) = {0, 0, −2, −6(x− xj)},

and solve the system of linear equations derived from approximation conditions.
The compact semi-discrete approximation of boundary condition (20) is obtained:

(21)
d
UJk

−UJk+νk

h
Jk+

νk
2

+
√
d (irkUJk

− µk) =
h
Jk+

νk
2

3

(
fJk

+ BJk
UJk

− i
dUJk

dt

)

+
h
Jk+

νk
2

6

(
fJk+νk + BJk+νkUJk+νk − i

dUJk+νk

dt

)
, k ∈ {l, r}.

The approximation error of (21) is of order O(h3). By setting βk = 0 one can also
get a standard O(h2)-order approximation of (21):

(22)
d
UJk

−UJk+νk

h
Jk+

νk
2

+
√
d (irkUJk

− µk) =
h
Jk+

νk
2

2

(
fJk

+ BJk
UJk

− i
dUJk

dt

)
,

k ∈ {l, r}.
The Robin type BCs are also important when considering nonlocal transparent

BCs [1, 5] for the linear homogeneous (f ≡ 0) Schrödinger problem (1) in the lat-
erally truncated domain ΩT . In [18], Szeftel proposed to approximate the nonlocal
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transparent BCs with a sequence of local operators. Assuming that the condition-
s (19) are satisfied, we can write these approximate transparent BCs for (1) at
x = ±X as follows [6]:

(23)

−νs
√
d ∂u(−νsX,t)

∂x + i

(
β +

m∑
k=1

ak

)
u(−νsX, t) = i

m∑
k=1

akdkϕk,s(t),

dϕk,s

dt
= iu(−νsX, t)− i(B̄s + dk)ϕk,s(t), t > 0,

ϕk,s(0) = 0, k = 1, . . . ,m, m ≥ 1, s ∈ {l, r}.
Having a similar form as Robin BCs (20), these conditions can be approximated by
the semi-discrete compact high-order scheme

d
UJs−UJs+νs

h
Js+

νs
2

+ i
√
d
(
βUJs

+
m∑

k=1

ak
(
UJs

− dkΦk,s

))
=

h
Js+

νs
2

3

(
B̄sUJs

− i
dUJs

dt

)
+

h
Js+

νs
2

6

(
B̄sUJs+νs − i

dUJs+νs

dt

)
,

dΦk,s

dt
= iUJs

− i(B̄s+dk)Φk,s(t), Φk,s(0) = 0, k = 1, . . . ,m, s ∈ {l, r}.

The stability analysis of compact high-order BCs is a non-trivial task. It is im-
portant to see if the proposed approximations are A-stable. In the case of constant
B and uniform mesh ωh, a general technique of spectral analysis can be used. Since
the operator defining the finite difference scheme together with BCs is not sym-
metric, we only can check whether it can be diagonalized and eigenvalues of the
operator have positive real parts. Applying this method, we should find eigenvalues
and eigenvectors of the generalized eigenvalue problem, defined by the appropriate
discrete diffusion operator and the compact boundary conditions [9]. The influence
of compact approximations is taken into account through the generalized formula-
tion of eigenvalue problem by using the nondiagonal eigenvalue operator

(24)

−∂2
xVj = λAhVj , j = Jl + 1, . . . , Jr − 1, Jr = Jl + J,

VJs
− VJs+νs

h
+ irsVJs

=
hλ

6

(
2VJs

+ VJs+νs

)
, s ∈ {l, r}, νl = 1, νr = −1.

Here we are interested in separating the influence of the compact approximation
of boundary conditions. Thus we take Ah = I, as in the case of standard second-
order scheme (7). In order to simplify analysis, we restrict to the Neumann type
boundary condition on boundary x = xJr

= X , i.e. rr = 0, and the Dirichlet
boundary condition VJl

= 0 at x = xJl
= −X . Then it can be shown that (J − 1)

eigenvectors V k and corresponding eigenvalues λk are defined as

V k
j = sinαk(xj +X), λk =

4

h2
sin2

αkh

2
, k = 1, . . . , J − 1,

where 0 < αk < π/h are (J − 1) roots of nonlinear equation

sinαJh− sinα(J − 1)h =
2

3
sin2

αh

2

(
2 sinαJh+ sinα(J − 1)h

)
.

The remaining eigenvalue λJ is computed numerically and it is shown that λJ >
4/h2. Thus the compact high-order approximation of boundary conditions is un-
conditionally stable in this case.

4. Numerical examples

4.1. Example 1. In order to test the accuracy of compact high-order scheme (16)
we have solved a test problem from [1, 6]. Consider linear Schrödinger equation (1)
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with B ≡ 0, f ≡ 0, d = 0.5, the exact solution is given as

(25) u(x, t) :=

√
i

i+ 2t
exp

[
(−ix2 + 4x− 8t)/(i+ 2t)

]
.

We simulate the movement of a Gaussian wave for (x, t) ∈ [−X,X ]× [0, T ], where
X = 10 and T = 0.7. The initial and boundary conditions are defined by the
solution (25):

(26) u0(x) = u(x, 0), u(±X, t) =

√
i

i+ 2t
exp

[
(−iX2 ± 4X − 8t)/(i+ 2t)

]
.

The computational grid (4) is determined by the time step τ = 1/N , and the
truncated non-uniform spatial mesh ωT

h having |ωT
h | = J spatial steps

hj− 1
2
= (α+ rj− 1

2
)η, j = Jl + 1, . . . , Jr = Jl + J

defined by the random number generator. Here, 0 < rj− 1
2
≤ 1 are pseudo-random

numbers, α is a regularization parameter and η is a scaling constant allowing to
locate exactly J steps within computational interval [−X,X ].

In Table 1 errors in the maximum norm ε and convergence rates log2 ρ

(27)
ǫα(|ωT

h |, N) := max
tn∈ωT

τ

εα(|ωT
h |, tn), εα(|ωT

h |, tn) = max
xj∈ωT

h

|u(xj , t
n)− Un

j |,

ρα(J) := εα(J/2, N/4)
/
εα(J,N)

for solution of high-order compact finite difference scheme (16) are presented for
a sequence of meshes and α = 0.1 or α = 0.25. Results of experiments show the
discrete solution convergence with fourth order of accuracy even in the case of
highly non-uniform space meshes.

Table 1. Errors ǫα and convergence rates log2 ρα for solution of
high-order compact finite difference scheme (16) with initial and
boundary conditions (26).

J N ǫ0.1 log2 ρ0.1 ǫ0.25 log2 ρ0.25

200 100 1.29e-2 — 1.03e-2 —
400 400 8.09e-4 3.991 6.64e-4 3.954
800 1600 4.62e-5 4.129 3.85e-5 4.104
1600 6400 3.11e-6 3.888 2.50e-6 3.945

4.2. Example 2. In this case we have solved numerically the test problem of
Example 1 with the BCs (20), where

(28) µl = −
√
d
∂u(−X, t)

∂x
, µr =

√
d
∂u(X, t)

∂x
, rl = rr = 0.

We note, that these boundary conditions are of Neumann type and are exact con-
ditions once the initial function u0 is given by (26).

In this example we have tested the accuracy of the new compact high-order
finite difference approximation of BCs (21), and compared it with the standard
second-order accuracy scheme (22). The linear Schrödinger equation is approxi-
mated by the high-order finite difference scheme (11) on a uniform mesh. The
results were computed using a very small time step τ , to make temporal errors
negligible. Table 2 gives maximum norm errors ε0(J, T ) at time T = 1.8 for a
sequence of space mesh points J , and the observed orders of convergence log2 ρ0(J)
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defined in Eq. (27). Crank-Nicolson time discretization of (21) and (22) are used
to approximate boundary conditions of the problem.

Table 2. Errors ε0(J, T ) and orders of convergence log2 ρ0(J)
for solution of high-order compact finite difference scheme (11),
when BCs (20), (28) are approximated by the third order accuracy
scheme (21) and the standard second order accuracy scheme (22).

FDS J = 250 J = 500 J = 1000 J = 2000

(21) ε0 1.41E-3 1.26E-4 1.47E-5 1.76E-6

(21) log2 ρ0 — 3.48 3.10 3.06

(22) ε0 8.75E-3 2.02E-3 4.99E-4 1.24E-4

(22) log2 ρ0 — 2.11 2.01 2.01

Results of computational experiments confirm the conclusion that local approx-
imation errors of BCs should dominate the global error, since the differential e-
quation is approximated by the high-order finite difference scheme. The observed
experimental convergence orders coincide with the theoretical approximation order-
s of discrete boundary conditions (21) and (22), i.e. the third and second orders,
respectively.

5. Conclusions

The presented analysis shows that high-order approximations of the linear Schrö-
dinger equations and the Robin type BCs increase the efficiency of solvers targeted
for this type of problems. In [4, 6], we have constructed effective numerical algo-
rithms for simulation of multisection lasers by using the traveling wave model, which
is described briefly in the Introduction of this paper. These algorithms are derived
by using two ideas: splitting techniques are used to separate the linear Schrödinger
equation and the complicated nonlinear interaction of waves, and special absorbing
boundary conditions are applied to restrict computations only to a finite truncat-
ed computational domain. As it is shown in [5], very efficient artificial absorbing
BCs of the Robin type can be constructed by using the Szeftel method, see (23).
For both subproblems we can apply the high-order finite difference schemes, pro-
posed in this paper. The analysis of the accuracy and efficiency of the obtained
finite difference schemes for the full traveling wave model will be done in a separate
paper.
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