
INTERNATIONAL JOURNAL OF c© 2014 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 11, Number 2, Pages 271–287

PURE LAGRANGIAN AND SEMI-LAGRANGIAN FINITE

ELEMENT METHODS FOR THE NUMERICAL SOLUTION OF

CONVECTION-DIFFUSION PROBLEMS
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Abstract. In this paper we propose a unified formulation to introduce and analyze (pure) La-
grangian and semi-Lagrangian methods for solving convection-diffusion partial differential equa-
tions. This formulation allows us to state classical and new numerical methods. Several examples
are given. We combine them with finite element methods for spatial discretization. One of the
pure Lagrangian methods we introduce has been analyzed in [4] and [5] where stability and er-
ror estimates for time semi-discretized and fully-discretized schemes have been proved. In this
paper, we prove new stability estimates. More precisely, we obtain an l∞(H1) stability estimate
independent of the diffusion coefficient and, if the underlying flow is incompressible, we get a sta-

bility inequality independent of the final time. Finally, the numerical solution of a test problem
is presented that confirms the new stability results.

Key words. convection-diffusion equation, pure Lagrangian method, semi-Lagrangian method,
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1. Introduction

Convection-diffusion equations model a variety of important problems from dif-
ferent fields of engineering and applied sciences. In many cases the diffusive term is
much smaller than the convective one and then upwinding has to be introduced in
the numerical scheme. This can be done by using characteristics method which are
based on time discretization of the material time derivative. These methods were
introduced in the beginning of the 1980s combined with finite differences or finite
elements for space discretization (see [11], [18]). In this context they are also called
Lagrange-Galerkin methods. The classical methods of characteristics are written
in Eulerian coordinates and they are related to semi-Lagrangian schemes (see [13]).
Lagrange-Galerkin methods have been mathematically analyzed and applied to dif-
ferent problems by several authors. For example, in [23], [18] the classical first order
characteristic method combined with finite elements applied to convection-diffusion
equations is studied, and in [22], [6] and [7] second order Lagrange-Galerkin meth-
ods are analyzed. More precisely, if △t denotes the time step, h the mesh-size and k
the degree of the finite elements space, estimates of the form O(hk)+O(△t) in the
l∞(L2(Rd))-norm are shown in [23] (d denotes the dimension of the spatial domain).
In [18] error estimates of the form O(hk)+O(△t)+O(hk+1/△t) in the l∞(L2(Ω))-
norm are obtained under the assumption that the normal velocity vanishes on the
boundary of Ω. In [22] a second order characteristics method for solving constant
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coefficient convection-diffusion equations with Dirichlet boundary conditions is s-
tudied. Stability and O(△t2) + O(hk) error estimates in the l∞(L2(Ω))-norm are
stated (see also [6] and [7] for further analysis).

Recently, for linear convection diffusion problems, we have introduced the so-
called pure Lagrangian methods combined with finite elements. They are obtained
by discretizing the problem which has been first written in Lagrangian or materi-
al coordinates. In particular, in [4] and [5] l∞(H1(Ω)) stability and l∞(H1(Ω))
error estimates of order O(∆t2) + O(hk) were proved for a second order pure
Lagrange-Galerkin method. In [10], semi-Lagrangian and pure Lagrangian meth-
ods are proposed and analyzed for convection-diffusion equations. Error estimates
for a Galerkin discretization of a pure Lagrangian formulation and for a discontin-
uous Galerkin discretization of a semi-Lagrangian formulation are obtained. The
estimates are written in terms of the projections constructed in [8] and [9]. In [4]
and [5] a pure Lagrangian formulation has been used for a more general problem.
Specifically, we have considered a (possibly degenerate) variable coefficient diffu-
sive term instead of the simpler Laplacian, general mixed Dirichlet-Robin boundary
conditions, and a time dependent domain. Moreover, we have analyzed a scheme
with approximate characteristic curves and presented numerical results for pure
Lagrangian and semi-Lagrangian methods.

In the present paper, we introduce a unified formulation to state pure Lagrangian
and semi-Lagrangian methods for solving linear convection-diffusion equations.

Our approach uses the formalism of continuum mechanics in which classical and
new methods can be introduced in a natural way (see for instance [15]).

The paper is organized as follows. In Section 2 the linear convection-diffusion
Cauchy problem is posed in a time dependent bounded domain and some hypothe-
ses and notations concerning motions are stated. In Section 3, we introduce a
quite general change of variable obtaining a new strong formulation of the lin-
ear convection-diffusion Cauchy problem. Moreover, the standard associated weak
problem is obtained. In Section 4, pure Lagrangian and semi-Lagrangian schemes
are proposed. All these methods arise from the formulation obtained in the previous
section. In Section 5, a second order pure Lagrange-Galerkin scheme is proposed
for second order approximate characteristics. We recall some properties verified
by this method. Moreover, under suitable hypotheses on the data, two new sta-
bility results are proved for small enough time step. One of them is independent
of the diffusion coefficient and the other one is independent of the final time. In
Section 6, in order to check experimentally these stability results, we solve a linear
convection-diffusion problem.

2. Statement of the linear convection diffusion problem. General as-

sumptions and notations.

Let Ω be a bounded domain in Rd (d = 2, 3) with Lipschitz boundary Γ divided
into two parts: Γ = ΓD ∪ ΓR, with ΓD ∩ ΓR = ∅. Let T be a positive constant
and Xe : Ω × [0, T ] −→ Rd be a motion in the sense of Gurtin [15]. In particular,
Xe ∈ C3(Ω × [0, T ]) and for each fixed t ∈ [0, T ], Xe(·, t) is a one-to-one function
satisfying

(1) detF (p, t) > 0 ∀p ∈ Ω,

being F (·, t) the Jacobian tensor of Xe(·, t). We call Ωt = Xe(Ω, t), Γt = Xe(Γ, t),
ΓD
t = Xe(Γ

D, t) y ΓR
t = Xe(Γ

R, t), for t ∈ [0, T ]. We assume that Ω0 = Ω. Let us
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introduce the trajectory of the motion

T := {(x, t) : x ∈ Ωt, t ∈ [0, T ]},
and the set

(2) O :=
⋃

t∈[0,T ]

Ωt.

For each t, Xe(·, t) is a one-to-one mapping from Ω onto Ωt; hence it has an inverse

(3) P (·, t) : Ωt −→ Ω,

such that

(4) Xe(P (x, t), t) = x, P (Xe(p, t), t) = p ∀(x, t) ∈ T ∀(p, t) ∈ Ω× [0, T ].

Mapping P : T −→ Ω, so defined is called the reference map of motion Xe and
P ∈ C3(T ) (see [15] pp. 65− 66). Let us recall that the spatial description of the
velocity v : T −→ Rd is defined by

(5) v(x, t) := Ẋe(P (x, t), t) ∀(x, t) ∈ T .
We denote by L the gradient of v with respect to the space variables.

Let us consider the following initial-boundary value problem.

(SP) STRONG PROBLEM. Find a function φ : T −→ R such that

(6) ρ(x)
∂φ

∂t
(x, t) + ρ(x)v(x, t) · gradφ(x, t) − div (A(x) gradφ(x, t)) = f(x, t),

for x ∈ Ωt and t ∈ (0, T ), subject to the boundary conditions

φ(x, t) = φD(x, t) on ΓD
t ,(7)

αφ(x, t) +A(·) gradφ(x, t) · n(x, t) = g(x, t) on ΓR
t ,(8)

for t ∈ (0, T ), and the initial condition

(9) φ(x, 0) = φ0(x) in Ω.

In the above equations, A : O −→ Sym denotes the diffusion tensor field, where
Sym is the space of symmetric tensors in the d-dimensional space, ρ : O −→ R,
f : T −→ R, φ0 : Ω −→ R, φD(·, t) : ΓD

t −→ R and g(·, t) : ΓR
t −→ R, t ∈ (0, T ),

are given scalar functions, and n(·, t) is the outward unit normal vector to Γt.
For given τ ∈ [0, T ], the motion Xe can also be defined relative to the configuration
in time τ . It is the mapping

(Xe)τ : Ωτ × [0, T ] −→ Rd,

given by

(10) (Xe)τ (y, t) := Xe(P (y, τ), t) ∀(y, t) ∈ Ωτ × [0, T ].

Thus, the mapping t ∈ (0, T ) → (Xe)τ (y, t) represents the trajectory described by
a material point that is placed at position y at time τ . Moreover, we notice that
x = (Xe)τ (y, t) if and only if y = (Xe)t(x, τ).

Remark 2.1. For the sake of clarity in the notation, in expressions involving gra-
dients and time derivatives we use the following notation (see, for instance, [15]):

• We denote by p the material points in Ω, by x the spatial points in Ωt with
t > 0 and by y the points in Ωτ with τ ≥ 0.

• A material field is a mapping with domain Ω × [0, T ] and a spatial field is
a mapping with domain T .
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• If ϕ is a smooth material field, we denote by ∇ϕ (respectively, by Divϕ)
the gradient (respectively, the divergence) with respect to the first argument,
and by ϕ̇ the partial derivative with respect to the second argument (time).

• If ψ is a smooth spatial field, we denote by gradψ (respectively, divψ) the
gradient (respectively, the divergence) with respect to the first argument,
and by ψ′ the partial derivative with respect to the second argument (time).

Moreover, ψ̇ denotes the material time derivative with respect to time, that
is

ψ̇(x, t) = ψ′(x, t) + gradψ(x, t) · v(x, t).
If Ψ is a spatial field, we introduce the field Ψτ , defined in Ωτ × [0, T ] by

(11) Ψτ (y, t) := Ψ((Xe)τ (y, t), t) ∀(y, t) ∈ Ωτ × [0, T ].

Notice that, for τ = 0, Ψ0 is the material description of Ψ also denoted by Ψm. In
the following A denotes a bounded domain in Rd. Let us introduce the Lebesgue
spaces Lr(A) and the Sobolev spaces Wm,r(A) with the usual norms || · ||r,A and
|| · ||m,r,A, respectively, for r = 1, 2, . . . ,∞ and m an integer. For the particular case
r = 2, we endow space L2(A) with the usual inner product 〈·, ·〉A, which induces a
norm to be denoted by || · ||A (see [1] for details).

Moreover, we denote by H1
ΓD (A) the closed subspace of H1(A) defined by

(12) H1
ΓD(A) :=

{
ϕ ∈ H1(A), ϕ|ΓD ≡ 0

}
,

where ΓD is a part of the boundary of A of non-null measure.
Corresponding to the discretized scheme to be given below, we have to deal with

sequences of functions ψ̂ = {ψn}Nn=0. More precisely, we will consider the spaces of
sequences l∞(L2(A)) and l2(L2(A)) equipped with their respective usual norms:

∣∣∣
∣∣∣ψ̂
∣∣∣
∣∣∣
l∞(L2(A))

:= max
0≤n≤N

||ψn||A ,
∣∣∣
∣∣∣ψ̂
∣∣∣
∣∣∣
l2(L2(A))

:=

√√√√∆t

N∑

n=0

||ψn||2A.

Similar definitions are considered for functional spaces l∞(L2(ΓR)) and l2(L2(ΓR))
associated with the Robin boundary condition and for vector-valued function spaces
l∞(L2(A)) and l2(L2(A)).

Moreover, let us introduce the notations

Ŝ[ψ] := {ψn+1 + ψn}N−1
n=0 , R̂∆t[ψ] :=

{
ψn+1 − ψn

∆t

}N−1

n=0

.

Throughout this paper, we assume that the diffusion tensor is symmetric and has

the form A =

(
An1

Θ
Θ Θ

)
, for some n1 ≤ d and Λ is a uniform lower bound for

the eigenvalues of An1
. Moreover, we suppose that ρ ≥ γ > 0 and the gradient of

the velocity field, L(x, t) := gradv(x, t) satisfies,

(13) (I −B)L(x, t)B = 0 ∀(x, t) ∈ T ,
where B denotes the d× d tensor,

(14) B =

(
In1

Θ
Θ Θ

)
,

and In1
is the n1 × n1 identity matrix.

Remark 2.2. Equality (13) is equivalent to having a velocity field v whose d − n1

last components depend only on the last d− n1 variables.
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Remark 2.3. Notice that the diffusion tensor can be degenerate in some applications.
This is the case, for instance, in some financial models where, nevertheless, the
diffusion tensor has the form of A. In [14] and [17] existence and uniqueness results
are proved for convection-(possibly degenerate) diffusion equations, but these issues
are beyond the scope of this paper.

3. Weak formulation.

We are going to develop some formal computations in order to write a weak
formulation of the above problem (SP) in configuration Ωτ , where τ ∈ [0, T ]. First,
from the definition of the material derivative and by using the chain rule, we have

(15) φ̇(x, t) = φ′(x, t)+ grad xφ(x, t) ·v(x, t) =
∂

∂t
φτ (y, t)|y=(Xe)t(x,τ) ∀(x, t) ∈ T .

Next, by evaluating equation (6) at point x = (Xe)τ (y, t) and then using (15), we
obtain

ρ((Xe)τ (y, t))
∂

∂t
φτ (y, t)− div x(A((Xe)τ (y, t)) grad xφ((Xe)τ (y, t), t))

= f((Xe)τ (y, t), t),(16)

for (y, t) ∈ Ωτ × (0, T ). Note that in (16) there are derivatives with respect to
the Eulerian variable x. In order to obtain a strong formulation of problem (SP)
in coordinates (y, t) ∈ Ωτ × (0, T ) we use the divergence theorem, the change of
variable x = (Xe)τ (y, t) and the localization theorem, obtaining (see [2] for further
details)

div x(A((Xe)τ (y, t)) grad xφ((Xe)τ (y, t), t))

= div y

[
F−1
τ (y, t)Aτ (y, t)F

−T
τ (y, t) grad yφτ (y, t) detFτ (y, t)

] 1

detFτ (y, t)
,

for (y, t) ∈ Ωτ × (0, T ) and where Fτ is the Jacobian matrix of the transformation
(Xe)τ . Then, φτ satisfies

ρτ (y, t)
∂

∂t
φτ (y, t)

− div y

[
F−1
τ (y, t)Aτ (y, t)F

−T
τ (y, t) grad yφτ (y, t) detFτ (y, t)

] 1

detFτ (y, t)
= fτ (y, t),

for (y, t) ∈ Ωτ × (0, T ). Moreover, from (7), (8) and (9), we obtain the following
initial and boundary conditions for φτ :

φτ (y, t) = (φD)τ (y, t) in ΓD
τ × (0, T ),

|F−T
τ (y, t)m(y)|αφτ (y, t) +Aτ (y, t)F

−T
τ (y, t) grad yφτ (y, t) · F−T

τ (y, t)m(y)

= |F−T
τ (y, t)m(y)|gτ (y, t) on ΓR

τ × (0, T ),

φτ (y, 0) = φ0(P (y, τ)) in Ωτ ,

where m is the outward unit normal vector to ∂Ωτ . The second condition has been
obtained by using the chain rule and noting that

n((Xe)τ (y, t), t) =
F−T
τ (y, t)m(y)∣∣F−T
τ (y, t)m(y)

∣∣ (y, t) ∈ Γτ × (0, T ).

Thus, we have the following formulation in Ωτ ×(0, T ) of the initial-boundary value
problem (SP):
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(SP)τ STRONG PROBLEM IN Ωτ × (0, T ). Find a function φτ : Ωτ×[0, T ] −→
R such that

ρτ (y, t)
∂

∂t
φτ (y, t)

− div y

[
F−1
τ (y, t)Aτ (y, t)F

−T
τ (y, t) grad yφτ (y, t) detFτ (y, t)

] 1

detFτ (y, t)

= fτ (y, t),(17)

for (y, t) ∈ Ωτ × (0, T ), subject to the boundary conditions

φτ (y, t) = (φD)τ (y, t) on ΓD
τ × (0, T ),(18)

|F−T
τ (y, t)m(y)|αφτ (y, t)

+Aτ (y, t)F
−T
τ (y, t) grad yφτ (y, t) · F−T

τ (y, t)m(y)

= |F−T
τ (y, t)m(y)|gτ (y, t) on ΓR

τ × (0, T ),(19)

and the initial condition

(20) φτ (y, 0) = φ0(P (y, τ)) in Ωτ .

Remark 3.1. From (13) it is easy to check that Fτ verifies

(I −B)Fτ (y, t)B = 0 ∀(y, t) ∈ Ωτ × (0, T ),

and then we can easy deduce that the diffusion tensor in (17) has the same form as
A.

Depending of the choice of τ , we can obtain different Lagrangian and semi-
Lagrangian methods. More precisely, the pure Lagrangian methods (respectively,
the semi-Lagrangian methods) are obtained when τ = 0 (respectively, when τ 6= 0).
Now, in order to write a weak formulation of (SP)τ , let us multiply (17) by detFτ

and by a test function ψ ∈ H1
ΓD
τ
(Ωτ ), integrate in Ωτ and apply the usual Green’s

formula and (19). We get
(21)∫

Ωτ

ρτ (y, t)
∂

∂t
φτ (y, t)ψ(y) detFτ (y, t) dy

+

∫

Ωτ

F−1
τ (y, t)Aτ (y, t)F

−T
τ (y, t) grad yφτ (y, t) · grad yψ(y) detFτ (y, t) dy

+

∫

ΓR
τ

|F−T
τ (y, t)m(y)|αφτ (y, t)ψ(y) detFτ (y, t) dAy

=

∫

Ωτ

fτ (y, t)ψ(y) detFτ (y, t) dy +

∫

ΓR
τ

|F−T
τ (y, t)m(y)|gτ (y, t)ψ(y) detFτ (y, t) dAy,

for t ∈ (0, T ). These are formal computations, i.e., we have assumed appropriate
regularity of the involved data and solution.

4. Time discretization: characteristics methods

In this section, we present pure Lagrangian and semi-Lagrangian methods. They
are obtained by introducing different time semi-discretizations of problem (SP)τ .
For simplicity, we assume that the characteristic curves, i.e., the trajectories of
the motion are exactly computed. The more usual case where they have to be
approximated will be considered below.

Let us introduce the number of time steps, N , the time step ∆t = T/N , and
the mesh-points tn = n∆t for n = 0, 1/2, 1, . . . , N . Throughout this work, we use
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the notation ψn(y) := ψ(y, tn) for a function ψ(y, t). Two different formulas are

considered to approximate the time derivative
∂

∂t
φτ (y, t), namely,

• Two-point second order centered formula:

(22)
φτ (y, t+

∆t
2 )− φτ (y, t− ∆t

2 )

∆t
.

• Three point second order backward formula:

(23)
1

2∆t
(3φτ (y, t)− 4φτ (y, t−∆t) + φτ (y, t− 2∆t)).

According to the values of τ and of t, and of the numerical formula used to approx-
imate the different terms we can obtain different characterictics methods. We use
the following notation to present them

ψl
j(x) = ψtj (x, tl) 0 ≤ j, l ≤ N.(24)

We notice that ψl
l = ψl and F l

l = I for 0 ≤ l ≤ N .

• One-step semi-Lagrangian schemes: This one-parameter family of methods

arises from fixing τ = tn+1 and t = tn+θ in (17), and using a convex linear
combination involving the values t = tn and t = tn+1 to approximate the
rest of the terms at time tn+θ . More precisely:

(25)

(
θρ+ (1− θ)ρnn+1

) φn+1 − φnn+1

∆t
− θ div

[
A gradφn+1

]

−(1− θ) div
[
(Fn

n+1)
−1An

n+1(F
n
n+1)

−T gradφnn+1 detF
n
n+1

] 1

detFn
n+1

= θfn+1 + (1− θ)fn
n+1 in Ωtn+1

,

where 0 ≤ n ≤ N − 1.
We notice that ρn+1 = ρ and An+1 = A because ρ and A are time

independent,

Particular cases:
(1) When θ = 1, we obtain the classical first order semi-Lagrangian scheme.
(2) When θ = 1/2, we obtain the second order semi-Lagrangian scheme

proposed and analyzed in [21].

• One-step second order semi-Lagrangian scheme: This method can be ob-
tained by multiplying (17) by detFτ , taking τ = tn and t = tn+ 1

2
, and us-

ing a convex linear combination involving the values at t = tn and t = tn+1

to approximate the rest of the terms. More precisely,

(26)

ρn+1
n detFn+1

n + ρ

2

φn+1
n − φn

∆t

−1

4
div

[(
(Fn+1

n )−1An+1
n (Fn+1

n )−T detFn+1
n +A

)
gradφn+1

n

]

−1

4
div

[(
(Fn+1

n )−1An+1
n (Fn+1

n )−T detFn+1
n +A

)
gradφn

]

=
detFn+1

n fn+1
n + fn

2
in Ωtn ,

where 0 ≤ n ≤ N − 1.
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• One-step pure Lagrangian schemes: By multiplying (17) by detFτ , taking
τ = t0 and t = tn+θ, and using a convex linear combination involving the
values at t = tn and t = tn+1 to approximate the rest of the terms, we
obtain

(27)

(
θρn+1

m (p) detFn+1(p) + (1− θ)ρnm(p) detFn(p)
) φn+1

m (p)− φnm(p)

∆t

−θ2 Div
[
(Fn+1)−1(p)An+1

m (p)(Fn+1)−T (p)∇φn+1
m (p) detFn+1(p)

]

−θ(1− θ)Div
[
(Fn)−1(p)An

m(p)(Fn)−T (p)∇φn+1
m (p) detFn(p)

]

−θ(1− θ)Div
[
(Fn+1)−1(p)An+1

m (p)(Fn+1)−T (p)∇φnm(p) detFn+1(p)
]

−(1− θ)2 Div
[
(Fn)−1(p)An

m(p)(Fn)−T (p)∇φnm(p) detFn(p)
]

= θ detFn+1(p)fn+1
m (p) + (1− θ) detFn(p)fn

m(p), p ∈ Ω,

for 0 ≤ n ≤ N − 1, where we have used that ψl
0 = ψl

m and F l
0 = F l. When

θ = 1 it is a first order pure Lagrangian method and when θ = 1/2 we
obtain the Crank-Nicholson pure Lagrangian scheme analyzed in [4] and
[5].

• Two-steps second order semi-Lagrangian scheme: This method has been
proposed in [12]. It can be introduced in our framework by taking τ = tn+1,
t = tn+1, and using the second order backward formula (23).

(28)
ρ(x)

3φn+1(x)− 4φnn+1(x) + φn−1
n+1(x)

2∆t

− div y

[
A(x) gradφn+1(x)

]
= fn+1(x), x ∈ Ωtn+1

,

where 1 ≤ n ≤ N − 1.

In practice, the characteristics Xe(p, tn) cannot be exactly tracked, therefore, in
the above schemes, they will be approximated by using numerical formulas.

5. Second order pure Lagrangian scheme with approximate characteris-

tic curves

In this section we show some results concerning the numerical analysis of the pure
Lagrangian scheme proposed in [4] and [5]. In most practical cases, the analytical
expression for motion Xe is unknown; instead, we know the velocity field v. Let us
assume that Xe(p, t0) = p ∀p ∈ Ω. In order to approximate Xn

e , n ∈ {0, . . . , N} we
propose the following second order Runge-Kutta scheme:

For n = 0,

(29) X0
RK(p) := p ∀p ∈ Ω,

and for 0 ≤ n ≤ N − 1 we define by recurrence,

(30) Xn+1
RK (p) := Xn

RK(p) +△tvn+ 1
2 (Y n(p)) ∀p ∈ Ω,

being

(31) Y n(p) := Xn
RK(p) +

△t
2
vn(Xn

RK(p)).

A similar notation to the one in Section 2 is used for the Jacobian tensor of Xn
RK ,

namely, Fn
RK . We have

(32) F 0
RK(p) = I,
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and for 0 ≤ n ≤ N − 1,

(33) Fn+1
RK (p) = Fn

RK(p) + ∆tLn+ 1
2 (Y n(p))

(
I +

∆t

2
Ln(Xn

RK(p))

)
Fn
RK(p).

Let us define the following sequences of functions of p: for 0 ≤ n ≤ N ,

Ãn
RK := (Fn

RK)−1A ◦Xn
RK(Fn

RK)−T detFn
RK , m̃

n
RK = |(Fn

RK)−Tm| detFn
RK ,

C̃n
RK := C ◦Xn

RK(Fn
RK)−T

√
detFn

RK , B̃
n
RK := B(Fn

RK)−T
√

detFn
RK ,

where tensor C is the square root of A. Notice that if ∆t < C(v), where C(v) is
a constant depending on v, it is easy to prove that detFn

RK > c(v, T ), and Fn
RK

and (Fn
RK)−1 are bounded by constants depending only on v and T , for 0 ≤ n ≤ N

(see [2] for details). It will be used below without explicitly stated. Let us choose
θ = 1/2 in (27) and replace Xe with XRK and F with FRK . The weak formulation
of the resulting problem reads as follows:

(34)

1

2

∫

Ω

(
ρ ◦Xn+1

RK detFn+1
RK + ρ ◦Xn

RK detFn
RK

) φn+1
m,∆t − φnm,∆t

∆t
ψ dp

+
1

4

∫

Ω

(
Ãn+1

RK + Ãn
RK

)(
∇φn+1

m,∆t +∇φnm,∆t

)
· ∇ψ dp

+
α

4

∫

ΓR

(
m̃n+1

RK + m̃n
RK

) (
φn+1
m,∆t + φnm,∆t

)
ψ dAp

=
1

2

∫

Ω

(
detFn+1

RK fn+1 ◦Xn+1
RK + detFn

RKf
n ◦Xn

RK

)
ψ dp

+
1

2

∫

ΓR

(
m̃n+1

RK gn+1 ◦Xn+1
RK + m̃n

RKg
n ◦Xn

RK

)
ψ dAp.

We notice that the approximate characteristics can go out of the domain. Therefore,
for simplicity, in this paper we assume that ρ, A, v, f and g can be extended to a
wider domain preserving smoothness. This time semi-discretized problem has been
analyzed in [4]. Stability and error estimates of order O(∆t2) have been proved.
More precisely, the following stability estimates have been obtained:

(35)

√
γ
∣∣∣
∣∣∣φ̂m,∆t

∣∣∣
∣∣∣
l∞(L2(Ω))

+

√
Λ

4

∣∣∣∣
∣∣∣∣

̂
B̃RKS[∇φm,∆t]

∣∣∣∣
∣∣∣∣
l2(L2(Ω))

+

√
α

8

∣∣∣
∣∣∣ ̂S[φm,∆t]

∣∣∣
∣∣∣
l2(L2(ΓR))

≤ J1

(
||φ0m,∆t||Ω +

∣∣∣
∣∣∣ ̂f ◦XRK

∣∣∣
∣∣∣
l2(L2(Ω))

+
∣∣∣
∣∣∣ ̂g ◦XRK

∣∣∣
∣∣∣
l2(L2(ΓR))

)
,

for ∆t < J2 and
(36) √

γ

4

∣∣∣
∣∣∣ ̂R∆t[φm,∆t]

∣∣∣
∣∣∣
l2(L2(Ω))

+

√
Λ

2

∣∣∣∣
∣∣∣∣

̂
B̃RK∇φm,∆t

∣∣∣∣
∣∣∣∣
l∞(L2(Ω))

+

√
α

4

∣∣∣
∣∣∣φ̂m,∆t

∣∣∣
∣∣∣
l∞(L2(ΓR))

≤ J3

(√
Λ

2

∣∣∣∣B∇φ0m,∆t

∣∣∣∣
Ω
+

√
α

4

∣∣∣∣φ0m,∆t

∣∣∣∣
ΓR

+
∣∣∣
∣∣∣ ̂f ◦XRK

∣∣∣
∣∣∣
l2(L2(Ω))

+
∣∣∣
∣∣∣ ̂g ◦XRK

∣∣∣
∣∣∣
l∞(L2(ΓR))

+
∣∣∣
∣∣∣ ̂R∆t[g ◦XRK ]

∣∣∣
∣∣∣
l2(L2(ΓR))

)
,

for ∆t < J4. In the above inequalities, X̂RK = {Xn
RK}Nn=0 is a second order

Runge-Kutta approximation of Xe. Here, constants J1 and J2 do not depend on
the diffusion tensor but J3 and J4 do. However for the particular case of a diffusion
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tensor of the form A = ǫB, J3 does not depend on it and J4 is bounded below away
from zero in the hyperbolic limit, i.e., as ǫ → 0. To prove these estimates we have
assumed that the exact solution and data of the problem are smooth. In [4], error
estimates of order O(∆t2) has been also proved.

We propose a space discretization of the time semi-discretized problem (34) by
using finite elements spaces V k

h , where h denotes the mesh-size and the positive
integer k is the “approximation degree” in the following sense:

Hypothesis 1. There exists an interpolation operator πh : C0(Ω) −→ V k
h satisfying

||πhψ − ψ||s,2,Ω ≤ Qhr−s||ψ||r,2,Ω ∀ψ ∈ C0(Ω) ∩Hr(Ω) 0 ≤ r ≤ k + 1, s = 0, 1,

for a positive constant Q independent of h.

In order to obtain fully discrete schemes of the time semi-discretizated problem
(34), we replace the function space H1

ΓD (Ω) with V k
h :

Given φ0m,∆t,h ∈ V k
h , find φ̂m,∆t,h = {φnm,∆t,h}Nn=1 ∈

[
V k
h

]N
such that

(37)

1

2

∫

Ω

(
ρ ◦Xn+1

RK detFn+1
RK + ρ ◦Xn

RK detFn
RK

) φn+1
m,∆t,h − φnm,∆t,h

∆t
ψh dp

+
1

4

∫

Ω

(
Ãn+1

RK + Ãn
RK

)(
∇φn+1

m,∆t,h +∇φnm,∆t,h

)
· ∇ψh dp

+
α

4

∫

ΓR

(
m̃n+1

RK + m̃n
RK

) (
φn+1
m,∆t,h + φnm,∆t,h

)
ψh dAp

=
1

2

∫

Ω

(
detFn+1

RK fn+1 ◦Xn+1
RK + detFn

RKf
n ◦Xn

RK

)
ψh dp

+
1

2

∫

ΓR

(
m̃n+1

RK gn+1 ◦Xn+1
RK + m̃n

RKg
n ◦Xn

RK

)
ψh dAp, ∀ψh ∈ V k

h ,

for n = 0, . . . , N − 1.

Remark 5.1. In [5], error estimates of order O(∆t2+hk) for norms similar to those
involved in (35) and (36) have been proved. Moreover, some test problems have been
solved in order to verify rates of convergence for this second order pure Lagrangian
method and compared the numerical results obtained with semi-Lagrangian and pure
Lagrangian methods. These results allow us to conclude that the advantages of the
pure Lagrangian methods over semi-Lagrangian ones are that the computational
domain is time-independent, they are accurate in zones of strong gradients or dis-
continuities of the solution and terms of the form O(hα/∆t) are not observed in
the error as it is typical of semi-Lagrangian methods.

Remark 5.2. Notice that, the error estimates (35) and (36) depend on diffusion
tensor and on the final time. However, in some particular cases, we can get stability
inequalities with constants independent of diffusion tensor or independent of T as
the theorems below show.

Theorem 5.1. Let us assume Dirichlet boundary conditions (i.e. ΓD ≡ Γ), the

diffusion tensor of the form A ≡ ǫB and f ≡ 0. Let φ̂m,∆t,h be the solution of (37)
subject to the initial value φ0m,∆t,h ∈ V k

h . Then there exist positive constants J and

C(v), independent of the diffusion tensor, such that for ∆t < C(v), we have

(38)

∣∣∣∣
∣∣∣∣

̂
B̃RK∇φm,∆t,h

∣∣∣∣
∣∣∣∣
l∞(L2(Ω))

≤ J
∣∣∣∣B∇φ0m,∆t,h

∣∣∣∣
Ω
,
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and
(39)√

γ

2

∣∣∣∣
∣∣∣∣

̂√
S[ detFRK ]R∆t[φm,∆t,h]

∣∣∣∣
∣∣∣∣
l2(L2(Ω))

≤ J
√
ǫ
∣∣∣∣B∇φ0m,∆t,h

∣∣∣∣
Ω

∀ǫ ≥ 0.

Proof. First, for the mass term, we have

〈(
ρ ◦Xn+1

RK detFn+1
RK + ρ ◦Xn

RK detFn
RK

)

2

φn+1
m,∆t,h − φnm,∆t,h

∆t
, φn+1

m,∆t,h − φnm,∆t,h

〉

Ω

=
1

2∆t

∣∣∣∣
∣∣∣∣
√(

ρ ◦Xn+1
RK detFn+1

RK + ρ ◦Xn
RK detFn

RK

) (
φn+1
m,∆t,h − φnm,∆t,h

)∣∣∣∣
∣∣∣∣
2

Ω

.

For the diffusion term, we have

1

4

〈(
Ãn+1

RK + Ãn
RK

)(
∇φn+1

m,∆t,h +∇φnm,∆t,h

)
,∇φn+1

m,∆t,h −∇φnm,∆t,h

〉
Ω

=
1

4

∣∣∣
∣∣∣C̃n+1

RK ∇φn+1
m,∆t,h

∣∣∣
∣∣∣
2

Ω
− 1

4

∣∣∣
∣∣∣C̃n

RK∇φnm,∆t,h

∣∣∣
∣∣∣
2

Ω
+

1

4

∣∣∣
∣∣∣C̃n

RK∇φn+1
m,∆t,h

∣∣∣
∣∣∣
2

Ω

−1

4

∣∣∣
∣∣∣C̃n+1

RK ∇φnm,∆t,h

∣∣∣
∣∣∣
2

Ω
.

Then, by using (33), (13) and that A = ǫB, we get

1

4

∣∣∣
∣∣∣C̃n

RK∇φn+1
m,∆t,h

∣∣∣
∣∣∣
2

Ω
≥ 1

4

∣∣∣
∣∣∣C̃n+1

RK ∇φn+1
m,∆t,h

∣∣∣
∣∣∣
2

Ω
− ǫCv∆t

∣∣∣
∣∣∣B̃n+1

RK ∇φn+1
m,∆t,h

∣∣∣
∣∣∣
2

Ω
,

(40)

and

−1

4
||C̃n+1

RK ∇φnm,∆t,h||2Ω ≥ −1

4
||C̃n

RK∇φnm,∆t,h||2Ω − ǫCv∆t||B̃n
RK∇φnm,∆t,h||2Ω,

(41)

for some constant Cv depending only on v and T . Thus, from (40) and (41) we
obtain the following inequality:

1

4

〈(
Ãn+1

RK + Ãn
RK

)(
∇φn+1

m,∆t,h +∇φnm,∆t,h

)
,∇φn+1

m,∆t,h −∇φnm,∆t,h

〉
Ω

≥ 1

2

∣∣∣
∣∣∣C̃n+1

RK ∇φn+1
m,∆t,h

∣∣∣
∣∣∣
2

Ω
− 1

2

∣∣∣
∣∣∣C̃n

RK∇φnm,∆t,h

∣∣∣
∣∣∣
2

Ω
(42)

−ǫCv∆t
∣∣∣
∣∣∣B̃n+1

RK ∇φn+1
m,∆t,h

∣∣∣
∣∣∣
2

Ω
− ǫCv∆t

∣∣∣
∣∣∣B̃n

RK∇φnm,∆t,h

∣∣∣
∣∣∣
2

Ω
.

We use equality (37) for ψh = φn+1
m,∆t,h − φnm,∆t,h ∈ V k

h and the above inequalities
to obtain,

(43)

1

2∆t

∣∣∣∣
∣∣∣∣
√(

ρ ◦Xn+1
RK detFn+1

RK + ρ ◦Xn
RK detFn

RK

) (
φn+1
m,∆t,h − φnm,∆t,h

)∣∣∣∣
∣∣∣∣
2

Ω

+
1

2

∣∣∣
∣∣∣C̃n+1

RK ∇φn+1
m,∆t,h

∣∣∣
∣∣∣
2

Ω
− 1

2

∣∣∣
∣∣∣C̃n

RK∇φnm,∆t,h

∣∣∣
∣∣∣
2

Ω

≤ Cv∆tǫ

(∣∣∣
∣∣∣B̃n+1

RK ∇φn+1
m,∆t,h

∣∣∣
∣∣∣
2

Ω
+
∣∣∣
∣∣∣B̃n

RK∇φnm,∆t,h

∣∣∣
∣∣∣
2

Ω

)
.
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Let us introduce the notation

θ1n :=
γ

2∆t

n−1∑

s=0

∣∣∣∣
∣∣∣∣
√

detF s+1
RK + detF s

RK

(
φs+1
m,∆t,h − φsm,∆t,h

)∣∣∣∣
∣∣∣∣
2

Ω

,

θ2n :=
1

2

∣∣∣
∣∣∣B̃n

RK∇φnm,∆t,h

∣∣∣
∣∣∣
2

Ω
.

Now, for a fixed integer q ≥ 1, let us sum (43) from n = 0 to n = q− 1. Then, with
the above notation we have

θ1q + (1− 2Cv∆t)ǫθ
2
q ≤ 4Cv∆tǫ

q−1∑

n=0

θ2n + ǫθ20.(44)

From this inequality, we get

(1 − 2Cv∆t)θ
2
q ≤ 4Cv∆t

q−1∑

n=0

θ2n + θ20 ,(45)

θ1q ≤ 4Cv∆tǫ

q−1∑

n=0

θ2n + ǫθ20.(46)

For ∆t small enough, we can apply in (45) the discrete Gronwall inequality (see,
for instance, [20]) and take the maximun in q ∈ {1, . . . , N}, obtaining

1

2

∣∣∣∣
∣∣∣∣

̂
B̃RK∇φm,∆t,h

∣∣∣∣
∣∣∣∣
2

l∞(L2(Ω))

≤ C(v, T )
1

2

∣∣∣∣B∇φ0m,∆t,h

∣∣∣∣2
Ω
.

By using this inequality and (46), we get the result. �

In the particular case of incompressible flows, we can obtain a stability inequal-
ity with constant independent of T for the semi-discretized scheme (37) replacing
detFRK with 1. We notice that this replacement is plausible because for incom-
pressible motion detF = 1.

Theorem 5.2. Let us suppose f ≡ 0, div v = 0, ρ ≡ 1. Let φ̂m,∆t,h be the solution
of (37) subject to the initial value φ0m,∆t,h ∈ V k

h . Then there exists a positive

constant J , which is independent of T , such that for ∆t < C(v), we have

(47)

∣∣∣
∣∣∣φ̂m,∆t,h

∣∣∣
∣∣∣
l∞(L2(Ω))

+

√
Λ

4

∣∣∣∣
∣∣∣∣

̂
B̃RKS[∇φm,∆t,h]

∣∣∣∣
∣∣∣∣
l2(L2(Ω))

+

√
α

8

∣∣∣∣
∣∣∣∣

̂√
S [m̃RK ]S[φm,∆t,h]

∣∣∣∣
∣∣∣∣
l2(L2(ΓR))

≤ J
(
||φ0m,∆t,h||Ω

+

∣∣∣∣
∣∣∣∣

̂√
m̃RKg ◦XRK

∣∣∣∣
∣∣∣∣
l2(L2(ΓR))

)
.
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Proof. First, by applying (37) for ψh = φn+1
m,∆t,h + φnm,∆t,h ∈ V k

h , and replacing
detFRK with 1, we obtain

1

∆t

∣∣∣
∣∣∣φn+1

m,∆t,h

∣∣∣
∣∣∣
2

Ω
− 1

∆t

∣∣∣∣φnm,∆t,h

∣∣∣∣2
Ω

+
1

4

∣∣∣
∣∣∣C̃n+1

RK

(
∇φn+1

m,∆t,h +∇φnm,∆t,h

)∣∣∣
∣∣∣
2

Ω
+

1

4

∣∣∣
∣∣∣C̃n

RK

(
∇φn+1

m,∆t,h +∇φnm,∆t,h

)∣∣∣
∣∣∣
2

Ω

+
α

4

∣∣∣∣
∣∣∣∣
√
m̃n+1

RK + m̃n
RK

(
φn+1
m,∆t,h + φnm,∆t,h

)∣∣∣∣
∣∣∣∣
2

ΓR

=

〈
m̃n+1

RK gn+1 ◦Xn+1
RK + m̃n

RKg
n ◦Xn

RK

2
, φn+1

m,∆t,h + φnm,∆t,h

〉

ΓR

.

(48)

By applying the Cauchy-Schwarz and Young inequalities, we get
〈
m̃n+1

RK gn+1 ◦Xn+1
RK + m̃n

RKg
n ◦Xn

RK

2
, φn+1

m,∆t,h + φnm,∆t,h

〉

ΓR

≤ 1

2α
||
√
m̃n

RKg
n ◦Xn

RK ||2ΓR +
α

8
||
√
m̃n+1

RK + m̃n
RK{φn+1

m,∆t,h + φnm,∆t,h}||2ΓR

+
1

2α
||
√
m̃n+1

RK gn+1 ◦Xn+1
RK ||2ΓR .(49)

Now, for a fixed integer q ≥ 1, let us sum (48) multiplied by ∆t from n = 0 to
n = q − 1, use (49) and take the maximun in q ∈ {1, . . . , N}. Then, the result
follows. �

6. Numerical results

In order to assess the performance of the above numerical method and to check
the obtained theoretical results, we solve a test problem in two space dimensions.
The reference domain is Ω = (−1, 1) × (−1, 1) and the final time is of the form
T = mπ with m an integer. The diffusion tensor is of the form A = aI with a ≥ 0.
Moreover, v = (−x2, x1), ρ = 1 and the right-hand side f = 0. We also impose
appropriate Dirichlet boundary and initial conditions such that the solution of the
problem is

(50) φ(x1, x2, t) =
b

b + 4at
exp

{
− (x(t)− xc)

2 + (y(t)− yc)
2

b+ 4at

}
,

where

x(t) = x1 cos t+ x2 sin t, y(t) = −x1 sin t+ x2 cos t,

(xc, yc) = (0.25, 0), b = 0.01.

We solve this problem by using the second order pure Lagrangian method given in
(37). We have chosen for space discretization piecewise quadratic finite elements,
that is k = 2. In order to obtain an approximate solution of φn in Eulerian coordi-
nates, we compute the spatial description of material field φnm,∆t,h by

(51) φn∆t,h(x) := φnm,∆t,h(P (x, tn)) ∀x ∈ Ωtn , 0 ≤ n ≤ N.

Notice that, for this example, the exact characteristics can be easily determined and
then they can be used to obtain φn∆t,h. Otherwise, we could use accurate enough

approximations of P preserving the error order of the method. Then φ̂∆t,h is an

approximation of φ̂. In practice, in order to obtain more efficient schemes we can
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consider φn∆t,h as a piecewise quadratic function on Ωtn . The value of φn∆t,h at a

node can be obtained by using (51).
In practice the inner products in the Galerkin formulation are calculated using

numerical quadrature. In fact, the H1 and L2 norms of both the error and the
approximate solution are calculated by using a quadrature formula exact for poly-
nomials of degree 5. Similarly, the integrals appearing in (37) are approximated
by using a quadrature formula exact for polynomials of degree 2. It is well-known
(see, for instance, [16], [19], [24], [7], [3]) that the numerical quadrature may add
terms to the final error of the form O(hα/∆t) and, in some cases, it produces the
loss of unconditional stability. For this particular example, neither these errors nor
an unstable behaviour are observed (see Figure 2).

As predicted by Theorem 5.1, we obtain numerical results showing that the
scheme (37) is stable with stability constants independent of the diffusion coefficient.
The results are shown in Table 1 and in Figure 1. In Table 1 we show the values of
∣∣∣
∣∣∣ ̂∇φm,∆t,h

∣∣∣
∣∣∣
l∞(L2(Ω))

/
∣∣∣∣∇φ0m,∆t,h

∣∣∣∣
Ω
,
∣∣∣
∣∣∣ ̂R∆t[φm,∆t,h]

∣∣∣
∣∣∣
l2(L2(Ω))

/
∣∣∣∣∇φ0m,∆t,h

∣∣∣∣
Ω
,

for different diffusion coefficients and T = 2π. The first value will be called briefly
by norma

1 and the second one by norma
2 . In Figure 1 we have fixed the final time,

namely T = 2π, and shown the value of norma
2 versus a. As predicted by Theorem

5.1, the numerical results show that: (1) the l∞(L2(Ω))-norm of the gradient of
the approximated solution is bounded by a constant independent of the diffusion
coefficient; (2) the l2(L2(Ω))-norm of the discrete time derivative of the approximate
solution tends to zero in the limit when the diffusion tensor vanishes. Moreover,
for this example, it is easy to prove that ||φ̇m||L∞(L2(Ω)) = O(a). Notice that, as
we can observe in Figure 1, the approximate solution verifies also this property.

Table 1. Norms of the computed solution for pure Lagrangian
scheme (37) with h = 1/132 and ∆t = π/50.

Diffusion coefficient (a) norma
1 norma

2

1000 0.99968 5.34900
100 0.99686 4.31910
10 0.97092 2.16313
1 0.79036 0.70708
0.1 0.34492 0.22360
0.01 0.79748 0.070658
0.001 0.97548 0.02143
0.0001 0.99749 0.00425
0.00001 0.99975 0.00049

0 1 6.46656E − 014

In Figure 2 we have shown, for different diffusion coefficient, the l∞(H1(Ωtn))

error between discrete solution φ̂∆t,h, given in (51), and exact solution φ̂, namely
∣∣∣
∣∣∣φ̂∆t,h − φ̂

∣∣∣
∣∣∣
l∞(H1(Ωtn ))

:= max
0≤n≤N

∣∣∣∣φn∆t,h − φn
∣∣∣∣
1,2,Ωtn

.

More precisely, on the left, we represent the computed l∞(H1(Ωtn)) error versus the
number of time steps for a uniform spatial mesh of 521× 521 vertices. On the right
we have fixed a small time step, namely ∆t = π/500, and shown l∞(H1(Ωtn)) error
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Figure 1. Computed l2(L2(Ω)) norm of the discrete time deriva-
tive of approximated solution over L2(Ω) norm of the gradient of
approximated solution at initial time.

versus 1/h. We can observe that the l∞(H1(Ωtn)) error is of the form O(∆t2) +
O(h2), with constants bounded in the hyperbolic limit.
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Figure 2. Computed l∞(H1(Ωtn)) errors for pure Lagrangian
scheme (37), in log-log scale. On the left errors versus the number
of time steps, for a fixed spatial mesh of 521 × 521 vertices. On
the right errors versus 1/h, for ∆t = π/500.

In Table 2 we show the values of∣∣∣
∣∣∣φ̂m,∆t,h

∣∣∣
∣∣∣
l∞(L2(Ω))

/||φ0m,∆t,h||Ω,
∣∣∣
∣∣∣B̃RK

̂S[∇φm,∆t,h]
∣∣∣
∣∣∣
l2(L2(Ω))

/||φ0m,∆t,h||Ω,

for different final time and having a = 0.001. The first value will be denoted by
normT

1 and the second one by normT
2 . These results show that, as predicted by The-

orem 5.2, the l∞(L2(Ω)) norm of the approximate solution and the l2(L2(Ω)) norm
for the semi-sum of the gradient of the approximate solution at two consecutive
time steps are bounded by a constant independent of the final time.
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Table 2. Norms of the computed solution for pure Lagrangian
scheme (37) with h = 1/32 and ∆t = π/50.

Final time (T ) normT
1 normT

2

2π 0.98756 37.78052
4π 0.98756 40.80408
8π 0.98756 42.61668
16π 0.98756 43.61765
32π 0.98756 44.13624
64π 0.98756 44.37476
128π 0.98756 44.46069
256π 0.98756 44.48311
512π 0.98756 44.48750
1024π 0.98756 44.48820
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[23] E. Süli. Stability and convergence of the Lagrange-Galerkin method with non-exact integra-
tion. Academic Press, London. The mathematics of finite elements and applications, VI,
pages 435–442, 1988.

[24] M. Tabata and S. Fujima. Robustness of a characteristic finite element scheme of second
order in time increment. tech. report, MHF Preprint Series, 2004.

Department of Applied Economy II, University of A Coruña, A Coruña, 15071, Spain
E-mail : marta.benitez@udc.es

Department of Applied Mathematics, University of Santiago de Compostela, Santiago de Com-
postela, 15786, Spain

E-mail : alfredo.bermudez@usc.es


