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IMAGE DENOISING BASED ON THE SURFACE FITTING

STRATEGY

ZHI-FENG PANG AND BAOLI SHI

Abstract. In this work, we propose a surface fitting strategy based on a two-step model to remove
noise from digital images. In the first step, we minimize the total variation energy functional of
an image by using the projection gradient method in order to obtain the dual variable as the
smoothed normal vector. In the second step, we try to find a surface as the recovered image to fit
the smoothed normal vector. Based on the projection gradient method and the variable splitting
method, we propose an efficient numerical method to solve this two-step model and also give the
convergence analysis of the proposed method. Some numerical comparisons are given to validate
the effectiveness of our proposed model.

Key words. Two-step model, Staircase effect, Projection gradient method, Edge indicator func-
tion

1.. Introduction

The existence of noise is inevitable in the course of obtaining images. It may
be introduced in many different ways, such as image formation processing, image
recording and image transmission. These random distortions make it difficult to
carry out any required picture processing. Therefore, noise removal is an important
and challenging problem in image restoration.

In the view of mathematics, the denoising problem can be expressed as follows:
Assume that g : Ω ⊂ R2 → R denotes a noisy image and u denotes the desired
clean image, it follows that

g = u+ η,

where η is the additive noise. The aim is to recover the true image u from g.
In practice we want to preserve image edges and features while removing noise

for the image denoising problem. Many researchers have devoted their efforts to
this study, see [4, 15]. Wherein many variational models have been proposed to
eliminate noise and to preserve edges and the small scale characteristics at the same
time. The total variation (TV) minimization, as a classical variational model, was
first introduced by Rudin, Osher and Fatemi (called the ROF model) in [27] as the
following form

(1.1) min
u

∫

Ω

|Du|+
λ

2
‖u− g‖2L2(Ω),

where the regularization parameter λ > 0. It has been demonstrated to be very
successful in edge-preserving for image restoration problem, see [10, 14, 18, 19, 20,
22, 27, 28] and references therein. However, the ROF model has the undesirable
staircase effect since the smooth regions of the restored image are transformed
into the piecewise constants. To overcome this deficiency, some higher-order PDEs
[14, 21, 23, 29] have been proposed during the last few years. It has been proved
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that the higher-order PDEs can effectively alleviate the undesirable staircase effect
such as the model [21] with the form

(1.2) min
u

∫

Ω

|D2u|+
ζ

2
‖u− g‖2L2(Ω),

where the tuning parameter ζ > 0. However, the higher-order PDEs are generally
complicated to be implemented and can not preserve the edges well.

Recently, a two-step method has been proposed by Lysaker-Osher-Tai (called
the LOT model) [22] to reduce staircase effect while preserving important features,
such as edges and textures. This two-step model can be denoted as the following
two steps:

• In the first step, they minimized the total variation of the unit normal
vector n by the following scheme

(1.3) min
|n|=1

∫

Ω

|∇n|dx+
α

2
‖n− n0‖

2
L2(Ω),

where n0 = ∇g
‖∇g‖2

and the regularization parameter α > 0.

• In the second step, in order to find a surface to fit the above smoothed
normal vector n, they considered

(1.4) min
v

∫

Ω

(
|∇v| − (∇v)T · n

)
dx+

β

2
‖v − g‖2L2(Ω),

where the regularization parameter β > 0.

In the view of the numerical implementation, the proposed algorithms of the
LOT model in [22] are complicated and slow because of computing three nonlinear
second-order PDEs. Additionally, when the information about noise is not known,
this model can not preserve edges or textures well. Therefore, an improved LOT
model was suggested in [18]. By letting n = (cos θ, sin θ)T and n0 = (cos θ0, sin θ0)

T ,
they used the relationship |∇n| = |∇θ| to transform the minimization problem (1.3)
into the following form

min
θ

∫

Ω

|∇θ|dx + α

∫

Ω

(1− cos (θ − θ0))dx.

Based on the fact that

(1.5) 1− cos (θ − θ0) = 2 sin2
(
θ − θ0

2

)
∼

(θ − θ0)
2

2
,

i.e. 1 − cos (θ − θ0) is the equivalent infinitesimal quantity of (θ−θ0)
2

2 , they then
solved the following problem

(1.6) min
θ

∫

Ω

|∇θ|dx+
α

2
‖θ − θ0‖

2
L2(Ω)

in the first step, where θ and θ0 are the polar angle of n and n0 respectively. But
only when (θ − θ0) → 0, the formula (1.5) comes into the existence. Actually, the
unit normal vector n of the restoration image u and n0 defined in the problem
(1.3) are impossible to be very close each other. Thus, the scheme substituting

1 − cos (θ − θ0) by (θ−θ0)
2

2 is not convincing in [18]. In the second step, they

introduced an edge indicator function I(x) and adopted the L1 norm for the image
fidelity term. Then this step is given by

(1.7) min
v

∫

Ω

I(x)
(
|∇v| − (∇v)T · n

)
dx+ γ|v − g|L1(Ω),
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where γ > 0 is a constant, n := (n1, n2)
T = (cos θ, sin θ)T obtained from the first

step (1.6) and (∇v)T · n = vxn1 + vyn2.
Our model is closely related to the work in [18, 22, 25, 26], its key is based on

the observation that the dual variable generated by using the duality method to
solve the ROF model [10] can be regarded as the unitization for the gradient of the
restoration image. In detail, in the first step, we minimize the ROF model by using
the projection gradient method in order to obtain the dual variable as the smoothed
normal vector. This course is very easy to be implemented since there is only one
variable to be considered as did in [26]. Furthermore, this step is easier to identify
whether the choosing regularization parameter is suitable or not. Moreover, unlike
the second step in [26], here we try to find the restoration image by using L1 norm
fitting term and the edge indicator function I(x). This notion is inspired by the
observation that the edge indictor function tends to zero at steep gradients like
edges and goes to one at the smooth regions. Thus the edges can be found and
retained during restoration process. Simultaneously, adopting the L1 norm can also
keep contrast better [1, 2, 3, 12, 24]. Here we give the convergence analysis of our
proposed algorithm under some assumptions. Some numerical examples are given
to validate the effectiveness of our proposed model and algorithm.

This paper is organized as follows. In subsection 2.1, we introduce the two-step
model for noise removal. In subsection 2.2, an algorithm and some related results
of our proposed model are given to show how we obtain the restoration image. In
section 3, some numerical comparisons are given to illustrate the effectiveness of
our proposed model. Some concluding remarks are given in section 4.

2.. The Two-step Model

In this section, we first introduce the two-step model in subsection 2.1 and then
give an efficient numerical method to solve it in subsection 2.2. The convergence
analysis is also arranged in subsection 2.2.

2.1.. The two-step model.

Definition 2.1. Let Ω ⊂ R2 be a bounded open subset and u ∈ L1(Ω). Then the
weighted total variation of u is

TVζ(x)(u) =

∫

Ω

ζ(x)|Du| = sup
p(x)∈φζ(x)

{∫

Ω

u(x)divp(x)dx
}
,

where

φζ(x) :=
{
p = (p1, p2)T ∈ C1

c (Ω;R
2) | ‖p‖∞ ≤ ζ

}
.

The space BV can now be defined as

BV (Ω) =
{
u ∈ L1(Ω) | TV1(u) < +∞

}
.

Equipped with the norm ‖u‖BV (Ω) =
∫
Ω|Du|dx+ ‖u‖L1(Ω) is a Banach space.

Without loss of generality, we set TV1(u) as TV (u) in this paper. If u ∈ W 1,1(Ω),
then

∫
Ω
|Du| =

∫
Ω
|∇u|dx. Therefore, the problem (1.1) can be formally written as

(2.1) min
u

∫

Ω

|∇u|dx+
λ

2
‖u− g‖2L2(Ω),

which Euler-Lagrange equation can be written as

(2.2) u = g +
1

λ
div

∇u

|∇u|



IMAGE DENOISING BASED ON THE SURFACE FITTING STRATEGY 105

with the Neumann boundary condition. Formally, since the restoration image u
can be regarded as the smoothed image, we can set n := ∇u

|∇u| to replace the input

vector in the second step of the LOT model (1.4). From the numerical point of
view, the total variation is not straightforward to be minimized, since it is not
differentiable in zero. In order to overcome this non-differentiability, an idea from
duality was proposed by Chambolle [11] to obtain the restoration image

(2.3) u = g −
1

λ
divp,

where the variable p is closely related to Definition 2.1.
By comparing (2.2) with (2.3), we can transform the computation of the flow

field n in the first step of the original LOT model [22] into the computation of dual
variable p in the first step of our proposed two-step model. In fact, this conversion
is easy to be implemented since there is only one variable to be considered. Here
we solve the problem (2.1) by using the projection gradient method as did in [5].

Once the smoothed flow field n is obtained, we want to find a surface as the
restoration image to match it. In the second step, we thus minimize

(2.4) min
v

∫

Ω

I(x)(|∇v| − (∇v)T · n)dx+ γ|v − g|L1(Ω)

to get the restoration image v, where the regularization parameter γ > 0. In
practical, the weighted function I(x) can be chosen as

I(x) =
1

1 + ̺|∇(Gσ ∗ g)|2
or I(x) = exp

(
− k|∇(Gσ ∗ g)|2

)
,

where Gσ(x) = 1
2πσ2 exp

(
− x2

2σ2

)
is a Gaussian kernel with a scale parameter σ.

We choose the left form and set σ = 0.4 in this paper.
In the following, we will explain the above two-step model. The difference be-

tween (1.4) and (2.4) is the introduction of the edge indicator function I(x) and
the replacement of L2 norm by L1 norm. These modifications have two important
impacts. At the fine structures like edges where |∇Gσ ∗ g| is large, I(x) tends to
zero. Hence, the first term in (2.4) tends to zero, only the fidelity term is remained.
This allows the discontinuities across hyper surfaces in the reconstruction process.
As a result, the edges can be perfectly found and retained. However, in the smooth
regions where |∇(Gσ∗g)| is small, I(x) goes to one, then the problem (2.4) is similar
to the problem (1.4). Thus, the staircase effect in the smooth regions can be taken
away effectively.

The L1 norm as a measure of the fidelity term has been introduced and well
studied in [1, 2, 3, 12, 24]. It has been proved to outperform the L2 norm in some
applications. The differences between the ROF model and the TV −L1 model have
been studied by Chan and Esedoḡlu in [12]. They indicated that the L1 norm as a
fidelity term represents the contrast better than the L2 norm.

2.2.. Algorithm and Its Convergence. In this subsection, we state some con-
vergence results and propose an algorithm to solve our proposed model. According
to the related work in [11], we have the following result for the ROF model (2.1),
which closely relates to the first step of our proposed model.

Theorem 2.1. When τ < 1
4 , the sequence {un} generated by

{
uk = g − λdivpk

pk+1 = PK(p
k − τ

λ
∇uk)
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converges to the solution u∗ of the ROF model (2.1), where K is defined by

K :=

{
p = (p1, p2)T : divp ∈ L2(Ω), ‖p‖∞ ≤ 1 with |p| =

√
(p1)2 + (p2)2

}

and PK(·) denotes the orthogonal projection operator on the convex set K.

In fact this iteration method corresponds to the specific case of Bermudez-
Moreno method [8, 5]. Since we can directly solve the projection problem on the
closed convex set for each iteration, this iteration method is more efficient and
convenient than the gradient descent method used in [11].

In the second step, we rewrite the problem (2.4) as

(2.5) min
v

∫

Ω

(
I(x)|∇v| − (∇v)T · (I(x)n)

)
dx+ γ|v − g|L1(Ω).

Obviously, this model is difficult to be solved directly since there include two L1-
norm terms. One of efficient methods first introduces an equality constraint u1 = v
and then transforms to solve an unconstraint optimization problem based on the
penalty method as

(2.6) min
v,u1

∫

Ω

(
I(x)|∇v| − (∇u1)

T · (I(x)n)
)
dx+

1

2δ
‖v−u1‖

2
L2(Ω)+γ|u1−g|L1(Ω),

where δ > 0 is the penalty parameter. This method was widely used in the image
restoration problem such as the work in [6, 7, 10, 13, 9]. Obviously, the problem
(2.6) is convex, so we can perform this minimization efficiently by alternately solving
v and u1. Specifically, this course can be written as:

(i) u1 being fixed, we search for v as a solution of

(2.7) min
v

∫

Ω

I(x)|∇v|dx +
1

2δ
‖v − u1‖

2
L2(Ω);

(ii) v being fixed, we search for u1 as a solution of

(2.8) min
u1

1

2δ
‖v − u1‖

2
L2(Ω) + γ|u1 − g|L1(Ω) −

∫

Ω

(
∇u1)

T · (I(x)n
)
dx.

Remark 2.1. There are some remarks for solving above subproblems (2.7) and
(2.8).

• The subproblem (2.7) is only similar to the ROF model (2.1) formally since
there includes a weighted function I(x). Usually the solution of (2.7) can
be given by

v = u1 − δdivq,

where q = (q1, q2)T satisfies that

−∇(δdivq− u1) +
1

I(x)
|∇(δdivq− u1)| q = 0.

The above variable q can be obtained by using semi-implicit gradient descent
(or fixed point) algorithm as

(2.9) qn+1 =
qn + t

(
∇
(
divqn − u1

δ

))

1 + t
I(x)

∣∣∇
(
divqn − u1

δ

)∣∣ .

for choosing the original value q0 = 0. The generated sequence {qn} is
convergent when t ≤ 1

8 , we refer to the literature [9] for the proof.
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• For the subproblem (2.8), it can be equivalently rewritten as

min
u1

1

2δ
‖u1 − (v − div(I(x)n))‖2L2(Ω) + γ|u1 − g|L1(Ω).

It obviously corresponds to the classical shrinkage operator problem [17], so
we can get the closed form solution as

u1 = max(|v − g − δdiv(I(x)n)| − δγ, 0)
v − g − δdiv(I(x)n)

|v − g − δdiv(I(x)n)|
+ g.(2.10)

In view of the above analysis and results, we summarize the following algorithm
to solve our proposed two-step model.

Algorithm 2.1. The algorithm for solving our proposed two-step model.

• Step 1:The projection gradient method for solving (2.1).
(1) Initialize: u0 = g and p0 = 0;
(2) Compute pk+1 by

pk+1 =
pk + τ

(
∇(divpk − g

λ
)
)

max
(
1,
∣∣pk + τ

(
∇
(
divpk − g

λ

))∣∣) ;

(3) When the stopping criterion is satisfied, output the dual variable p :=
pk+1 and let u = g−λdivp as the restoration image by using the ROF
model.

• Step 2:The gradient descent algorithm for solving (2.6).
(I) Initialize: q0 = 0 and u0

1 = g. Set n = −p;
(II) Compute (qn+1, vn+1, un+1

1 ) by




qn+1 =
q
n+t

(

∇
(

divqn−
un
1
δ

))

1+ t
I(x)

∣

∣

∣
∇
(

divqn−
un
1
δ

)
∣

∣

∣

,

vn+1 = un
1 − δdivqn+1,

un+1
1 = max

(
|vn+1 − g − δdiv(I(x)n)| − δγ, 0

)
vn+1−g−δdiv(I(x)n)
|vn+1−g−δdiv(I(x)n)| + g;

(III) When the stopping criterion is satisfied, output the variable vn+1 as
the restoration image v.

In the following, we show the uniqueness of the solution for the problem (2.6)
and also prove the convergence of the sequence {(vn, un

1 )} generated by Step 2 in
Algorithm 2.1. Denote the functional in (2.6) as

E(v, u1) := |I(x)∇v|L1(Ω)−

∫

Ω

(∇u1)
T ·(I(x)n))dx+

1

2δ
‖v−u1‖

2
L2(Ω)+γ|u1−g|L1(Ω).

Theorem 2.2. Assume that the sequence {(vn, un
1 )} is established in Step 2 of

Algorithm 2.1 and
∫
Ω((∇(vn − g))T · (I(x)n))dx is bounded when |vn+1 − g −

δdiv(I(x)n)| ≤ δγ. If set u1 ∈ BV (Ω) ∩ C1(Ω), then there exists in a unique
solution of the problem (2.6). Furthermore, the sequence {(vn, un

1 )} converges to
this unique solution.

Proof. For the problem (2.6), the existence of the solution can be directly obtained
from the convexity and coercivity of the functional E. By using the similar approach
as Theorem 2 in [7], we can obtain the uniqueness of its solution.

When solving the successive problems min
v

E(v, ·) and min
u

E(·, u) in the problem

(2.6), we can get

(2.11) E(vn, un
1 ) ≥ E(vn+1, un

1 ) ≥ E(vn+1, un+1
1 ).
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Therefore, the sequence {E(vn, un
1 )} is nonincreasing. Based on the fact that |n| =

1, it is easy to find that |I(x)∇v|L1 ≥
∫
Ω
(∇v)T · (I(x)n))dx and

E(vn+1
, u

n+1
1 )

≥

∫
Ω

(∇(vn+1 − u
n+1
1 ))T · (I(x)n))dx+

1

2δ
‖vn+1 − u

n+1
1 ‖2

L2(Ω) + γ|un+1
1 − g|L1(Ω).

Following from the third equation in Step 2 of Algorithm 2.1, we can find that
∫

Ω

(∇(vn+1 − un+1
1 ))T · (I(x)n))dx = −

∫

Ω

δ(div(I(x)n))2dx

when |vn+1 − g− δdiv(I(x)n)| > δγ. Then, using the assumption that
∫
Ω
((∇(vn −

g))T ·(I(x)n))dx is bounded when |vn+1−g−δdiv(I(x)n)| ≤ δγ, we can deduce that
the sequence E(vn, un

1 ) is bounded. Thus the sequence {E(vn, un
1 )} is convergent.

Denote m = lim
n→∞

E(vn, un
1 ). In the following, we want to show that

m = min
v,u1

E(v, u1).

Since the functional E is coercive and the sequence {E(vn, un
1 )} is convergent,

we can deduce that {(vn, un
1 )} is bounded. We can thus extract a subsequence

{(vnk , unk

1 )} which converges to (v̂, û1) as nk → +∞. Moreover, for all nk, v and
u1, we have

(2.12) E(vnk+1, unk

1 ) ≤ E(v, unk

1 ) and E(vnk , unk

1 ) ≤ E(vnk , u1).

Let ṽ be a cluster point of the sequence {vnk+1}. Taking (2.11) into account, it
is easy to find that

(2.13) M = E(ṽ, û1) = E(v̂, û1).

Taking limits on both sides of vn+1 = un
1 − δdivqn+1, we obtain that ṽ is the

solution of the following problem

min
u

{
|I(x)∇v|L1(Ω) +

1

2δ
‖v − û1‖

2
L2(Ω)

}
.

On the other hand, it follows from (2.13) that

|I(x)∇ṽ|L1(Ω) +
1

2δ
‖ṽ − û1‖

2
L2(Ω) = |I(x)∇v̂|L1(Ω) +

1

2δ
‖v̂ − û1‖

2
L2(Ω).

Based on the uniqueness of the solution for the problem (2.7), we deduce that ṽ = v̂
and then vnk+1 → v̂ as nk + 1 → +∞. By passing to the limits in (2.12), we get

E(v̂, û1) ≤ E(v, û1) and E(v̂, û1) ≤ E(v̂, u1).

The above formulas can be rewritten as

E(v̂, û1) = min
v

E(v, û1) and E(v̂, û1) = min
u1

E(v̂, u1).

From the definition of E(v, u1), we can easily obtain the equivalent form corre-
sponding to above two problems

{
0 ∈ 1

δ
(v̂ − û1) + ∂(|I(x)∇v̂|),

0 ∈ 1
δ
(û1 − v̂) + div(I(x)n) + γ∂(|û1 − g|).

Since the subdifferential of E at (v̂, û1) is given by

∂E(v̂, û1) =

(
1
δ
(v̂ − û1) + ∂(|I(x)∇v̂|)

1
δ
(v̂1 − v̂) + div(I(x)n) + γ∂(|û1 − g|)

)
,
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it follows that (
0
0

)
∈ ∂E(v̂, û1),

which is equivalent to E(v̂, û1) = min
v,u1

E(v, u1) = M . Hence, the sequence {E(vn, un
1 )}

converges to M . By the uniqueness of the solution for the minimization prob-
lem (2.6), we can deduce that the sequence {(vn, un

1 )} converges to (v̂, û1) as
n → +∞. �

3.. Numerical Experiments

In this section, we will give some experimental results to compare our proposed
model with the ROF model (1.1), the higher-order model (1.2), the LOT model
(1.3)-(1.4) and other two-step models proposed in [18, 26]. For the ROF model, the
restoration image can be directly obtained by Step 1 of Algorithm 2.1. Actually,
this course is the projection gradient method so that it is more efficient and faster
than the original semi-implicit gradient method in [5]. Similarly, we also use this
method to solve the higher-order model (1.2) as follows





ξk+1 =
ξk+ν(∇2(div2ξk− g

ζ
))

max(1,|ξk+ν(∇2(div2ξk− g
ζ )|)

uk+1 = g − ζdiv2ξk+1

for choosing some suitable values u0 = g and ξ0 = 0. Formally, we can get the
convergence of the above algorithm when ν ≤ 1

32 . In order to estimate the improve-
ment of our proposed method compared with other models, we give the definitions
of the signal to noise ratio (SNR) and the mean square error (MSE). For a clean
image w and its noisy observation w0, the noise can be denoted as η = w0 − w.
Then SNR and MSE are defined by

SNR = 10 log10

(
‖w0 − w0‖

2
L2(Ω)/‖η − η‖2L2(Ω)

)
and MSE = ‖w − w0‖

2
L2(Ω)/|Ω|,

where |Ω| =
∫
Ω dx, w0 =

∫
Ωw0dx/|Ω| and η =

∫
Ω ηdx/|Ω|. It is not difficult to find

that the higher SNR and the lower MSE, the better quality of the restoration.
All numerical results are generated on Matlab 7.12 and the related testing images

are shown in Figure 1. The first image is a synthetic image, which only includes
simple geometric structures such as smoothing regions and boundary regions. The
last two images include more complex structures than the synthetic image. For
choices of the regularization parameters in models, we first set the noisy images
as the format of ’mat ’ in order to fix the inputting images and then tune them
carefully by a large number of experiments. When solving the ROF model (1.1)
and the higher-order model (1.2), we set t = 1

4 and ν = 1
32 . Since the first step of

the model in [26] can be directly obtained from the ROF model (1.1), we only set
the regularization parameter α2 in the second step for this model.

Example 3.1. In this example, we consider the synthetic image shown in Figure
1(a), where the noisy image with SNR = 11.2740 and MSE = 256.5994 is contam-
inated by the white Gaussian noise with the standard deviation σ = 16. The related
data and parameters are arranged in Table 1. In order to understand the restora-
tion results of these models, we not only plot a slice curve of restoration images
shown in Figure 3 which corresponding station is shown in Figure 1(a) but also
give the differences between the related restoration images and the original noisy
image shown in Figure 4.

From the restoration images shown in Figure 2, it is clear to see that much of
the noise is suppressed. As expected, the ROF model gives rise to the undesirable
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(a) synthetic Image (b)Lena Image (c)Barbara Image

Figure 1. The related original images.

(a)ROF Model (b)Model (1.2) (c)LOT Model

(d)Model in [26] (e)Model in [18] (f)Our Model

Figure 2. The restoration images in Example 3.1

Table 1. The related data in Example 3.1.

Model Iterations Related parameters SNR MSE

ROF 100/0 λ = 17.5 22.3558 17.9605

(1.2) 100/0 ζ = 8 21.6274 21.7448

LOT 150/150 α = 20, β = 200 23.0540 15.5923

[26] 100/100 α2 = 12 22.8539 15.7980

[18] 150/250 α = 6.667, γ = 0.05, δ = 0.1 23.2376 14.8113

Our 100/250 γ = 0.001, δ = 0.1 23.2261 14.8450

staircase effect and the model (2.4) suffers from edge blurring. However, the two-
step models (including the LOT model (1.3)-(1.4), the models proposed in [18, 26]
and our proposed model) can efficiently suppress these drawbacks. Actually we can
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Figure 3. The comparison of related slice curves between the
restoration images and the original image in Example 3.1.

(a)ROF Model (b)Model (1.2) (c)LOT Model

(d)Model in [26] (e)Model in [18] (f)Our Model

Figure 4. The differences between the restoration images and the
noisy image in Example 3.1.

also observe these advantages of two step models from the slice curves shown in
Figure 3. Furthermore, the images restored by two step models are more natural
than other models. Simultaneously, the differences shown in Figure 3 imply that
the noisy image can be more efficiently restored by using the two-step models. Ad-
ditionally, the values of SNR and MSE shown in Table 1 also illustrate that the
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two-step models outperform the ROF Model (1.1) and the higher-order model (1.2).
Simultaneously, it’s worth noting that our proposed model almost obtain the similar
restoration result as did by the model in [18].

Example 3.2. We take the well-known Lena image as the testing image shown in
Figure 1(b). The noisy image is added to the white Gaussian noise with the standard

Table 2. The related data in Example 3.2.

Model Iterations Related parameters SNR MSE

ROF 100/0 λ = 5.8 18.8108 34.9009

(1.2) 100/0 ζ = 2.75 19.1163 32.9968

LOT 500/150 α = 0.2, β = 0.2 18.7634 35.7674

[26] 100/8 α2 = 0.45 18.8182 34.7885

[18] 150/210 α = 2, γ = 0.0005, δ = 0.03 19.0093 33.6215

Our 100/210 γ = 0.0002, δ = 0.03 19.0080 33.6288

deviation σ = 10. Before processing, the SNR and MSE of the noisy image are
14.5094 and 100.4604. The related data and parameters are shown in Table 2. In
order to understand the related models, especially in regions with smooth signals or
discontinuities, we consider a part of shoulder regions of the restoration images in
Figure 5 and plot them in Figure 6. It is easy to find that the ROF model transforms
smooth regions into piecewise constant regions and the model (1.2) leads to edges
blurring. However, all of the two-step models can alleviate these effects in related
regions. Furthermore, our proposed model and the model in [18] are more efficient
than other two-step models [22, 26].

(a)ROF Model (b)Model (1.2) (c)LOT Model

(d)Model in [26] (e)Model in [18] (f)Our Model

Figure 5. The related restoration image in Example 3.2.
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(a)ROF Model (b)Model (1.2) (c)LOT Model

(d)Model in [26] (e)Model in [18] (f)Our Model

Figure 6. A part of the restoration image in Example 3.2.

Example 3.3. Since the Barbara image includes many high and low intensity tex-
tures, we choose it as the testing image in order to compare the restored ability of
aforementioned models. Here the noisy image is contaminated by the white Gauss-
ian noise with the standard deviation σ = 10. Usually, the contour plot of the
image help us to evaluate the restoration while revealing level curves, thus we only

Table 3. The related data in Example 3.3.

Model Iterations Related parameters SNR MSE

ROF 100/0 λ = 2.75 15.5120 73.8138

(1.2) 100/0 ζ = 1.1 15.5959 73.2808

LOT 150/150 α = 4, β = 0.5 15.4910 75.2175

[26] 100/100 α2 = 1.35 15.5122 73.8908

[18] 150/210 α = 2, γ = 0.0005, δ = 0.015 15.5391 73.4760

Our 100/210 γ = 0.0001, δ = 0.015 15.5376 73.4956

plot contours of related images shown in Figure 7(a-f). From contours, we can
deduce that two-step models except the LOT model can give more smooth surfaces
and uniformly separated smooth level lines. Especially, the contours generated by
the model (1.2) and the LOT model are looser than those restored by other models.
Furthermore, the data in Table 3 again imply that the LOT model gives the worst
restoration image. However, it’s worth noting that the model (1.2) seemly gives the
best restoration image based on the values of SNR and MSE. Actually, it is due to
the fact that the textures such as the scarf includes much more smooth structures,
which is advantageous to use the higher-order model.
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Figure 7. The contour plots correspond to the related restoration
images in Example 3.3.

4.. Conclusion

In this paper, a two-step model and the corresponding algorithm are proposed
for noise removal. In the first step, we use a projection gradient method to solve
the ROF model in order to get the dual variable, which can be regarded as the
smoothed unit normal vector n. In the second step, we try to find a surface as the
restoration image to fit the smoothed normal vector n. Furthermore, in order to
preserve the edges well and keep contrast better, we introduce the edge indicator
function I(x) and employ the L1 norm for the fidelity term in the second step.
Numerical experiments indicate that our proposed method can preserve the edges
well and alleviate the staircase effect successfully. Its efficiency is similar to the
modified model in [18], but our proposed model is easier to be implemented and
choose suitable parameters in the first step. Simultaneously, it’s worth noting that
the restoration images extremely depend on the edge indicator function I(x). In
the future research, we hope to study how to choose a more robust edge indicator
function I(x) and extend our model to restore the vector-value images.
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