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FIXED-POINT FAST SWEEPING WENO METHODS FOR

STEADY STATE SOLUTION OF SCALAR HYPERBOLIC

CONSERVATION LAWS

SHANQIN CHEN

Abstract. Fast sweeping methods were developed in the literature to efficiently solve static
Hamilton-Jacobi equations. This class of methods utilize the Gauss-Seidel iterations and alter-
nating sweeping strategy to achieve fast convergence rate. They take advantage of the properties
of hyperbolic partial differential equations (PDEs) and try to cover a family of characteristics of
the corresponding Hamilton-Jacobi equation in a certain direction simultaneously in each sweep-
ing order. In [16], the Gauss-Seidel idea and alternating sweeping strategy were adopted to the
time-marching type fixed-point iterations to solve the static Hamilton-Jacobi equations, and nu-
merical examples verified at least a 2 times acceleration of convergence even on relatively coarse
grids. In this paper, we apply the same approach to solve steady state solution of hyperbolic
conservation laws. We use numerical examples to verify that a 2 times acceleration of convergence
is achieved. And the computational cost is exactly the same as the time-marching scheme at each

iteration. Based on the Gauss-Seidel iterations, we explore the successive overrelaxation (SOR)
approach to further improve the performance of our fixed-point sweeping methods.

Key words. fast sweeping methods, WENO methods, Jacobi iteration, Gauss-Seidel iteration,
hyperbolic conservation laws, steady state.

1. Introduction

Steady state problems for hyperbolic conservation laws and related Hamilton-
Jacobi (HJ) equations are common mathematical models appearing in many appli-
cations, such as fluid mechanics, optimal control, differential games, image pro-
cessing and computer vision, geometric optics, etc. For these boundary value
problems, their solution information propagates along characteristics starting from
the boundary. A class of iterative methods, called fast sweeping (FS) methods
[1, 6, 9, 12, 14, 16, 17, 18], take advantage of this property and try to cover a family
of characteristics of the HJ equations in a certain direction simultaneously in each
iteration. This iterative technique can achieve very fast convergence for computa-
tions of steady state solutions. Fast sweeping methods actually provide a general
methodology / technique to accelerate the convergence of numerical schemes for
steady state problems of hyperbolic type PDEs, although currently they are mostly
used for solving HJ equations.

Since fast sweeping technique mainly takes advantage of the characteristics prop-
erties of hyperbolic PDEs to accelerate the iteration convergence, it is natural to
apply this technique for solving steady states of general hyperbolic PDEs [2, 8].
In [16], we proposed fixed-point fast sweeping methods for static Hamilton-Jacobi
equations. The fixed-point fast sweeping approach is based on the time marching
approach and it has the advantages that the method is explicit and free of solving
nonlinear equations, and it is straightforward to apply high order approximations
and different numerical Hamiltonian for the general Hamilton-Jacobi equations.
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In this paper we apply this “explicit fast sweeping technique”, or the “fixed-point
fast sweeping method” to solve the steady state problems of hyperbolic conserva-
tion laws. The Gauss-Seidel idea and alternating sweeping strategy are adopted to
the time marching approach to accelerate its convergence to steady states without
any additional computational cost. Via numerical experiments, we verify this ac-
celeration. In this paper, we use the standard third order finite difference weighted
essentially non-oscillatory (WENO) scheme with Lax-Friedrichs flux splitting [5]
as the representation of high order schemes for hyperbolic conservation laws. But
this general approach can be directly applied to other schemes such as the residual
distribution WENO schemes [3] or Runge-Kutta discontinuous Galerkin methods
[4]. It can also be applied to other numerical fluxes such as Godunov flux, etc
[10]. Based on the Gauss-Seidel iterations, we explore the successive overrelaxation
(SOR) approach to further improve the performance of our fixed-point sweeping
methods.

In Section 2, we describe the fixed-point fast sweeping WENO methods for solv-
ing hyperbolic conservation laws, based on Gauss-Seidel iterations and SOR itera-
tions respectively. In Section 3, Numerical studies are performed to verify the faster
convergence speed than the usual time-marching approach. Concluding remarks are
given in Section 4.

2. Fixed-point fast sweeping WENO methods

Consider two-dimensional steady state problems of hyperbolic conservation laws
with appropriate boundary conditions

(1) f(u)x + g(u)y = h(u, x, y),

where u is the unknown function, f and g are flux functions, and h is the source
term. A high order spatial discretization of (1) leads to a nonlinear system. In this
paper, we use the third order finite difference WENO scheme with Lax-Friedrichs
flux splitting [10] for the spatial discretization.

2.1. WENO discretization. For the hyperbolic terms f(u)x+g(u)y, the conser-
vative finite difference scheme we use approximates the point values at a uniform
(or smoothly varying) grid (xi, yj) in a conservative fashion. Namely, the deriva-
tive f(u)x at (xi, yj) is approximated along the line y = yj by a conservative flux
difference

(2) f(u)x|x=xi
≈

1

∆x
(f̂i+1/2 − f̂i−1/2),

where for the third order WENO scheme the numerical flux f̂i+1/2 depends on the
three-point values f(ul), l = i − 1, i, i + 1, when the wind is positive (i.e., when
f ′(u) ≥ 0 for the scalar case, or when the corresponding eigenvalue is positive for the

system case with a local characteristic decomposition). This numerical flux f̂i+1/2

is written as a convex combination of two second order numerical fluxes based
on two different substencils of two points each, and the combination coefficients
depend on a “smoothness indicator” measuring the smoothness of the solution in
each substencil. The detailed formula is

(3) f̂i+1/2 = w0

[

1

2
f(ui) +

1

2
f(ui+1)

]

+ w1

[

−
1

2
f(ui−1) +

3

2
f(ui)

]

,

where

(4) wr =
αr

α1 + α2
, αr =

dr
(ǫ+ βr)2

, r = 0, 1.
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d0 = 2/3, d1 = 1/3 are called the ”linear weights”, and β0 = (f(ui+1)−f(ui))
2, β1 =

(f(ui) − f(ui−1))
2 are called the “smoothness indicators”. ǫ is a small positive

number chosen to avoid the denominator becoming 0. We take ǫ = 10−6 in this
paper.

When the wind is negative (i.e., when f ′(u) < 0), right-biased stencil with
numerical values f(ui), f(ui+1) and f(ui+2) are used to construct a third order

WENO approximation to the numerical flux f̂i+1/2. The formulae for negative and
positive wind cases are symmetric with respect to the point xi+1/2. For the general
case of f(u), we perform the ”Lax-Friedrichs flux splitting”

(5) f+(u) =
1

2
(f(u) + αu), f−(u) =

1

2
(f(u)− αu),

where α = maxu |f
′(u)|. f+(u) is the positive wind part, and f−(u) is the negative

wind part. Corresponding WENO approximations are applied to find numerical

fluxes f̂+
i+1/2 and f̂−

i+1/2 respectively. Then f̂i+ 1

2

= f̂+
i+1/2 + f̂−

i+1/2. Similar proce-

dures are applied to the y direction for g(u)y. See [10] for more details. Then we
obtain a nonlinear system

(6) 0 = −(f̂i+1/2,j − f̂i−1/2,j)/∆x− (ĝi,j+1/2 − ĝi,j−1/2)/∆y + h(uij , xi, yj),

i = 1, · · · , N ; j = 1, · · · ,M.

wheref̂ , ĝ are numerical fluxes obtained by Lax-Friedrichs flux splitting and WENO
approximation.

2.2. Gauss-Seidel fixed-point fast sweeping iterative scheme. We use pseudo-
time-marching approach to derive the fixed-point sweeping method for the nonlinear
system (6). We add a time derivative to the nonlinear system (6) and obtain an
ODE system

(7) duij(t)dt = −(f̂i+1/2,j− f̂i−1/2,j)/∆x−(ĝi,j+1/2− ĝi,j−1/2)/∆y+h(uij, xi, yj),

The right-hand-side (RHS) of (7) is a nonlinear function of numerical values at the
grid points of computational stencils. We denote it by L and can write (7) in the
following form

(8) duij(t)dt = L(ui−r,j , · · · , ui+s,j ;uij ;ui,j−r, · · · , ui,j+s),

i = 1, · · · , N ; j = 1, · · · ,M,

where r, s are values which depend on the order of the WENO approximation.
For the third order WENO scheme used in this paper, we have r = s = 2. A
time-marching method is often used to march the system (8) to the steady state.
Time-marching approach is actually a Jacobi type fixed-point iterative scheme. For
example the third order TVD Runge-Kutta scheme [11] has the following form for
the iteration step n:

(9) u
(1)
ij = un

ij +∆tL(un
i−r,j , · · · , u

n
i+s,j ;u

n
ij ;u

n
i,j−r, · · · , u

n
i,j+s),

i = 1, · · · , N ; j = 1, · · · ,M.

(10) u
(2)
ij =

3

4
un
ij +

1

4
u
(1)
ij +

1

4
∆tL(u

(1)
i−r,j, · · · , u

(1)
i+s,j ;u

(1)
ij ;u

(1)
i,j−r, · · · , u

(1)
i,j+s),

i = 1, · · · , N ; j = 1, · · · ,M.

(11) un+1
ij =

1

3
un
ij +

2

3
u
(2)
ij +

2

3
∆tL(u

(2)
i−r,j, · · · , u

(2)
i+s,j ;u

(2)
ij ;u

(2)
i,j−r, · · · , u

(2)
i,j+s),

i = 1, · · · , N ; j = 1, · · · ,M.
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To accelerate the computation and reduce the iteration steps to the steady state,
we apply the fast sweeping technique, namely, the Gauss-Seidel philosophy and
alternating direction iterations. By the Gauss-Seidel philosophy, the newest avail-
able numerical values of u are used in the interpolation stencils as long as they are
available. Hence (9)-(11) give the following fixed-point fast sweeping scheme:

(12) u
(1)
ij = un

ij +
γ

αx/∆x+ αy/∆y
L(u∗

i−r,j , · · · , u
∗
i+s,j ;u

n
ij ;u

∗
i,j−r, · · · , u

∗
i,j+s),

i = i1, · · · , iN ; j = j1, · · · , jM .

(13)

u
(2)
ij = u

(1)
ij +

γ

4(αx/∆x+ αy/∆y)
L(u∗∗

i−r,j, · · · , u
∗∗
i+s,j ;u

(1)
ij ;u∗∗

i,j−r, · · · , u
∗∗
i,j+s),

i = i1, · · · , iN ; j = j1, · · · , jM .

(14)

un+1
ij = u

(2)
ij +

2γ

3(αx/∆x+ αy/∆y)
L(u∗∗∗

i−r,j, · · · , u
∗∗∗
i+s,j;u

(2)
ij ;u∗∗∗

i,j−r, · · · , u
∗∗∗
i,j+s),

i = i1, · · · , iN ; j = j1, · · · , jM .

The above schemes (12)-(14) denote a complete iteration step n which includes
three sub-iterations. The complete iterations do not just proceed in only one di-
rection i = 1 : N, j = 1 : M as the time-marching approach (9)-(11), but in the
following four alternating directions repeatedly,

(1) i = 1 : N, j = 1 : M ;

(2) i = N : 1, j = 1 : M ;

(3) i = N : 1, j = M : 1;

(4) i = 1 : N, j = M : 1.

Note that the sweeping directions of the three sub-iterations (12)-(14) are the same
inside a complete iteration step n. Since the strategy of alternating direction sweep-
ings utilizes the characteristics property of hyperbolic PDEs, combining with the
Gauss-Seidel philosophy, we will observe the acceleration of convergence speed for
time-marching approach, which will be shown in the following numerical experi-
ments. By the Gauss-Seidel philosophy, we use the newest numerical values on the
computational stencil of the WENO scheme whenever they are available. That is
the reason why we use notations such as u∗, u∗∗, u∗∗∗ to represent the values in the

scheme (12)-(14). For example u∗
k,l could be un

k,l or u
(1)
k,l , depending on the current

sweeping direction; similarly u∗∗
k,l could be u

(1)
k,l or u

(2)
k,l , and u∗∗∗

k,l could be u
(2)
k,l or

un+1
k,l . In our computer implementation, we just use one array for all of these un,

u(1), and un+1. αx = maxu |f
′(u)| and αy = maxu |g

′(u)| are viscosity constants
in the Lax-Friedrichs flux [10]. The parameter γ is chosen to be suitable values
which can gurantee that the fixed-point iteration is a contractive mapping and it
converges. The parameter γ actually represents the CFL number in the original
time-marching approach (9)-(11) which determines the time step size ∆t. In this
paper, γ is choosen as 0.5.
Remark: There are two important components in fast sweeping methods. First a
stable numerical scheme is needed to discretize the hyperbolic PDEs. A monotone
numerical flux such as the Lax-Friedrichs flux is used as the building block for high
order WENO schemes. Monotone numerical fluxes capture the up-winding infor-
mation of the hyperbolic PDEs and guarantee the linear stability of the numerical
scheme. Characteristic information has been embedded in the resulting nonlinear
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system. Fast sweeping method uses Gauss-Seidel iterations to solve the system in
alternating sweeping directions. If the sweeping direction is consistent with the
characteristic propagation direction for a group of grid points, correct characteris-
tic information from the given boundary values will propagate to that group and
correct numerical values are obtained. So the second important component is to
have a systematic ordering of all grid points, which can cover all directions of the
characteristics. On a two-dimensional rectangular mesh, a characteristic direction
can always be decomposed to two directions (x− and y− directions), and the natu-
ral orderings of all grid points give four sweeping directions as shown in this section.
See [18] for detailed discussion on this.

2.3. SOR fixed-point fast sweeping iterative scheme. The successive overre-
laxation method (SOR) is a method of solving a linear system of equations Ax = b
derived by extrapolating the Gauss-Seidel method. It modifies Gauss-Seidel by
adding a relaxation parameter ω to improve the computation performance [7]. This
extrapolation takes the form of a weighted average between the previous iterate and
the computed Gauss-Seidel iterate successively for each component:

x
(k)
i = ωx̃

(k)
i + (1 − ω)x

(k−1)
i ,

where x̃ denotes a Gauss-Seidel iterate and ω is the extrapolation factor. The idea
is to choose a value for ω that will accelerate the rate of convergence of the iterates
to the solution. The performance of Gauss-Seidel iterations can be improved with
a good choice of ω. However, the optimal value of ω and the effectiveness of
acceleration are problem dependent [7]. Implementing SOR into our Gauss-Seidel
fixed-point fast sweeping iterative scheme (12)-(14), we obtain the following SOR
fixed-point fast sweeping iterative scheme:
{

ũ
(1)
ij = un

ij +
γ

αx/∆x+αy/∆yL(u
∗
i−r,j , · · · , u

∗
i+s,j ;u

n
ij ;u

∗
i,j−r, · · · , u

∗
i,j+s),

u
(1)
ij = ωũ

(1)
ij + (1− ω)un

ij ;

i = i1, · · · , iN ; j = j1, · · · , jM .

{

ũ
(2)
ij = u

(1)
ij + γ

4(αx/∆x+αy/∆y)L(u
∗∗
i−r,j, · · · , u

∗∗
i+s,j ;u

(1)
ij ;u∗∗

i,j−r, · · · , u
∗∗
i,j+s),

u
(2)
ij = ωũ

(2)
ij + (1− ω)u

(1)
ij ;

i = i1, · · · , iN ; j = j1, · · · , jM .

{

ũ
(n+1)
ij = u

(2)
ij + 2γ

3(αx/∆x+αy/∆y)L(u
∗∗∗
i−r,j, · · · , u

∗∗∗
i+s,j ;u

(2)
ij ;u∗∗∗

i,j−r, · · · , u
∗∗∗
i,j+s),

un+1
ij = ωũ

(n+1)
ij + (1− ω)u

(2)
ij ;

i = i1, · · · , iN ; j = j1, · · · , jM .

The Gauss-Seidel approach is a special case of the SOR approach with ω = 1. In
numerical experiments of the next section, we observe that the optimal value of ω
is not sensitive to the computational mesh sizes. Namely, for a specific problem,
the optimal value of ω is approximately same for all mesh sizes. This provides a
method on how to apply SOR to accelerate computations. We can first test SOR
on a coarse mesh using different ω values and find an optimal ω value. Then this
optimal ω value can be applied to more refined meshes to accelerate computations.

3. Numerical examples

In this section, a set of one- and two- dimensional numerical examples are pre-
sented to test the proposed fixed-point fast sweeping idea for solving steady state
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scalar conservation laws. Numerical experiments verify at least 2 times acceler-
ation of convergence, without any additional computational cost added to the o-
riginal time-marching approach such as (9)-(11). For some mesh sizes, especially
in two dimensional cases, the original time-marching scheme does not even con-
verges, but our fast sweeping scheme can converge quickly. We consider an iter-
ation is convergent if L1 norm of the difference between two successive iteration
steps ||un − un−1||L1 ≤ δ (called L1 convergence error). δ is taken to be 10−11 in
this paper. In all of the examples to test our numerical algorithms, we use exact
solutions to specify numerical values in the inflow boundaries, and extrapolations
for the outflow boundaries.

Example 1. We solve the steady state solution of a one-dimensional Burgers
equation with a source term

{

ut − (12u
2)x = u, 0 ≤ x ≤ 1;

u(0) = 3
4 , u(1) = − 1

2 .

The initial condition is given by

u(x, 0) =

{

3
4 , x < 0.5;
− 1

2 , x ≥ 0.5.

The exact steady state solution is a piecewise linear function with one shock wave

u(x) =

{

3
4 − x, 0 ≤ x < 0.625;
−x+ 1

2 , 0.625 ≤ x ≤ 1.

We perform the convergence study by using successive refined meshes. The numer-
ical solution by our Gauss-Seidel fixed-point fast sweeping method and the exact
solution are displayed on the left in Figure 1. We can see that the numerical shock
is at the correct location and is resolved well. The numerical accuracy errors and
orders, and the iteration numbers by both the time-marching and our Gauss-Seidel
fixed-point fast sweeping method are reported in Table 1. The numerical errors
are computed away from shocks. We can see super convergence for this example,
since the exact solution of the problem is piecewise linear. We also observe that
the iteration numbers for the Gauss-Seidel fixed-point fast sweeping method are all
about half of those for the time-marching approach.

Then we study the further convergence acceleration by the SOR fixed-point fast
sweeping method with different ω values. The study results are shown in Table 2.
We achieve less iteration numbers when using bigger ω until the method diverges.
In this case, the SOR fixed-point fast sweeping method converges for ω ≤ 2.2.
We see that the iterative numbers with ω = 2.2 are less than half of those with
ω = 1, which corresponds to the Gauss-Seidel approach. This shows a significant
improvement on convergence speed by using the SOR fixed-point fast sweeping
method. In Table 2, we show the percentage of iteration numbers saved by using
SOR with the optimal ω rather than the Gauss-Seidel iterations. For example, for
N = 160, the percentage of optimal saving is (1964 − 834)/1964 = 57.5%. For
different meshes, the percentage of optimal saving is close to 60%. Also as we
mention in the last section, how to choose the optimal ω in SOR for a general
problem is still an open problem [7]. However, we observe that ω = 2.2 is the
optimal one for all meshes in Table 2.
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Figure 1. The numerical solution (symbols) versus the exact so-
lution (solid line) with N = 160 cells for Example 1 (left) and
Example 2 (right).

Table 1. Example 1, errors and numerical orders of accuracy in
the smooth region of the solution, and iteration numbers of time-
marching and Gauss-Seidel (GS) fixed-point fast sweeping meth-
ods.

N L∞ error order L1 error order iteration # iteration #
(time-marching) (GS fast sweeping)

40 3.93E-03 - 2.84E-04 - 1098 538
80 5.80E-04 2.76 2.77E-05 3.36 2091 1026

160 2.92E-05 4.31 6.11E-07 5.50 3993 1964
320 4.73E-08 9.27 5.14E-10 10.22 7629 3758
640 1.23E-13 18.56 1.87E-15 18.06 14569 7196

Example 2. We solve the steady state solutions of the Burgers equation with a
different source term

{

ut + (12u
2)x = sinx cosx, 0 ≤ x ≤ π;

u(0) = u(π) = 0.

The initial condition is given by u(x, 0) = 1
2 sinx. This problem has a steady state

solution with a shock:

u(x) =

{

sinx, 0 ≤ x < 2π
3 ;

− sinx, 2π
3 < x ≤ π.

The numerical solution our Gauss-Seidel fixed-point fast sweeping method and the
exact solution are displayed on the right in Figure 1. We can see, again, that the
numerical shock is at the correct location and is resolved well. We perform the
convergence study by using successive refined meshes. The numerical errors are
computed away from shocks. From Table 3, we can also see clearly that third order
accuracy is achieved in the smooth region of the solution. Again, we observe that
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Table 2. Example 1, iteration numbers of the SOR fixed-point
fast sweeping method on computational grids with N = 160, N =
320, and N = 640.

ω N = 160 N = 320 N = 640
0.9 2196 4202 8044
1.0 1964 3758 7196
1.5 1264 2424 4646
2.0 920 1756 3374
2.1 876 1660 3192
2.2 834 1608 3026
2.3 not converge not converge not converge

optimal saving 57.5% 57.2% 57.9%

the iteration numbers of the Gauss-Seidel fast sweeping method are all about half
of those of the time-marching method. Further convergence acceleration can be
achieved by using the SOR approach. The iteration numbers of the SOR approach
are shown in Table 4. Similar as Example 1, we need less iteration numbers when
using bigger ω until the method diverges. In this example, the SOR fixed-point fast
sweeping method converges for ω ≤ 1.9. We see that the iterative numbers with
ω = 1.9 are less than half of those with ω = 1, which corresponds to the Gauss-Seidel
approach (the percentage of optimal saving is more than 50% for different meshes).
Again we obtain a significant improvement on convergence speed by using the SOR
fixed-point fast sweeping method. ω = 1.9 is the optimal one for all meshes, as
shown in Table 4.

Table 3. Example 2, errors and numerical orders of accuracy in
the smooth region of the solution, and iteration numbers of time-
marching and GS fixed-point fast sweeping methods.

N L∞ error order L1 error order iteration # iteration #
(time-marching) (GS fast sweeping)

80 1.26E-05 - 7.37E-06 - 538 270
160 9.17E-07 3.78 4.59E-07 4.01 1041 526
320 9.10E-08 3.33 3.68E-08 3.64 2013 1016
640 1.53E-08 2.57 5.19E-09 2.83 3885 1962

Table 4. Example 2, iteration numbers of the SOR fixed-point
fast sweeping method on computational grids with N = 160, N =
320, and N = 640.

ω N = 160 N = 320 N = 640
0.9 588 1134 2192
1.0 526 1016 1962
1.5 336 650 1258
1.9 256 492 946
2.0 not converge not converge not converge

optimal saving 51.3% 51.6% 51.8%
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Example 3. We test our methods for solving the steady state solution of the
two-dimensional nonlinear problem with given inflow boundary conditions:

(15)















ut + uy + (u
2

2 )x = 0, (x, y) ∈ [0, 1]× [0, 1];

u(x, y) =







1.5, x = 0,
−2.5x+ 1.5, y = 0,
−1.0, x = 1.

The initial condition is given by u(x, y, 0) = −2.5x+1.5. The steady state solution
is

u(x, y) =







uL, (x, y) is between lines g1 and g3,
uR, (x, y) is between lines g2 and g3,

(uR − uL)(xp +
yp(x−xp)

yp−y ) + uL, (x, y) is between lines g1 and g2,

where uL = 1.5, uR = −1.0, xp = uL/(uL−uR), yp = 1/(uL−uR), and the leftmost
characteristic g1 is given by y = x/uL, the rightmost characteristic g2 is given
by y = (x − 1)/uR, the shock g3 is given by y = (2x − 1)/(uL + uR). Table
5 gives the numerical results of our GS fast sweeping scheme, and we see clear
third order accuracy in the smooth region of the solution, and much less iteration
numbers are needed by using the GS fast sweeping method than the time-marching
approach. Actually for this example, the time-marching method does not even
converge to the steady state when mesh is refined to the level of 160 × 160, but
the GS fast sweeping method still converges. The possible reason that the time-
marching method may not converge is due to the ”slight post-shock oscillations” of
WENO schemes, studied by Zhang and Shu in [15]. Even though these oscillations
are small in magnitude and do not affect the ”essentially non-oscillatory” property
of WENO schemes, they are indeed responsible for the numerical residue to hang
at the truncation error level of the scheme instead of settling down to machine
zero when steady state problems are solved by the usual time-marching method.
Iteration numbers by the SOR fixed-point fast sweeping method are given in Table
6, again, less iteration numbers can be obtained when ω > 1.0. The percentages of
optimal saving are in the range of 15% ∼ 20% for different meshes, although the
acceleration is not as significant as that for the one dimensional examples. These
numerical experiments verify the fact that the effectiveness of SOR acceleration is
problem dependent. The optimal value of ω is not sensitive to the computational
mesh sizes. It is about 1.1 for this example.

The contour lines of the numerical solution and the cross-sections for y = 0.25
across the fan, for y = 0.5 and y = 0.75 across the shock, are displayed in Figure 3.
We can clearly observe good resolution of the numerical scheme for this example.

Table 5. Example 3, errors and numerical orders of accuracy in
the smooth region of the solution, and iteration numbers of time-
marching and GS fixed-point fast sweeping methods.

N L∞ error order L1 error order iteration # iteration #
(time-marching) (GS fast sweeping)

80× 80 5.73E-04 2.71 4.45E-05 2.81 347 144
160× 160 6.52E-05 3.14 3.74E-06 3.57 not converge 268
320× 320 3.76E-06 4.11 2.06E-07 4.18 not converge 528
640× 640 3.36E-07 3.48 2.33E-08 3.15 not converge 1052
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Table 6. Example 3, iteration numbers of the SOR fixed-point
fast sweeping method on computational grids with N = 160× 160,
N = 320× 320, and N = 640× 640.

ω N = 160× 160 N = 320× 320 N = 640× 640
1.0 268 528 1052
1.1 228 428 904
1.2 228 456 896
1.3 768 1796 not converge

optimal saving 14.9% 18.9% 14.8%

Example 4. We solve the steady state solution of the two-dimensional Burgers
equation with a source term
(16)
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Where xs is the shock location. This problem has two steady state solutions with
shocks

u(x, y) =

{

1− sin(π x+y√
2
), if 0 ≤ x+y√

2
≤ xs,

−0.1− sin(π x+y√
2
), if xs <

x+y√
2

< 1.
.

where xs = 0.1486 or xs = 0.8514. Both solutions satisfy the Rankine-Hugoniot
jump condition and the entropy conditions, but only the first one is stable for small
perturbation. The initial condition is given by

u(x, y, 0) =

{

1, if 0 ≤ x+y√
2

≤ 0.5,

−0.1, if 0.5 < x+y√
2

< 1,

where the initial jump is located in the middle of the positions of the shocks in the
two admissible steady state solutions. The numerical result is plotted in Figure
3. We can see the correct shock location and a good resolution of the shock. The
numerical errors and numerical orders of accuracy in the smooth region of the
solution are displayed in Table 7. A slightly better than third order accuracy in
the smooth region of the solution is obtained. Again as that in the example 3, the
iteration numbers of GS fixed-point fast sweeping are much less than those of time-
marching approach. For this example, the time-marching method does not even
converge to the steady state when mesh is refined to the level of 160 × 160, but
the GS fixed-point fast sweeping method still converges. Iteration numbers by the
SOR fixed-point fast sweeping method are given in Table 8. Again similar as the
example 3, less iteration numbers can be obtained when ω > 1.0. The percentages
of optimal saving are in the range of 15% ∼ 20% for different meshes. Again, the
optimal value of ω is not sensitive to the computational mesh sizes. It is 1.1 for
this example.

At last, we compared the convergence history between the GS fixed-point fast
sweeping and the direct time-marching method on meshes of N = 80 × 80 and
N = 160 × 160 cells. The result is displayed in Figure 4. On the 80 × 80 mesh,
the L1 convergence error of the GS fixed-point fast sweeping method converges to
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Figure 2. Example 3. Numerical result on the mesh with N =
80 × 80 cells. Top left: contour lines from −0.6 to 1.6. Top right:
the numerical solution (symbols) versus the exact solution (solid
line) along the cross-section at y = 0.25; bottom left: cross-section
at y = 0.5; bottom right: cross-section at y = 0.75.

machine zero in less than 500 iterations, while the direct time-marching method
needs more than 1200 iterations. On the 160× 160 mesh, the L1 convergence error
of the GS fixed-point fast sweeping method converges to machine zero in less than
1000 iterations, while the direct time-marching method fails to converge to the
steady state.

4. Concluding remarks

In this paper we extend our work in [16] to solve steady state problems of scalar
hyperbolic conservation laws. The Gauss-Seidel idea and alternating sweeping s-
trategy are adopted to the time-marching type fixed-point iterations to accelerate
the convergence to steady state solutions of hyperbolic conservation laws. As in
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Table 7. Example 4, errors and numerical orders of accuracy in
the smooth region of the solution, and iteration numbers of time-
marching and Gauss-Seidel (GS) fixed-point fast sweeping meth-
ods.

N L∞ error order L1 error order iteration # iteration #
(time-marching) (GS fast sweeping)

80× 80 5.63E-05 4.37 8.32E-06 3.62 1299 468
160 × 160 4.06E-06 3.79 7.16E-07 3.54 not converge 864
320 × 320 2.44E-07 4.06 5.85E-08 3.68 not converge 1932
640 × 640 1.27E-07 4.26 3.88E-09 3.85 not converge 3808

Table 8. Example 4, iteration numbers of the SOR fixed-point
fast sweeping method on computational grids with N = 160× 160,
N = 320× 320.

ω N = 160× 160 N = 320× 320
1 864 1932

1.05 780 1768
1.1 704 1616

optimal saving 18.5% 16.4%

X

Y

0 0.2 0.4 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(x+y)/sqrt(2)

u

0 0.25 0.5 0.75 1

-1

-0.5

0

0.5

1

numerical solution
exact solution

Figure 3. Example 4. Numerical result on the mesh with 80×80
cells. Left: Contours of the solution from −1.2 to 1.1; right: the
numerical solution (symbols) versus the exact solution (solid line)
along the cross-section through the northeast to southwest diago-
nal.

[16], we obtain a 2 times acceleration of convergence, without any additional com-
putational cost. In numerical examples, we also find that even for the cases that
the time-marching approach does not converge to the steady state solution, our
Gauss-Seidel fixed-point fast sweeping approach converges very well to the desired
solution. Based on the Gauss-Seidel iterations, the successive overrelaxation (SOR)
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Figure 4. Example 4. Comparison of convergence history be-
tween the GS fixed-point fast sweeping method and the direct
time-marching method for meshes of N = 80× 80 and N = 160×
160.

fixed-point fast sweeping method can accelerate the convergence to steady state
further, with a suitable relaxation parameter ω. We observe the improvement of
convergence in all numerical examples, and acceleration by the SOR approach is
especially significant for the one-dimensional problems. We also observe that the
optimal ω value is problem-dependent, which is consistent with the SOR method for
solving linear systems [7]. How to choose the optimal ω in SOR for a general prob-
lem is still an open problem. However, in numerical experiments we observe that
the optimal value of ω is not sensitive to the computational mesh sizes. This pro-
vides a method on how to apply SOR to accelerate computations. We can first test
SOR on a coarse mesh using different ω values and find an optimal ω value. Then
this optimal ω value can be applied to more refined meshes to accelerate compu-
tations. This general approach of applying Gauss-Seidel and alternating sweeping
strategy to accelerate convergence to steady state solutions can be directly applied
to other time-marching schemes, other numerical fluxes and the system cases. This
consists of our future research.
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