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Abstract. In this work, we present a cell-centered time-splitting technique for solving evolution-
ary diffusion equations on triangular grids. To this end, we consider three variables (namely the
pressure, the flux and a weighted gradient) and construct a so-called expanded mixed finite ele-
ment method. This method introduces a suitable quadrature rule which permits to eliminate both
fluxes and gradients, thus yielding a cell-centered semidiscrete scheme for the pressure with a local
10-point stencil. As for the time integration, we use a domain decomposition operator splitting
based on a partition of unity function. Combining this splitting with a multiterm fractional step
formula, we obtain a collection of uncoupled subdomain problems that can be efficiently solved in
parallel. A priori error estimates for both the semidiscrete and fully discrete schemes are derived
on smooth triangular meshes with six triangles per internal vertex.

Key words. Cell-centered finite difference, domain decomposition, error estimates, fractional
step, mixed finite element, operator splitting.

1. Introduction

We consider a parabolic initial-boundary value problem that models single phase
flow in porous media. The problem can be written as a system of two first-order
equations of the form

pt +∇ · u = f in Ω× (0, T ],(1a)

u = −K∇p in Ω× (0, T ],(1b)

p = p0 in Ω× {0},(1c)

p = g on ΓD × (0, T ],(1d)

u · n = 0 on ΓN × (0, T ],(1e)

where Ω ⊂ R
2 is a convex polygonal domain with Lipschitz continuous boundary

∂Ω = ΓD ∪ ΓN such that ΓD ∩ ΓN = ∅. In this formulation, K ≡ K(x) ∈ R
2×2 is

a symmetric and positive definite tensor satisfying, for some 0 < κ∗ ≤ κ∗ < ∞,

(2) κ∗ξ
T ξ ≤ ξTK ξ ≤ κ∗ξT ξ ∀ ξ 6= 0 ∈ R

2,

and n is the outward unit vector normal to ∂Ω. Typically, p represents the fluid
pressure, u is the Darcy velocity and K denotes the hydraulic conductivity tensor.

In this work, we propose and analyze a family of mixed finite element (MFE)
time-splitting methods for the solution of problem (1). Via the method of lines
approach, the original problem is first reduced to a system of ordinary differential
equations using a spatial semidiscretization technique. More precisely, we consider
a variant of the standard mixed formulation called the expanded MFE method (cf.
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[1, 2, 3, 10, 12]). Besides the pressure p and the flux u, this method introduces an
additional explicit unknown, namely the adjusted gradient λ. The newly defined
variable avoids inverting tensor K, thus allowing for the presence of non-negative
conductivities in the flow domain Ω (as a difference, K is assumed to be strictly
positive in the standard mixed method). Following [1, 2], we consider the lowest
order Raviart–Thomas (RT0) finite element spaces on triangles (cf. [21]), and
subsequently define a suitable quadrature rule that permits to eliminate both u

and λ. As a result, the expanded MFE formulation is reduced to a cell-centered
finite difference scheme for the pressure with a local 10-point stencil. In the context
of elliptic problems, this idea has been already studied in [6, 8, 16] for the standard
mixed method on triangular grids. Similar strategies have been also investigated
in the case of rectangular elements (cf. [3, 22, 28]).

The stiff initial value problem resulting from the previous stage is integrated in
time by using a domain decomposition splitting technique. This kind of splitting
was first introduced in [25, 26] for the construction of regionally-additive schemes
and has been subsequently used in [14, 15, 19] for solving linear parabolic problems.
In combination with this splitting, we define a family of time integrators belonging
to the class of m-part fractional step Runge–Kutta (FSRKm) methods (cf. [9]).
Such methods are composed by merging together m diagonally implicit Runge–
Kutta schemes into a single composite formula. In particular, we consider the
so-called Yanenko’s method (cf. [30]), which has been proved to be unconditionally
contractive for different splitting functions (see [17, 27]). The fully discrete scheme
is thus a collection of uncoupled subdomain problems that can be solved in parallel
without the need for Schwarz-type iteration procedures.

The design and analysis of expanded MFE fractional step methods for parabolic
problems have been addressed in the earlier works [4, 5]. In both cases, though,
the problems were discretized on rectangular meshes using an alternating direction
implicit (ADI) technique. In the present paper, we extend the results from these
works to the case of domain decomposition splitting methods on triangular grids,
thus yielding added flexibility to the resulting algorithms.

The rest of the paper is outlined as follows. In Section 2, we introduce the
expanded MFE method and subsequently derive a cell-centered finite difference
scheme for the pressure. The convergence analysis of the semidiscrete scheme is
described in the next section. Section 4 further presents the family of fractional
step time integrators based on a domain decomposition splitting technique. Finally,
a priori error estimates for the fully discrete scheme are obtained in Section 5.

2. The expanded mixed finite element method

In order to define an expanded formulation, we need to introduce the additional
unknown λ ≡ λ(x, t) = −G−1∇p. This variable is referred to as the adjusted
gradient and involves a symmetric and positive definite tensor G ≡ G(x) ∈ R

2×2,
to be defined below. In this context, the equation (1b) can be rewritten as

Gλ = −∇p in Ω× (0, T ],(3a)

u = KGλ in Ω× (0, T ].(3b)

These two equations, together with (1a) and the corresponding initial and boundary
data, represent the so-called expanded mixed formulation in the triple (u, λ, p).

2.1. The weak formulation. For a domain R ⊂ R
2, let W k,p(R) be the standard

Sobolev space, with k ∈ R and 1 ≤ p ≤ ∞, endowed with the norm and seminorm
‖ · ‖k,p,R and | · |k,p,R, respectively. Let Hk(R) be the Hilbert space W k,2(R),



EXPANDED MIXED FINITE ELEMENT DOMAIN DECOMPOSITION METHODS 257

endowed with the norm and seminorm ‖ · ‖k,R and | · |k,R, respectively. We further
denote by (·, ·)R and ‖·‖R the inner product and norm, respectively, in either L2(R)
or (L2(R))2. The subscript R will be omitted whenever R ≡ Ω. For a section S
of the domain boundary, 〈·, ·〉S and ‖·, ·‖S represent the L2(S)-inner product (or
duality pairing) and norm, respectively. We shall also use the space

H(div;R) = {v ∈ (L2(R))2 : ∇ · v ∈ L2(R)},

with corresponding norm

‖v‖div;R = (‖v‖2R + ‖∇ · v‖2R)1/2.

Finally, if χ ≡ χ(R) denotes any of the above normed spaces on R, with associated
norm ‖ · ‖χ, we shall consider Lq([0, T ];χ) as the space of χ-valued functions ϕ :
[0, T ] → χ(R), equipped with the norm

‖ϕ‖Lq(χ) ≡ ‖ϕ‖Lq([0,T ];χ) =















(

∫ T

0

‖ϕ(t)‖qχ dt

)1/q

if 1 ≤ q < ∞,

ess supt∈[0,T ] ‖ϕ(t)‖χ if q = ∞.

In this framework, the weak form of the expanded mixed formulation reads: Find
(u, λ, p) : [0, T ] → H0(div; Ω)× (L2(Ω))2 × L2(Ω) such that

(pt, w) + (∇ · u, w) = (f, w) ∀w ∈ L2(Ω),(4a)

(Gλ,v) = (p,∇ · v)− 〈g,v · n〉ΓD
∀v ∈ H0(div; Ω),(4b)

(Gu, µ) = (GKGλ, µ) ∀µ ∈ (L2(Ω))2,(4c)

p(0) = p0,(4d)

where

H0(div; Ω) = {v ∈ H(div; Ω) : v · n = 0 on ΓN} .
Note that, if G = K−1, (3b) implies λ = u and the standard mixed formulation
is obtained. Instead, if G is considered to be the identity matrix, we derive the
expanded mixed formulation proposed in [10]. In this paper, we shall locally define
G in terms of an affine mapping FT , as specified below.

2.2. Mixed finite element spaces. Let Th be a conforming, shape-regular and
quasi-uniform partition of Ω, where h = maxT∈Th

diam(T ). We assume that this

partition involves six triangles per interior vertex. Let T̂ be the reference equilateral
triangle with vertices r̂1 = (−1, 0)T , r̂2 = (1, 0)T and r̂3 = (0,

√
3)T , and introduce

a family of bijective affine mappings {FT }T∈Th
such that FT (T̂ ) = T . We further

define, for each mapping FT , the Jacobian matrix BT and its determinant JT =
| det(BT )|. The corresponding vertices of T are denoted by ri = (xi, yi)

T , while

the outward unit vectors normal to the edges of T̂ and T are represented by n̂i and
ni, respectively, for i = 1, 2, 3 (cf. Figure 1). For later use, we also introduce the

notations n̂ê and ne to define the outward unit vectors normal to the edges ê ⊂ ∂T̂
and e ⊂ ∂T , respectively.

Let V̂ (T̂ ) and Ŵ (T̂ ) be the RT0 finite element spaces on the reference element

T̂ , i.e.,

V̂ (T̂ ) = (P0(T̂ ))
2 ⊕ x̂P0(T̂ ), Ŵ (T̂ ) = P0(T̂ ),
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Figure 1. Affine mapping FT from the reference element T̂ onto
a generic triangle T ∈ Th.

where P0(T̂ ) denotes the set of constant functions defined on T̂ . The corresponding
spaces on a generic element T ∈ Th are defined via the transformations

v ↔ v̂ : v =

(

1

JT
BT v̂

)

◦ F−1
T ,

w ↔ ŵ : w = ŵ ◦ F−1
T .

The former is known as the Piola transformation (cf. [24]) and it is defined to
preserve the continuity of the normal components of velocity vectors across in-
terelement edges. This is a necessary condition that must be fulfilled when build-
ing approximations to H(div; Ω). The Piola transformation further satisfies the
following properties (cf. [7]):

(∇ · v, w)T = (∇̂ · v̂, ŵ)T̂ , 〈v · ne, w〉e = 〈v̂ · n̂ê, ŵ〉ê.
In this context, the MFE spaces Vh ×Wh ⊂ H0(div; Ω)×L2(Ω) on Th are given by

Vh =
{

v ∈ H0(div; Ω) : v|T ↔ v̂, v̂ ∈ V̂ (T̂ ) ∀T ∈ Th
}

,

Wh = {w ∈ L2(Ω) : w|T ↔ ŵ, ŵ ∈ Ŵ (T̂ ) ∀T ∈ Th}.
Note that Vh is also a subspace of (L2(Ω))2, since H0(div; Ω) ⊂ (L2(Ω))2. For

later use, let P̂ : L2(T̂ ) → Ŵ (T̂ ) be the L2(T̂ )-projection operator satisfying the

orthogonality condition (ϕ̂ − P̂ϕ̂, ŵ)T̂ = 0, for any ϕ̂ ∈ L2(T̂ ) and ŵ ∈ Ŵ (T̂ ).
Accordingly, let Ph : L2(Ω) → Wh be the L2(Ω)-projection operator, which is

locally defined on each element T as Phϕ|T = P̂ϕ̂ ◦F−1
T , for any ϕ ∈ L2(Ω). Using

a scaling argument and the Bramble–Hilbert lemma, it can be shown that

(5) ‖ϕ− Phϕ‖ ≤ Ch |ϕ|1,
where C is a positive constant, defined to be independent of h.

2.3. The semidiscrete scheme. The spatial discretization of the variational for-
mulation (4) requires computing two integrals of the form (Gq,v), for q, v ∈ Vh,
which approximate the left-hand sides of the equations (4b) and (4c). In doing so,
we shall consider a suitable quadrature rule that permits to reduce the semidiscrete
scheme to a cell-centered finite difference method for the pressure. The integration
on each element T ∈ Th is accomplished by mapping to the reference element T̂ ,
where the quadrature rule is defined. Using the Piola transformation, for any q,
v ∈ Vh and q̂, v̂ ∈ V̂ (T̂ ), we have

(Gq,v)T =

(

1

JT
BT

TGBT q̂, v̂

)

T̂

.
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If we choose G|T = JTB
−T
T B−1

T on each element T ∈ Th, we simplify the interaction

of the functions on T̂ , thus obtaining (Gq,v)T = (q̂, v̂)T̂ . Note that G is indeed
symmetric and positive definite on T ∈ Th. In virtue of the previous result, the
quadrature rule on T is defined as (cf. [1, 2])

(Gq,v)Q,T ≡ (q̂, v̂)Q̂,T̂ =
|T̂ |
6

(

3
∑

i=1

q̂(r̂i) · v̂(r̂i) + 3q̂(x̂c) · v̂(x̂c)

)

,

where |T̂ | is the area of T̂ and x̂c =
1
3 (r̂1 + r̂2 + r̂3). This quadrature rule is exact

for polynomials of degree 1. Furthermore, if we denote by v̂i the basis function
of V̂ (T̂ ) associated to the i-th edge êi, for i = 1, 2, 3, the following orthogonality
condition is satisfied:

(6) (v̂i, v̂j)Q̂,T̂ =

{

0, if i 6= j,
1
6 |T̂ | |ei|2, if i = j,

where |ei| is the length of the corresponding i-th edge ei of T , for i = 1, 2, 3. The
global quadrature rule is thus given by (Gq,v)Q =

∑

T∈Th
(Gq,v)Q,T .

As a result, the expanded MFE approximation to (4) reads: Find (uh, λh, ph) :
[0, T ] → Vh × Vh ×Wh such that

(ph,t, w) + (∇ · uh, w) = (f, w) ∀w ∈ Wh,(7a)

(Gλh,v)Q = (ph,∇ · v)− 〈g,v · n〉ΓD
∀v ∈ Vh,(7b)

(Guh, µ)Q = (GKGλh, µ) ∀µ ∈ Vh,(7c)

ph(0) = Shp(0),(7d)

where Shp(0) denotes the MFE elliptic projection of p(0) (to be defined below).
Note that the initial condition ph(0) determines λh(0) through (7b); in turn, uh(0)
is determined by λh(0) through (7c).

2.4. Reduction to a cell-centered finite difference scheme for the pres-

sure. In this subsection, we describe how to obtain a cell-centered finite difference
discretization in the pressure variable from the expanded MFE formulation (7).
Let Ne and NT be the number of edges and elements in Th, respectively. If we
denote by {vi}Ne

i=1 and {wj}NT

j=1 the respective basis functions of Vh and Wh, the

semidiscrete solution (uh, λh, ph) can be expressed as

uh(x, t) =
∑Ne

i=1 Uh,i(t)vi(x),

λh(x, t) =
∑Ne

i=1 Λh,i(t)vi(x),

ph(x, t) =
∑NT

i=1 Ph,i(t)wi(x).

Defining the vectors Uh = (Uh,1, Uh,2, . . . , Uh,Ne
)T , Λh = (Λh,1,Λh,2, . . . ,Λh,Ne

)T

and Ph = (Ph,1, Ph,2, . . . , Ph,NT
)T , the differential system stemming from (7a)–(7c)

can be written in matrix form as

(8)





P ′
h

0
0



+





0 −D−1B 0
BT 0 S
0 −S C









Ph

Uh

Λh



 =





Fh

Gh

0



 ,

where the matrices B ∈ R
NT×Ne , C ∈ R

Ne×Ne and S ∈ R
Ne×Ne are given by

(B)ij = −(∇ · vj , wi), for i = 1, 2, . . . , NT , j = 1, 2, . . . , Ne,

(C)ij = (GKGvj ,vi), for i, j ∈ {1, 2, . . . , Ne},
(S)ij = (Gvj ,vi)Q, for i, j ∈ {1, 2, . . . , Ne}.
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Figure 2. Stencil for the discrete diffusion AhPh on a generic
element T ∈ Th. Symbols: �, Uh; ◦, Λh; •, Ph.

Note that C is symmetric, positive definite and sparse, and S is diagonal with
positive diagonal entries (see (6)). In addition, D ∈ R

NT×NT is given by D =
diag(|T1|, |T2|, . . . , |TNT

|), where |Ti| denotes the area of Ti, for i = 1, 2, . . . , NT .
Finally, the vectors Fh ∈ R

NT and Gh ∈ R
Ne satisfy

(Fh)i =
1

|Ti| (f, wi), for i = 1, 2, . . . , NT ,

(Gh)i = −〈g,vi · n〉ΓD
, for i = 1, 2, . . . , Ne.

In order to derive a cell-centered scheme for the pressure, we need to express
Uh in terms of Ph and substitute this expression into the first equation of (8).
To this end, we first obtain Λh = S−1(Gh − BTPh) from the second equation,
and subsequently derive Uh = S−1CΛh from the third equation. Inserting these
expressions back into the first equation, we get

P ′
h +D−1BS−1CS−1BTPh = Fh +D−1BS−1CS−1Gh.

Hence, if we denote Ah = D−1BS−1CS−1BT and Mh = D−1BS−1CS−1Gh, we
can rewrite the expanded MFE method (7) as a stiff initial value problem of the
form1: Find Ph : [0, T ] → Hp such that

P ′
h(t) +AhPh(t) = Fh(t) +Mh(t) t ∈ (0, T ],(9a)

Ph(0) = P 0
h ,(9b)

where P 0
h ∈ R

NT is given by (P 0
h )i = 1

|Ti|
∫

Ti
p0(x) dx, for i = 1, 2, . . . , NT . The

discrete diffusion term AhPh shows a local 10-point stencil on a generic element
T ∈ Th (cf. Figure 2).

3. Error analysis of the semidiscrete scheme

In this section, we derive a priori error estimates for the expanded MFE formu-
lation (7). The results are based on the convergence behaviour of a so-called MFE
elliptic projection, first proposed in [29]. Recalling (4), such a projection can be
expressed in the form: Find (Rhu,Lhλ,Shp) : [0, T ] → Vh × Vh ×Wh such that

(∇ · Rhu, w) = (f − pt, w) ∀w ∈ Wh,(10a)

(GLhλ,v)Q = (Shp,∇ · v) − 〈g,v · n〉ΓD
∀v ∈ Vh,(10b)

(GRhu, µ)Q = (GKGLhλ, µ) ∀µ ∈ Vh,(10c)

(Shp(0), w) = (p0, w) ∀w ∈ Wh.(10d)

1For a fixed t ∈ [0, T ], the vector space Hp contains the pressure functions Ph(t) whose degrees

of freedom are located at the centroids of the triangles.
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Note that the triple (Rhu,Lhλ,Shp) is precisely the solution of the expanded MFE
approximation to a continuous elliptic problem whose exact solution is (u, λ, p).
This formulation shows a dual–dual mixed structure and can be proved to satisfy
a discrete inf–sup condition (cf. [12]). Subtracting (10) from (4), we get the error
equations

(∇ · (u−Rhu), w) = 0 ∀w ∈ Wh,(11a)

(Gλ,v) − (GLhλ,v)Q = (p− Shp,∇ · v) ∀v ∈ Vh,(11b)

(Gu, µ)− (GRhu, µ)Q = (GKG(λ − Lhλ), µ) ∀µ ∈ Vh,(11c)

(p(0)− Shp(0), w) = 0 ∀w ∈ Wh.(11d)

The convergence analysis of this formulation has been developed in [2]. The
main result is provided in the next lemma, which assumes the existence of a global
mapping F : Ω̂ → Ω; here, Ω̂ denotes a reference domain that can be discretized
using a mesh of equilateral triangles.

Lemma 1 (Arbogast-Dawson-Keenan-Wheeler-Yotov [2, Theorem 8.4]). Let the
triple (Rhu,Lhλ,Shp) be the mixed finite element elliptic projection of (u, λ, p) on

Th as given by (10). If there exists a C3(Ω̂∪∂Ω̂) mapping F : Ω̂ → Ω, then it holds,
for all t ∈ [0, T ],

‖u(t)−Rhu(t)‖+ ‖λ(t)− Lhλ(t)‖ ≤ Ch,(12)

‖p(t)− Shp(t)‖ ≤ Ch,(13)

where C is a positive constant, defined to be independent of h.

Remark 1. Experimentally, for smooth problems, Shp(t) has been observed to be
O(h2) superconvergent to p(t) at the centroids of the triangles, for all t ∈ [0, T ].

Based on (12) and (13), the error estimates for the semidiscrete scheme (7) are
derived in the following theorem.

Theorem 1. Let the triple (uh, λh, ph) be the expanded mixed finite element ap-
proximation to (u, λ, p) on Th as given by (7). Under the hypotheses of Lemma 1,
it holds

‖u− uh‖L∞(L2) + ‖λ− λh‖L∞(L2) ≤ Ch,(14)

‖p− ph‖L∞(L2) ≤ Ch,(15)

where C is a positive constant, defined to be independent of h.

Proof. Let us begin with the analysis of both the adjusted gradient and pressure.
For all t ∈ [0, T ], the triangle inequality implies

‖λ− λh‖ ≤ ‖λ− Lhλ‖+ ‖Lhλ− λh‖,(16)

‖p− ph‖ ≤ ‖p− Shp‖+ ‖Shp− ph‖.(17)

Note that, in both equations, the first term on the right-hand side is bounded by
Lemma 1. In order to derive the corresponding bounds for the second terms, we
subtract (7) from (4) to obtain

(pt − ph,t, w) + (∇ · (u− uh), w) = 0 ∀w ∈ Wh,

(Gλ,v) − (Gλh,v)Q = (p− ph,∇ · v) ∀v ∈ Vh,

(Gu, µ)− (Guh, µ)Q = (GKG(λ − λh), µ) ∀µ ∈ Vh,

(p(0)− ph(0), w) = 0 ∀w ∈ Wh.
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If we take into account (11) and further denote ξh = Shp − ph, γh = p − Shp,
ζh = Rhu− uh and ηh = Lhλ− λh, the preceding equations can be written in the
form

(ξh,t + γh,t, w) + (∇ · ζh, w) = 0 ∀w ∈ Wh,(18a)

(Gηh,v)Q = (ξh,∇ · v) ∀v ∈ Vh,(18b)

(Gζh, µ)Q = (GKGηh, µ) ∀µ ∈ Vh,(18c)

ξh(0) = 0.(18d)

In this derivation, we use the easily established fact that the projection operator Sh

commutes with time differentiation. At this point, we take two different approaches
to analyze the convergence of either ξh or ηh.

In the former case, we choose v = ζh, µ = ηh and w = ξh. Then, if we add (18a)
and (18b), and subsequently subtract (18c), we obtain

(ξh,t, ξh) + (GKGηh, ηh) = −(γh,t, ξh).

Using the Cauchy–Schwarz and Young’s inequalities, together with (2), we get

1

2

d

dt
‖ξh‖2 + C0‖ηh‖2 ≤

1

2
(‖γh,t‖2 + ‖ξh‖2),

where C0 is a positive constant, defined to be independent of h. Integration with
respect to the time variable from 0 to t yields

‖ξh(t)‖2 + 2C0

∫ t

0

‖ηh‖2dτ ≤
∫ t

0

(‖γh,t‖2 + ‖ξh‖2) dτ,

for all t ∈ [0, T ], since ξh(0) = 0 (see (18d)). The subsequent application of Gron-
wall’s lemma leads to

‖ξh(t)‖2 + 2C0

∫ t

0

‖ηh‖2dτ ≤ C1

∫ t

0

‖γh,t‖2 dτ,

where C1 is also a positive constant not depending on h. The right-hand side of
this expression is bounded by (13). Since the second term on the left-hand side is
non-negative, it follows that ‖ξh(t)‖ ≤ Ch, for all t ∈ [0, T ]. Hence, (15) follows by
inserting this bound and (13) into (17), and taking the supremum over all t.

To study the convergence of ηh, we differentiate (18b) with respect to t and
choose v = ζh, µ = ηh,t and w = ξh,t. This yields

(ξh,t, ξh,t) + (GKGηh, ηh,t) = −(γh,t, ξh,t).

In this case, we have

‖ξh,t‖2 +
1

2

d

dt
(GKGηh, ηh) ≤

1

2
(‖γh,t‖2 + ‖ξh,t‖2).

Integrating this expression with respect to t and taking into account (2), we obtain

‖ηh(t)‖2 ≤ C

∫ t

0

‖γh,t‖2 dτ,

for all t ∈ [0, T ]. Note that ηh(0) = 0, as can be derived from (18b) by choosing
v = ηh(0) (provided that ξh(0) = 0). Once again, (13) can be used to bound the
right-hand side of this inequality. Thus, recalling (12) and (16) and taking the
supremum over all t, we obtain the bound in (14) for the adjusted gradient.

Finally, the velocity error u−uh is analyzed via a different approach. We define
the discrete (L2(Ω))2-projection operator QV : (L2(Ω))2 → Vh as given by

((QV q− q),v)Q = 0 ∀v ∈ Vh.
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This operator satisfies the approximation property (cf. [2])

(19) ‖QV q− q‖ ≤ Ch ‖q‖1.
For all t ∈ [0, T ], we split the error term in the L2(Ω)-norm as

(20) ‖u− uh‖ ≤ ‖u−QV u‖+ ‖QV u− uh‖.
The first term on the right-hand side is bounded by (19), whilst the second one can
be proved to satisfy (cf. [2, Theorem 8.4])

(21) ‖QV u− uh‖ ≤ C(h‖u‖2 + ‖λ− λh‖).
As derived above, the error term ‖λ− λh‖ is O(h). Hence, inserting (19) and (21)
into (20) and taking the supremum over all t, we obtain the bound in (14) for the
velocity variable and complete the proof. �

4. The domain decomposition splitting method

In this section, we construct an efficient time integrator for solving the initial
value problem (9). To this end, we first introduce a domain decomposition operator
splitting for the discrete diffusion and right-hand side. This splitting is subsequently
combined with a fractional step formula, which reduces the system of ordinary
differential equations (9) to a collection of algebraic linear systems (one per internal
stage).

4.1. A domain decomposition operator splitting. Let Ω∗
1,Ω

∗
2, . . . ,Ω

∗
m form a

non-overlapping decomposition of Ω intom subdomains. This decomposition fulfills

the conditions Ω = ∪m
k=1Ω

∗
k and Ω∗

k ∩ Ω∗
l = ∅, for k 6= l. In turn, each Ω∗

k ⊂ Ω is
considered to be an open disconnected set involving mk connected components, i.e.,
Ω∗

k = ∪mk

l=1Ω
∗
kl, for k = 1, 2, . . . ,m. Such components are pairwise disjoint (that is,

Ω∗
ki ∩Ω∗

kj = ∅, for i 6= j) and chosen to be shape regular of diameter H . Typically,
the components Ω∗

kl correspond to the elements in a coarse partition TH of Ω with
mesh size H .

Let Ωkl be the extension of Ω∗
kl obtained by translating its internal boundaries,

∂Ω∗
kl ∩Ω, within a distance γ ≡ βH in Ω. The parameter β > 0 is usually referred

to as the overlapping factor and its value must be chosen in such a way that the
extended components are also pairwise disjoint (i.e., Ωki ∩ Ωkj = ∅, for i 6= j). If
we denote by Ωk ⊂ Ω the open disconnected set defined as Ωk = ∪mk

l=1Ωkl, for k =
1, 2, . . . ,m, then the collection Ω1,Ω2, . . . ,Ωm form an overlapping decomposition
of Ω into m subdomains. Such a decomposition satisfies Ω = ∪m

k=1Ωk.
Next, we construct a smooth partition of unity consisting of a family of m non-

negative and C∞(Ω) functions {ρk(x)}mk=1. Each function ρk : Ω → [0, 1] is

(22) ρk(x) =











0, if x ∈ Ω \ Ωk,

hk(x), if x ∈ ∪m
l=1; l 6=k (Ωk ∩ Ωl),

1, if x ∈ Ωk \ ∪m
l=1; l 6=k (Ωk ∩Ωl),

where hk(x) is C∞(Ω) and satisfies 0 ≤ hk(x) ≤ 1 and
∑m

k=1 hk(x) = 1. Therefore,

the family of functions {ρk(x)}mk=1 fulfills, for any x ∈ Ω,

(23) supp(ρk(x)) ⊂ Ωk, 0 ≤ ρk(x) ≤ 1,

m
∑

k=1

ρk(x) = 1.

In this framework, we introduce the decompositions

Ah =
∑m

k=1 Ah,k, Mh =
∑m

k=1 Mh,k, Fh =
∑m

k=1 Fh,k,
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where Ah,k ∈ R
NT×NT and Mh,k ∈ R

NT are given by

(24) Ah,k = D−1BS−1CkS
−1BT , Mh,k = D−1BS−1CkS

−1Gh,

for k = 1, 2, . . . ,m. Here, we define Ck ∈ R
Ne×Ne as (Ck)ij = (GρkKGvj ,vi), for

i, j ∈ {1, 2, . . . , Ne}. On the other hand, each vector component of Fh,k ∈ R
NT

fulfills

(Fh,k)i =
1

|Ti| (ρkf, wi), for i = 1, 2, . . . , NT , k = 1, 2, . . . ,m.

As a result, the system of ordinary differential equations (9a) can be expressed as
a split system of the form

(25) P ′
h +

m
∑

k=1

Ah,kPh =

m
∑

k=1

Lh,k,

where Lh,k = Fh,k +Mh,k.

Lemma 2. The matrices {Ah,k}mk=1 defined in (24) satisfy

(26) ξTAh,kξ ≥ 0 ∀ ξ 6= 0 ∈ R
NT ,

for k = 1, 2, . . . ,m.

Proof. Since C is symmetric and positive definite, Ck will be symmetric and non-
negative definite, due to the presence of ρk in its definition (see (23)). As a re-
sult, the matrix Nk = BS−1CkS

−1BT is also symmetric and non-negative definite.
Hence, for any ξ 6= 0 ∈ R

NT , we consider θ = D−1/2ξ, thus obtaining

ξTD−1Nkξ = θTD−1/2NkD
1/2θ ≥ 0,

which follows from the Rayleigh quotient, since D−1/2NkD
1/2 is similar to Nk.

This result implies (26) and completes the proof. �

A natural way to solve (25) is the use of a fractional step time integrator which
takes advantage of the multiterm partitioning. Since the matrices {Ah,k}mk=1 do not
commute pairwise, we further require a method whose stability is not affected by the
lack of commutativity of the split terms. In the sequel, we present a family of time-
splitting formulae defined to be unconditionally stable even in the non-commuting
case.

4.2. The fully discrete scheme. Let us consider a family of FSRKm methods
involving an arbitrary numberm of implicit parts. When applied to the split system
(25), it gives rise to the fully discrete scheme

(27)



































For n = 0, 1, . . . , N :

Pn,0
h = Pn

h ,

For k = 1, 2, . . . ,m :

Pn,k
h = Pn,k−1

h + τ (−Ah,kP
n,k
h + Lh,k(tn+1)),

Pn+1
h = Pn,m

h .

For the sake of simplicity, the time step τ is considered to be constant, tn = nτ and
N = [T/τ ]− 1. The fully discrete solution Pn

h is an approximation to the solution
of (25) at t = tn. This family of time integrators, first proposed in [30], is typically
referred to as the fractional implicit Euler method, since one integration step of
(27) may be seen as m consecutive implicit Euler steps.
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The linear system to solve at the k-th internal stage of (27) is given by

(28) (I + τAh,k)P
n,k
h = T n,k

h ,

for k = 1, 2, . . . ,m, where I denotes the identity matrix and T n,k
h is defined to

be T n,k
h = Pn,k−1

h + τLh,k(tn+1). Since Ah,k contains the function ρk(x), with

supp(ρk(x)) ⊂ Ωk (cf. (23)), the previous system is restricted to subdomain Ωk.
Further, as Ωk involves mk disjoint connected components, namely Ωkl, the linear
system (28) is indeed a collection of mk uncoupled linear subsystems of the form

(29) (Ikl + τAh,kl)RklP
n,k
h = RklT

n,k
h ,

where Ikl = RklIRT
kl and Ah,kl = RklAh,kRT

kl, Rkl being a restriction matrix from
Ω to Ωkl (see [18, Remark 5.1] for details). Unlike most classical domain decomposi-
tion algorithms (cf. [20]), the solution of (29) does not require any Schwarz iteration
procedure, since the internal stages in (27) are sequentially solved (i.e., interface
conditions need not be imposed on subdomains during the solution process).

5. Error analysis of the fully discrete scheme

In this section, we describe the convergence analysis of the fully discrete scheme.
For that purpose, let us first define the full discretization error at tn+1 as the
difference p̄h(tn+1) − Pn+1

h , where p̄h(t) stands for rhp(x, t) and rh : Wh → Hp

denotes the restriction operator of the scalar functions in Wh to the cell centers of
Th. Then, the global error can be decomposed in the form

(30) p̄h(tn+1)− Pn+1
h = (p̄h(tn+1)− P̂n+1

h ) + (P̂n+1
h − Pn+1

h ),

where P̂n+1
h is the numerical solution obtained when applying (27) with a time step

τ and the initial value Pn
h = p̄h(tn). The difference p̄h(tn+1)− P̂n+1

h is commonly

known as the full truncation error at tn+1 and will be denoted by βn+1
h . In the

sequel, we shall describe in detail how to derive suitable bounds for (30).
Throughout this section, (·, ·)ℓ2 stands for the discrete L2-inner product in Hp,

and ‖ · ‖ℓ2 = (·, ·)1/2ℓ2 represents the induced discrete L2-norm.

5.1. Stability. In order to study the stability of the fully discrete scheme (27),
we consider the perturbed scheme

(31)















































Q0
h = P 0

h + ε0h,

For n = 0, 1, . . . , N :

Qn,0
h = Qn

h,

For k = 1, 2, . . . ,m :

Qn,k
h = Qn,k−1

h + τ (−Ah,kQ
n,k
h + Lh,k(tn+1)) + τδn,kh ,

Qn+1
h = Qn,m

h ,

where ε0h denotes the error in the initial data, and δn,kh may stand for round-off
errors, errors due to non-exactly solving the implicit relations or discretization
errors. Let us next define, for n = 0, 1, . . . , NT ,

(32) εn+1
h = Qn+1

h − Pn+1
h .

Subtracting (27) from (31), we may write

(33) εn+1
h = Rh ε

n
h + τ

m
∑

k=1

Sk
hδ

n,k
h ,
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where

Rh = (I + τAh,m)−1 (I + τAh,m−1)
−1 · · · (I + τAh,1)

−1,(34)

Sk
h = (I + τAh,m)−1 (I + τAh,m−1)

−1 · · · (I + τAh,k)
−1,(35)

for k = 1, 2, . . . ,m. Observe that Rh = S1
h. In this framework, the stability of the

fully discrete scheme (27) will be guaranteed if εn+1
h can be bounded in terms of

the perturbations. To obtain this bound, we first quote an auxiliary lemma, which
can be derived using well-known stability results (cf. [13]).

Lemma 3. Let Λ ∈ R
s×s satisfy ξTΛξ ≥ 0, for any ξ 6= 0 ∈ R

s, with s ∈ N.
Then, it holds

(36) ‖(I + µΛ)−1‖2 ≤ 1,

where µ is a positive constant and ‖ · ‖2 denotes the spectral norm.

The stability of the fully discrete scheme (27) now follows.

Theorem 2. Let εn+1
h be defined by (32). If the split matrices {Ah,k}mk=1 are given

by (24), then it holds, for n = 0, 1, . . . , N ,

(37) ‖εn+1
h ‖ℓ2 ≤ ‖ε0h‖ℓ2 + C max

0≤j≤n

1≤k≤m

‖δj,kh ‖ℓ2 .

Proof. The expression (33) can be rewritten in the form

εn+1
h = (Rh)

n+1ε0h + τ

n
∑

j=0

m
∑

k=1

(Rh)
n−jSk

hδ
j,k
h .

Recall that the split matrices {Ah,k}mk=1 are involved in the definition of Rh and
{Sk

h}mk=1 through (34) and (35), respectively. Since they satisfy (26), the bound (36)
applies. Hence, (37) follows from the triangle inequality in the norm ‖ · ‖ℓ2 . �

Note that (37) shows unconditional stability of the method with respect to the

initial error ε0h and the perturbations δj,kh .

5.2. Consistency. Let us consider the perturbed scheme (31), with Qn
h = p̄h(tn)

and Qn,k
h = p̄h(tn+1), for k = 1, 2, . . . ,m. As a result, Qn+1

h = p̄h(tn+1) and

(32) represents the full discretization error at tn+1, i.e., ε
n+1
h = p̄h(tn+1) − Pn+1

h .

Since P̂n+1
h is the numerical solution obtained in one single step of (27), starting

at Pn
h = p̄h(tn), we have that Pn+1

h − P̂n+1
h = Rhε

n
h and the relation (30) can be

expressed as

(38) εn+1
h = Rhε

n
h + βn+1

h .

A term-by-term comparison of (33) and (38) yields the following expression for the
full truncation error

(39) βn+1
h = τ

m
∑

k=1

Sk
hδ

n,k
h .

For later use, we define the spatial truncation error αh(t) as given by

(40) αh(t) = p̄′h(t) +Ahp̄h(t)− Lh(t), t ∈ [0, T ],

where p̄′h(t) is rhpt(x, t) and Lh(t) = Fh(t) +Mh(t). The full truncation error can
be bounded as follows.
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Theorem 3. Let p̄h(t) fulfill

‖p̄′′h(t)‖ℓ2 ≤ C,(41a)

‖Ah,j p̄
′
h,k(t)‖ℓ2 ≤ C,(41b)

where p̄′h,k(t) = Lh,k(t) − Ah,kp̄h(t), for j, k ∈ {1, 2, . . . ,m} and t ∈ [tn, tn+1].

Then, the full truncation error βn+1
h satisfies, for n = 0, 1, . . . , NT ,

(42) ‖βn+1
h ‖ℓ2 ≤ C(τ2 + τ ‖αh(tn+1)‖ℓ2) ∀ τ ∈ (0, τ0],

where C is a positive constant, defined to be independent of h and τ .

Proof. Let Qn
h = p̄h(tn) and Qn,k

h = p̄h(tn+1), for k = 1, 2, . . . ,m, in (31). A
suitable Taylor expansion of p̄h around t = tn+1, together with the relation

αh(tn+1) = p̄′h(tn+1) +

m
∑

k=1

(Ah,kp̄h(tn+1)− Lh,k(tn+1)),

yields the following expressions for the perturbation terms

δn,1h = αh(tn+1) +

m
∑

k=2

(Lh,k(tn+1)−Ah,kp̄h(tn+1))− 1
2τ p̄

′′
h(ξn),

δn,kh = Ah,kp̄h(tn+1)− Lh,k(tn+1), for k = 2, 3, . . . ,m,

where ξn ∈ [tn, tn+1]. Inserting these expressions into the definition (39) of the full
truncation error, we get

βn+1
h = Rh

(

ταh(tn+1)− 1
2τ

2p̄′′h(ξn)
)

(44)

+
m−1
∑

j=1

Sj
hτ

2Ah,j





m
∑

k=j+1

Ah,kp̄h(tn+1)− Lh,k(tn+1)



 .

Finally, (42) is obtained by using (36), with Λ = Ah,k, together with the bounds
(41). �

Remark 2. Conditions of type (41b) are derived in [15]. In this work, the authors
prove similar bounds for a standard 5-point finite difference approximation to the
diffusion term −∇ · (ρkK∇p). In their analysis, they consider a two-dimensional
parabolic problem with homogeneous Dirichlet boundary data. These results may
be extended to the expanded mixed finite element method presented above by us-
ing the following idea. Recall that the split discrete diffusion term is given by
D−1BS−1CkS

−1BTPh. Since BTPh involves first-order differences in the pres-
sure variable, S−1CkS

−1BTPh can be viewed as a linear combination of pressure
differences, whose coefficients depend on the elements of tensor K. This term repre-
sents an approximation to the negative partitioned flux, ρkK∇p . Since B provides
an extra level of first-order differences, BS−1CkS

−1BTPh becomes a 10-point
stencil approximation to −∇ · (ρkK∇p) on three-line triangular meshes. Note that
pre-multiplication by the inverse of D introduces a scaling of the stencil coefficients,
but does not modify the stencil structure. In this framework, taking into account
that the smooth partition of unity {ρk(x)}mk=1 defined in (22) satisfies

‖ρk‖Cq(Ω) ≤ Cγ−q,

where the constant C > 0 is independent of k and γ (cf. [15]), the upper bound in
(41b) can be proved to satisfy

(45) ‖Ah,j p̄
′
h,k(t)‖ℓ2 ≤ C

(

1

γ2
‖f‖C2(Ω) +

1

γ3
‖p‖C4(Ω)

)

.
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Here, we make use of the Hölder norms

‖u‖Cq(Ω) = sup
|α|≤q

max
Ω

|∂αu|,

where q is a non-negative integer and ∂α represents the multi-index notation

∂α =
∂|α|

∂xα1∂yα2

, α = (α1, α2).

Further considering (44) in combination with (45), we may derive a bound for the
full truncation error βn+1

h in terms of the overlap γ. However, as noted in [15], the
resulting estimate is too pessimistic when compared to actual numerical results.

5.3. Convergence. The convergence of the fully discrete scheme (27) follows from
the preceding results on consistency and stability. In this subsection, with an abuse
of notation, we shall introduce the discrete norm

(46) ‖p̄h − Ph‖ℓ∞(ℓ2) = max
0≤n≤NT

‖p̄h(tn+1)− Pn+1
h ‖ℓ2

to compute the full discretization error of the method.

Theorem 4. Under the hypotheses of Theorem 3, the fully discrete solution Pn+1
h

of the method (27), with {Ah,k}mk=1 as given by (24), satisfies

(47) ‖p̄h − Ph‖ℓ∞(ℓ2) ≤ C(τ + h2 + max
0≤t≤T

‖αh(t)‖ℓ2),

where C is a positive constant, defined to be independent of h and τ .

Proof. Expanding the recurrence relation (38) for the full discretization error, we
get

(48) εn+1
h = (Rh)

n+1ε0h +
n+1
∑

j=1

(Rh)
n+1−jβj

h,

where ε0h = p̄h(0)− P 0
h . Since P 0

h = rh(Php(0)), and Php is O(h2)-close to p at the
center of mass of each element, then ‖ε0h‖ℓ2 ≤ Ch2. Recalling (36), with Λ = Ah,k,
together with the bounds (41) and the consistency result (42), we obtain

‖εn+1
h ‖ℓ2 ≤ Ch2 +

n+1
∑

j=1

C(τ2 + τ ‖αh(tj)‖ℓ2) ≤ C(τ + h2 + max
0≤t≤T

‖αh(t)‖ℓ2).

Taking the maximum over n implies (47) and completes the proof. �

Remark 3. Suitable Taylor expansions of the coefficients of the local 10-point sten-
cil associated to the spatial discretization permit us to prove first-order convergence
of its local truncation error αh(t). The combination of this bound with the thesis of
Theorem 4 yields the convergence result

(49) ‖rhp− Ph‖ℓ∞(ℓ2) ≤ C(τ + h).

In addition, if we define pn+1
h to be the element of Wh satisfying rhp

n+1
h = Pn+1

h ,
it can be shown that

‖p(tn+1)− pn+1
h ‖ ≤ ‖p(tn+1)− Php(tn+1)‖+ ‖rh(Php(tn+1))− Pn+1

h ‖ℓ2,
where we use the condition ‖w‖ = ‖rhw‖ℓ2 , for any w ∈ Wh. The former term on
the right-hand side is O(h) due to (5), while the latter can be split in the form

‖rh(Php(tn+1))− Pn+1
h ‖ℓ2 ≤ ‖rh(Php(tn+1)− p(tn+1))‖ℓ2 + ‖rhp(tn+1)− Pn+1

h ‖ℓ2 .
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As mentioned above, the first term is, in this case, O(h2), and the second is O(τ+h)
due to (49). Thus, if we take the maximum over n, we obtain

‖p− ph‖ℓ∞(L2) = max
0≤n≤NT

‖p(tn+1)− pn+1
h ‖ ≤ C(τ + h).

Remark 4. Similar domain decomposition splitting methods of first and second
order in time are studied in [14, 15] for a finite difference spatial discretization
on rectangular grids. In particular, the authors propose and analyze a first-order
fractional step method based on the approximate matrix factorization technique (cf.
[13]), and a second-order ADI scheme inspired by the method of Douglas and Gunn
(cf. [11]). In the latter case, the second-order convergence is achieved at the price of
losing the unconditional stability without additional assumptions. More specifically,
the scheme can be proved to be unconditionally stable if the split matrices {Ah,k}mk=1

are required to commute pairwise. In the non-commuting case, the unconditional
stability is preserved for m = 2 in the norm ‖(I + ατAh,2) · ‖ℓ2 , with α > 0, but the
method turns to be conditionally stable for m ≥ 3. In [14], an alternative method
that provides second-order convergence with unconditional stability is also discussed.
The method is based on the so-called Strang splitting (cf. [23]) in combination with
the Crank–Nicolson scheme. In this case, although the unconditional stability is
preserved, the method requires more linear systems to be solved than the preceding
schemes.
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[6] Baranger, J., Mâıtre, J.-F. and Oudin, F., Connection between finite volume and mixed finite
element methods, RAIRO Modél. Math. Anal. Numér. 30 (1996), pp. 445–465.

[7] Brezzi, F. and Fortin, M., Mixed and Hybrid Finite Element Methods, Springer Ser. Comput.
Math. 15, Springer, Berlin, 1991.

[8] Brezzi, F., Fortin, M. and Marini, L.D., Error analysis of piecewise constant pressure approx-
imations of Darcy’s law, Comput. Methods Appl. Mech. Engrg. 195 (2006), pp. 1547–1559.

[9] Bujanda, B. and Jorge, J.C., Fractional step Runge–Kutta methods for time dependent
coefficient parabolic problems, Appl. Numer. Math. 45 (2003), pp. 99–122.

[10] Chen, Z., Expanded mixed finite element methods for linear second-order elliptic problems,
I, RAIRO Modél. Math. Anal. Numér. 32 (1998), pp. 479–499.

[11] Douglas, Jr., J. and Gunn, J.E., A general formulation of alternating direction method: Part
I. Parabolic and hyperbolic problems, Numer. Math. 6 (1964), pp. 428–453.

[12] Gatica, G.N. and Heuer, N., An expanded mixed finite element approach via a dual–dual
formulation and the minimum residual method, J. Comput. Appl. Math. 132 (2001), pp.
371–385.

[13] Hundsdorfer, W. and Verwer, J.G., Numerical Solution of Time-Dependent Advection–
Diffusion–Reaction Equations, Springer Ser. Comput. Math. 33, Springer, Berlin, 2003.
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