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ANALYSIS AND FINITE ELEMENT APPROXIMATION OF

BIOCONVECTION FLOWS WITH CONCENTRATION

DEPENDENT VISCOSITY
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Abstract. The problem of a stationary generalized convective flow modelling bioconvection is
considered. The viscosity is assumed to be a function of the concentration of the micro-organisms.

As a result the PDE system describing the bioconvection model is quasilinear. The existence and

uniqueness of the weak solution of the PDE system is obtained under minimum regularity as-
sumption on the viscosity. Numerical approximations based on the finite element method are con-

structed and error estimates are obtained. Numerical experiments are conducted to demonstrate

the accuracy of the numerical method as well as to simulate bioconvection pattern formations
based on realistic model parameters.
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1. Introduction

Bio-convection occurs due to on average upwardly swimming micro-organisms
which are slightly denser than water in suspensions. A fluid dynamical model treat-
ing the micro-organisms as collections of particles was first derived independently
by M.Levandowsky, W. S. Hunter and E. A. Spiegel [16], and Y. Moribe [22] which
we describe as follows. Let Ω ⊂ R3 be a bounded domain with smooth boundary
∂Ω. At point x ∈ Ω, let u(x) = {uj(x)}3j=1 and p(x) respectively denote the ve-
locity and pressure of the culture fluid while c(x) refers to the concentration of the
micro-organisms. The steady state system for (u, c, p) takes the form

− div (ν(c)D(u)) + (u · ∇)u +∇p = −g(1 + γc)i3 + f , in Ω ,

div u = 0 , in Ω ,

−θ∆c+ u · ∇c+ U
∂c

∂x3
= 0 , in Ω .

(1.1)

Here ν(·) > 0, as a function of the concentration c, denotes the kinematic viscosity
of the culture fluid, D(u) = 1

2 (∇u +∇uT ) denotes the stress tensor, f refers to the
volume-distributed external force, g is the acceleration of gravity, θ and U are the
diffusion rate and the mean velocity of upward swimming of the micro-organisms
respectively, i3 = (0, 0, 1) is the vertical unitary vector, and the constant γ > 0 is
given by γ = ρ0/ρm − 1, where ρ0 is the density of the micro-organisms and ρm is
the density of the culture fluid.
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The bioconvection model (1.1) is a special case of a more general equation de-
scribing the diffusion and transformation of an admixture in a region [1]. The
first equation is a Navier-Stokes type equation describing the motion of the viscous
micro-organisms while the second equation describes the incompressibility of the
culture fluid. The last equation of (1.1) describes the mass conservation:

d

dt
c+ div q = 0 , in Ω ,

where
d

dt
=

∂

∂t
+ (u,∇) is the material derivative along the fluid particle and

q = −θ∇c+Uci3 represents the flux of micro-organisms. We prescribe the boundary
conditions for u and c as

u = 0 , on ∂Ω ,

θ
∂c

∂n
− Ucn3 = 0 , on ∂Ω .

(1.2)

The second equation of (1.2) refers to zero flux on the boundary where n =
(n1, n2, n3) is the exterior unitary normal vector on ∂Ω. We further assume the
fixed total mass for the micro-organisms:

(1.3)
1

|Ω|

∫
Ω

c(x)dx = α ,

for some constant α. Condition (1.3) assures that no micro-organisms are allowed
to leave or enter the container. Now the complete system describing the motion of
micro-organisms takes the form

(1.4)



− div (ν(c)D(u)) + (u · ∇)u +∇p = −g(1 + γc)i3 + f , in Ω ,

div u = 0 , in Ω ,

−θ∆c+ u · ∇c+ U
∂c

∂x3
= 0 , in Ω ,

u = 0 , θ
∂c

∂n
− Ucn3 = 0 , on ∂Ω ,

1

|Ω|

∫
Ω

c(x)dx = α .

In an ideal Newtonian fluid, the viscosity ν is a constant. In this case, the existence
of the solution as well as the positivity of the concentration are proved in [14]
where the authors considered both the stationary and evolutionary cases. The
evolutionary case of system (1.1) with constant viscosity ν is studied numerically
in [12]. The numerical study of slightly different bioconvection models can be found
in [4], [8], [9], [7] and [13].

In general, for particle models, the viscosity is related to the concentration of
the solute. Albert Einstein showed in his Ph.D thesis [6] that

(1.5)
ν

ν0
= 1 + ξc

when the concentration c is small, where ν is the viscosity of the suspension, ν0

is the viscosity of the pure solution and ξ is a proportionality coefficient, often
chosen to be 2.5. This model was later extended by adding a quadratic term of
c by Batchelor [2] for larger c (≥ 10%). When the concentration is much higher,
the relative viscosity ν

ν0
varies as an exponential function of concentration c ([17],

[15] and [3]). A recent work [5] showed the existence and uniqueness of a periodic
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solution of the time dependent case of (1.1) under the assumption that ν(·) is a C1

function, and, for some positive constants ν∗ and ν∗

ν∗ < ν(x) < ν∗ , ∀x ∈ R , and sup
x∈R

ν′(x) <∞ .

In this paper, we first improve the existence result of [5] by allowing ν only to
be continuous and bounded. Then we focus our study on numerical simulations of
(1.4). Specifically, we shall construct numerical approximations for the exact solu-
tion (u, c, p) of (1.4) using the finite element method with rigorous error analysis.
we also conduct numerical experiments to first verify the efficiency and accura-
cy of our numerical algorithms and then study bioconvection pattern formations
using realistic lab data. Though the numerical method is the standard finite ele-
ment approximation, it still represents one of the first attempts of studying such
a bioconvection model through numerical simulations. We plan to consider more
sophisticated and efficient numerical methods in future work.

The paper is organized as follows. In the rest of this section, we introduce nota-
tions and assumptions that will be used throughout the rest of the paper. In Section
2, we first prove the existence of a weak solution of (1.4) under an assumption on
ν which is weaker than (1.6). In Section 3, we consider the finite element approx-
imation of (1.4) and derive error estimates through rigorous error analysis. In the
last section we first present a numerical experiment to demonstrate the efficiency
and accuracy of our numerical method. Then we conduct a numerical experiment
to show the effect of nonlinear viscosity based on the data from lab experiments.

Notations and Assumptions Denote by C∞0 (Ω) the space of infinitely dif-
ferentiable functions with compact support in Ω, by L2(Ω) the space of square inte-
grable functions on Ω, and by W k,p(Ω) the Sobolev space consisting of functions in
Lp(Ω) with each of their partial derivatives through order k also in Lp(Ω). In par-
ticular we use Hk(Ω) to denote the Hilbert space W k,2(Ω). Let Hk(Ω) = (Hk(Ω))3

and L2(Ω) = (L2(Ω))3. The space H1
0(Ω) is the closure of (C∞0 (Ω))3 in H1(Ω).

Without confusion, we use ‖ · ‖k to denote the norms of Hk(Ω) and Hk(Ω). Simi-
larly ‖ · ‖ denotes the norm of L2(Ω) and L2(Ω). We shall use (·, ·) to denote both
the L2 and L2 inner product. Throughout the paper, C refers to a general constant
whose value varies at different appearances.

We assume that the kinematic viscosity ν(·) : R → R is continuous and there
exist constants ν∗, ν

∗ such that

(1.6) 0 < ν∗ ≤ ν(x) ≤ ν∗ , ∀x ∈ R .

2. Existence and uniqueness of a weak solution

2.1. The weak formulation. First note that p is uniquely determined by (1.4)
subject to difference of a constant. Denote by L2

0(Ω) the closed subspace of L2(Ω)
orthogonal to constants, i.e.,

L2
0(Ω) = {p ∈ L2(Ω);

∫
Ω

p dx = 0}.
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Define the following bilinear and trilinear forms

a(c, r) = (∇c,∇r) , ∀c, r ∈ H1(Ω) ,

B0(u,v,w) =

∫
Ω

u · ∇v w dx , ∀u,v,w ∈ H1
0(Ω) ,

B(u, c, r) =

∫
Ω

u · ∇c r dx , ∀u ∈ H1
0(Ω), c, r ∈ H1(Ω) ,

b(q,v) = −(q, div v) , ∀q ∈ L2
0(Ω) , v ∈ H1

0(Ω) ,

and set

H̃ = H1(Ω) ∩ L2
0(Ω) = {c ∈ H1(Ω) :

∫
Ω

c dx = 0} .

We observe that the trilinear form B0(·, ·, ·) and B(·, ·, ·) are continuous on H1
0(Ω).

In fact, from Holder’s inequality and the Sobolev imbedding theorem, we have that

(2.1) B0(u,v,w) ≤ CB0
‖u‖L4(Ω)‖∇v‖L2(Ω)‖w‖L4(Ω) ≤ C‖u‖1‖v‖1‖w‖1

where CB0
> 0 is a constant. Similarly

(2.2) B(u, c, r) ≤ CB‖u‖1‖c‖1‖r‖1
where CB > 0 is a constant. Define

(2.3) V = {u ∈ H1
0(Ω) : div u = 0 in Ω} .

For u ∈ V, integrating by parts gives

(2.4)

{
B0(u,v,w) +B0(u,w,v) = 0 ,

B(u, c, r) +B(u, r, c) = 0 ,

or equivalently

B0(u,v,v) = 0 , B(u, r, r) = 0 .(2.5)

Then condition (1.3) is equivalent to requiring c − α ∈ H̃. Define an auxiliary
concentration cα = c− α with fα = f − gγαi3. Then the weak formulation of (1.4)
is derived by multiplying (1.4) by test functions and integrating by parts (without
confussion, we write c = cα and f = fα).

Definition 2.1. Given f in L2(Ω). (u, p, c) ∈ H1
0(Ω) × L2

0(Ω) × H̃ is said to be a
weak solution of system (1.4) if

(2.6)



(ν(c+ α)D(u), D(v)) +B0(u,u,v) + b(p,v)

= −(g(1 + γc)i3,v) + (f ,v), ∀v ∈ H1
0(Ω) ,

b(q,u) = 0 , ∀q ∈ L2
0(Ω) ,

θa(c, r) +B(u, c, r)− U(c,
∂r

∂x3
) = Uα(

∂r

∂x3
, 1) , ∀r ∈ H̃ .

To solve system (2.6), it suffices to solve the associated problem: find a pair

(u, c) ∈ V × H̃ such that

(2.7)


(ν(c+ α)D(u), D(v)) +B0(u,u,v) = −(g(1 + γc)i3 + f ,v), ∀v ∈ V ,

θa(c, r) +B(u, c, r)− U(c,
∂r

∂x3
) = Uα(

∂r

∂x3
, 1) , ∀r ∈ H̃ .
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Remark 2.2. It is easy to verify that if (u, c, p) is a solution of system (2.6), then
(u, c) must be a solution of (2.7). The converse is also true since the bilinear form
b(·, ·) defined above satiesfies the inf-sup condition (see [10]), i.e., for some β > 0

sup
v∈H1

0(Ω)

b(q,v)

‖v‖1
≥ β‖q‖ , ∀q ∈ L2

0(Ω) .

2.2. Existence. To prove the existence of a weak solution of (2.7), we construct
a sequence of approximate weak solutions using the Galerkin method, which will
also be helpful in our later discussion about the finite element method. First we
notice that

(2.8)

{
‖v‖1 ≤ CΩ‖∇v‖ , ∀v ∈ H1

0(Ω) ,

‖r‖1 ≤ CΩ‖∇r‖ , ∀r ∈ H̃ ,

for some constant CΩ independent of v and r. (2.8) is the Poincaré inequality where
the first inequality holds because v = 0 on the boundary while the second one is
due to the fact that

∫
Ω
rdx = 0. We also need the following lemma on Nemytskii

operators (see [18]).

Lemma 2.3. Assume that a function f : Ω× Rm → R satisfies the Carathéodory
conditions:

(i) f(x, u) is a continuous function of u for almost all x ∈ Ω;
(ii) f(x, u) is a measurable function of x for all u ∈ Rm.

Furthermore, assume that, for some constant C and g ∈ Lq(Ω)

|f(x, u)| ≤ C|u|p−1 + g(x), x ∈ Ω, u ∈ Rm

where 1 < q < ∞ and 1
p + 1

q = 1. Then the Nemytskii operator F (u) : Ω → R
defined by

F (u)(x) = f(x, u(x))

is a bounded and continuous map from Lp(Ω;Rm) into Lq(Ω;R).

It is obvious that the viscosity ν(·) satisfying condition (1.6) is a Nemytskii
operator.

Since V and H̃ are both separable Hilbert spaces, there exist sequences {vj}∞j=1

and {rj}∞j=1 such that {vj}∞j=1 and {rj}∞j=1 are orthonormal basis of V and H̃,

respectively. Let Vm, H̃m be the finite dimensional subspaces of V, H̃ generated
by {v1,v2, . . . ,vm} and {r1, r2, . . . , rm}, respectively. The first step of the Galerkin

method is to seek (um, cm) ∈ Vm × H̃m such that

(2.9)


(ν(cm + α)D(um), D(v)) +B0(um,um,v) = −((g + γcm)i3,v)

+(f ,v) , ∀v ∈ Vm ,

θa(cm, r) +B(um, cm, r)− U(cm,
∂r

∂x3
) = Uα(

∂r

∂x3
, 1) , ∀r ∈ Rm .

The existence of a solution of (2.9) is guaranteed for any integar m > 0 either by
a direct corollary of Brouwer fixed point theorem or using Riesz’ theorem.

We next show that {um}∞m=1 and {cm}∞m=1 are uniformly bounded in V and H̃,
respectively.

Lemma 2.4. Assume that

(2.10)
θ

C2
Ω

> U .
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Then there exists a constant C independent of m such that

(2.11) ‖cm‖1 + ‖um‖1 < C.

Proof. Let v = um, r = cm in (2.9). From (2.5) we have

(ν(cm + α)D(um), D(um)) = −((g + γcm)i3,u
m) + (f ,um) ,

θa(cm, cm)− U(cm,
∂cm

∂x3
) = Uα(

∂cm

∂x3
, 1) .

Thus it follows from (1.6) and Young’s inequality that

ν∗‖∇um‖2 ≤ (ν(cm + α)D(um), D(um))

≤ | − ((g + γcm)i3,u
m) + (f ,um)|

≤ (γ‖cm‖+ ‖f − gi3‖) ‖um‖ .
(2.12)

Also

θ‖∇cm‖2 ≤ θa(cm, cm)

≤ |U(cm,
∂cm

∂x3
) + Uα|Ω| 12 (

∂cm

∂x3
, 1)|

≤ U‖cm‖21 + Uα|Ω| 12 ‖cm‖1 .

(2.13)

Using the above inequality, (2.8), and assumption (2.10) we obtain

(2.14) ‖cm‖1 ≤
(
θ

C2
Ω

− U
)−1

Uα|Ω| 12 , .

Substituting cm in (2.12) with the right hand side of (2.14) gives

‖um‖1 ≤
C2

Ω

ν∗

(
(
θ

C2
Ω

− U)−1Uα

)
+ ‖f − gi3‖ .

�

We are now ready to show the existence of a solution of (2.7).

Theorem 2.5. Assume that (1.6) and (2.10) hold, and f ∈ L2(Ω). Then system
(2.7) has a weak solution.

Proof. Consider sequences {um}∞m=1, {cm}∞m=1 defined by (2.9). From Lemma 2.4,

there exist u ∈ H1
0(Ω) and c ∈ H̃ (via subsequences if necessary) such that

(2.15) um ⇀ u in H1
0(Ω) and cm ⇀ c in H̃ , as m→∞ .

Due to the Sobolev compact embedding theorem, we know that

(2.16) um → u in L2(Ω) and cm → c in L2(Ω) , as m→∞ .

We now show that the weak limit (u, c) is a solution of (2.7). Let v and r be test
functions such that

(2.17) v ∈ V ∩ (C∞0 (Ω))3 , r ∈ C∞(Ω) ∩ H̃ .

First notice that

(ν(c+ α)D(u), D(v))− (ν(cm + α)D(um), D(v))

= (ν(c+ α)D(u− um), D(v)) + ((ν(c+ α)− ν(cm + α))D(um), D(v))

:= I + II .

From (1.6), (2.15) we have that

|I| = |(D(um − u), ν(c+ α)D(v))| → 0 , as m→∞ .
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Property (2.16) and the fact that ν is Nemytskii operator implies that

(2.18) ν(cm + α)→ ν(c+ α) in L2(Ω) , as m→∞ .

Thus from (2.17), Lemma 2.4 and Holder’s inequality, we have

|II| ≤ C‖ν(cm + α)− ν(c+ α)‖‖um‖1 → 0 , as m→∞ .

Combining the above estimates we obtain

(2.19) (ν(cm + α)D(um), D(v))→ (ν(c+ α)D(u), D(v)) , as m→∞ .

Next by Green’s formula

B0(um,um,v) =

3∑
i,j=1

∫
Ω

umj (
∂umi
∂xj

vi) dx = −
3∑

i,j=1

∫
Ω

umi umj (
∂vi
∂xj

) dx .

By assumption (2.17), we know that ∂v
∂xj

is uniformly bounded while um → u in

L2(Ω) implies that umi umj → uiuj in L1(Ω) as m→∞. Thus

lim
m→∞

B0(um,um,v) = −
3∑

i,j=1

∫
Ω

uiuj(
∂vi
∂xj

) dx = −B0(u,v,u) = B0(u,u,v) .

Following the same argument, we have that

(2.20) B0(um,um,v)→ B0(u,u,v) , B(um, cm, r)→ B(u, c, r) , as m→∞ .

Again from (2.15), we have that

(g(1 + γcm)i3,v)→ (g(1 + γc)i3,v) ,

θa(cm, r)→ θa(c, r) ,

U(cm,
∂r

∂x3
)→ U(c,

∂r

∂x3
) , as m→∞ .

(2.21)

As the test functions v, r defined in (2.17) are dense in V and H̃, conclusions

(2.19), (2.20) and (2.21) hold for ∀v ∈ V and ∀r ∈ H̃. Letting m → ∞ in (2.9)
and using the above results we obtain

(ν(c+ α)D(u), D(v)) +B0(u,u,v) = −((g + γc)i3,v) + (f ,v) , ∀v ∈ Vm ,

θa(c, r) +B(u, c, r)− U(c,
∂r

∂x3
) = Uα(

∂r

∂x3
, 1) , ∀r ∈ Rm .

Again since v and r are dense in V and H̃, we conclude that (u, c) is a solution of
(2.7). �

2.3. Uniqueness. First we notice that the bilinear form b(·, ·) satisfies the inf-sup

condition (see Remark 2.2). Therefore for each solution (u, c) ∈ V × H̃ of system
(2.7), there exists a unique p ∈ L2

0(Ω) satisfying system (2.6) (see [10]). Hence to
prove the uniqueness of solution for (2.6), it suffices to prove that system (2.7) has
a unique solution.

Following the proof of Lemma 2.4 we can obtain the following estimates for u
and c.

(2.22) ‖u‖1 ≤ C3 and ‖c‖1 ≤ C4 .

where

C3 =
C2

Ω

ν∗
(γC4 + ‖gi3 + f‖) , C4 =

Uα

|Ω| 12 ( θ
C2

Ω
− U)

.

Theorem 2.6. Assume that



BIO-CONVECTION FLOW 93

(H1) The hypothesis of Theorem 2.5 holds;
(H2) The viscosity ν(·) is Lipschitz continuous, i.e., there exists a constant νL >

0 such that

|ν(x1)− ν(x2)| ≤ νL|x1 − x2| , ∀x1, x2 ∈ R ;

(H3) There exists a constant C0 such that ‖D(u)‖∞ ≤ C0;
(H4) The following inequality

ν∗
C2

Ω

−

(
CBC4

θ
C2

Ω
− U

(νLC0 + gγ) + CB0C3

)
> 0

holds.

Then the solution (u, c) of system (2.7) is unique.

Proof. Let (u, c) and (ū, c̄) be two different solutions of (2.7). Substituting both
solutions into (2.7) with v = u − ū and r = c − c̄, and substracting the equation
for (u, c) from the equation for (ū, c̄) , we have that

(ν(c+ α)D(u), D(u− ū))− (ν(c̄+ α)D(ū), D(u− ū))+

B0(u,u,u− ū)−B0(ū, ū,u− ū) = −gγ(c− c̄,u− ū) ,
(2.23)

and

(2.24) θa(c− c̄, c− c̄) +B(u, c, c− c̄)−B(ū, c̄, c− c̄)− U(c− c̄, ∂(c− c̄)
∂x3

) = 0 .

According to property (2.5), we have the identity

(2.25)

{
B0(u,u,u− ū)−B0(ū, ū,u− ū) = B0(u− ū,u,u− ū) ,

B(u, c, c− c̄)−B(ū, c̄, c− c̄) = B(u− ū, c, c− c̄) .

Thus it follows from (2.24), (2.8) and (2.2) that

θ

C2
Ω

‖c− c̄‖21 ≤ |B(u− ū, c, c− c̄)|+ U(c− c̄, ∂(c− c̄)
∂x3

)

≤ CBC4‖c− c̄‖1‖u− ū‖1 + U‖c− c̄‖21 .

From (2.10) we obtain

(2.26) ‖c− c̄‖1 ≤
CBC4

θ
C2

Ω
− U
‖u− ū‖1 .

Substituting the above estimate into (2.23) and combining (1.6), (2.8), (2.1) and
(2.25), we have that

ν∗
C2

Ω

‖u− ū‖21 ≤ (ν(c+ α)D(u− ū), D(u− ū))

≤ |((ν(c+ α)− ν(c̄+ α))D(ū), D(u− ū))|+ |B0(u− ū,u,u− ū)|+ gγ|(c− c̄,u− ū)|
≤ νLC0‖c− c̄‖1‖u− ū‖1 + CB0

‖u− ū‖21‖u‖1 + gγ‖c− c̄‖1‖u− ū‖1

≤

(
CBC4

θ
C2

Ω
− U

(νLC0 + gγ) + CB0
C3

)
‖u− ū‖21.

By assumption (H4) we conclude that

‖u− ū‖1 = ‖c− c̄‖1 = 0 .

�
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Remark 2.7. In practice, we need to verify condition (2.10) and (H4). First notice
that since the micro-organisms are slightly denser than water, γ = ρ0/ρm − 1 is
small. Therefore to verify (2.10) and (H4), we only need ν∗, θ to be sufficiently large
while U , CΩ are sufficiently small, i.e., a suspension with highly viscous culture fluid,
large diffusion rate, and slowly upswimming micro-organisms in a small container.

3. Numerical approximations with the finite element method

In this section, we construct and analyze finite element approximations for the
weak solution of (2.6). Throughout this section, we assume that the hypothesis of
Theorem 2.6 holds.

Let τh be a regular triangulation of Ω ([21]) and Xh, Mh and Sh be finite element

subspaces of H1
0(Ω), L2

0(Ω) and H̃, respectively. Assume that the following discrete
inf-sup condition holds.

(3.1) sup
v∈Xh

b(q,v)

‖v‖Xh

≥ β‖q‖Mh
, ∀q ∈Mh

where β > 0 is a constant. Furthermore we assume that Xh, Mh and Sh satisfy
the following approximation properties.

inf
vh∈Xh

‖v − vh‖1 ≤ Chs‖v‖s+1, ∀v ∈ Hs+1(Ω), 0 < s ≤ k,(3.2)

inf
qh∈Mh

‖q − qh‖ ≤ Chs‖q‖s, ∀q ∈ Hs(Ω), 0 < s ≤ k,(3.3)

inf
th∈Sh

‖t− th‖1 ≤ Chs‖t‖s+1, ∀t ∈ Hs+1(Ω), 0 < s ≤ k.(3.4)

See [11, 10, 20] for constructions of these spaces satisfying (3.1)–(3.4). Next we
define the discrete divergence free space

Vh = {v ∈ Xh, ( div v, qh) = 0 , ∀qh ∈Mh} .

Notice that in general, Vh is not a subspace of V. Thus in general the identity
(2.5) does not hold. To obtain a property similar to (2.5) on Vh, we define auxiliary

forms B̂0 and B̂ by

B̂0(u,v,w) =
1

2
B0(u,v,w)− 1

2
B0(u,w,v) ,

B̂(u, c, r) =
1

2
B(u, c, r)− 1

2
B(u, r, c) .

It is easy to verify that

B̂0(u,v,w) = B0(u,v,w) , B̂(u, c, r) = B(u, c, r) ,

∀u ∈ V ,v,w ∈ H1
0(Ω) , c, r ∈ H̃ .

(3.5)

In addition, we have

(3.6) B̂0(u,v,v) = 0 , B̂(u, c, c) = 0 , ∀u,v ∈ H1
0(Ω) , c ∈ H1

0(Ω)

and

(3.7)

{
B̂0(u,v,w) ≤ CB0‖u‖1‖v‖1‖w‖1 , ∀u,v,w ∈ H1

0(Ω) ,

B̂(u, c, r) ≤ CB‖u‖1‖c‖1‖r‖1 , ∀u ∈ H1
0(Ω) , c, r ∈ H̃ ,

where CB and CB0 are the same as in (2.1) and (2.2).
We define the finite element approximation of (2.7) as follows.



BIO-CONVECTION FLOW 95

Definition 3.1. The finite element approximation of (2.7) is to find (uh, ph, ch) ∈
Xh ×Mh × Sh, such that

(3.8)



(ν(ch + α)D(uh), D(v)) + B̂0(uh,uh,v)− (ph, div v)

= −(g(1 + γch)i3,v) + (f ,v), ∀v ∈ Xh ,

( div uh, q) = 0 , ∀q ∈Mh ,

θa(ch, r) + B̂(uh, ch, r)− U(ch,
∂r

∂x3
) = Uα(

∂r

∂x3
, 1) , ∀r ∈ Sh .

Analogous to the continuous case, we definite an auxiliary system as follows.
Find (uh, ch) ∈ Vh × Sh such that

(3.9)


(ν(ch + α)D(uh),D(v)) + B̂0(uh,uh,v)

= −(g(1 + γch)i3,v) + (f ,v), ∀v ∈ Vh ,

θa(ch, r) + B̂(uh, ch, r)− U(ch,
∂r

∂x3
) = Uα(

∂r

∂x3
, 1) , ∀r ∈ Sh .

Because of properties (3.6) and (3.7), we can prove the existence of a weak solution
of (3.9) following the same approach as in the continuous case. Then we obtain a
solution (uh, ph, ch) of (3.8) (see [10]) by solving

(ph, div v) = (ν(ch + α)D(uh), D(v))

+B̂0(uh,u
n
h,v) + ((g + γch)i2,v)− (fn,v) , ∀v ∈ Xh .

(3.10)

According to (3.1), ph is uniquely solvable in the quotient space Qh/Nh where
Nh = {qh ∈ Qh , (qh, div v) = 0 ,∀v ∈ Xh}.

Following a similar argument as in the continuous case we can show that ‖uh‖1
and ‖ch‖1 are uniformly bounded, i.e., there exist constants C3 and C4 independent
of h such that

(3.11) ‖uh‖1 ≤ C3 , ‖ch‖1 ≤ C4.

To carry out the error estimate, we introduce the Ritz Galerkin projections
rh : H1

0(Ω)→ Vh, sh : H̃ → Sh , and L2 projection πh : L2
0(Ω)→Mh and split the

errors into two parts:

(3.12)


u− uh = u− rhu + rhu− uh := ρhu + θhu ,

p− ph = p− πhp+ πhp− ph := ρhp + θhp ,

c− ch = c− shc+ shc− ch := ρhc + θhc .

From the approximation property (3.2)– (3.4) we known that (see [21])

(3.13)


‖rhu‖1 ≤ C(u), ‖ρhu‖1 ≤ Chs‖v‖s+1, u ∈ Hs+1(Ω), 0 < s ≤ k,
‖shc‖1 ≤ C(c), ‖ρhc ‖1 ≤ Chs‖c‖s+1, c ∈ Hs+1(Ω), 0 < s ≤ k,
‖πhp‖ ≤ C(p), ‖ρhp‖ ≤ Chs‖p‖s, p ∈ Hs(Ω), 0 < s ≤ k.

Theorem 3.2. Assume that the hypothesis of Theorem 2.5 and Theorem 2.6 hold.
Then for u ∈ Hs+1(Ω), p ∈ Hs(Ω) and c ∈ Hs+1(Ω), there exists a constant C
independent of h such that

(3.14) ‖u− uh‖1 + ‖c− ch‖1 + ‖p− ph‖ ≤ Chs , 0 < s ≤ k .
Proof. By (3.13), it surffies to estimate θhu, θhp and θhc . Subtracting (3.9) from (2.6)

with v = θhu, r = θhc and using (3.5) we have that

(ν(c+ α)D(u),D(θhu))− (ν(ch + α)D(uh), D(θhu)) + B̂0(u,u, θhu)

− B̂0(uh,uh, θ
h
u) + b(p, θhu) = −gγ((c− ch))i3, θ

h
u)

(3.15)
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and

θa(c− ch, θhc ) + B̂(u, c, θhc )− B̂(uh, ch, θ
h
c )− U(c− ch,

∂θhc
∂x3

) = 0 .(3.16)

It follows from (1.6), (3.6) and (3.7) that

θ

C2
Ω

‖θhc ‖21 ≤ θa(θhc , θ
h
c ) = −θa(ρhc , θ

h
c )− B̂(θhu, ch, θ

h
c )− B̂(rhu, ρ

h
c , θ

h
c )

− B̂(ρhu, c, θ
h
c ) + U(θhc ,

∂θhc
∂x3

) + U(ρhc ,
∂θhc
∂x3

)

≤ θ‖θhc ‖1‖ρhc ‖1 + CB‖θhc ‖1(‖θhu‖1‖ch‖1 + ‖rhu‖1‖ρhc ‖1
+ ‖ρhu‖1‖c‖1) + U‖θhc ‖21 + U‖ρhc ‖1‖θhc ‖1 .

Moving the term U‖θhc ‖21 to the left and dividing by ‖θhc ‖1 and using (2.22) and
(3.11) we have

(3.17) ‖θhc ‖1 ≤
1

θ
C2

Ω
− U

(
(θ + U + CB‖rhu‖1)‖ρhc ‖1 + CBC4(‖θhu‖1 + ‖ρhu‖1)

)
.

Similarly for (3.15), from (1.6), (H2), (H3), (2.22), (3.7) and (3.11), we have that

ν∗
C2

Ω

‖θhu‖21 ≤ (ν(ch +
α

|Ω|
)D(θhu), D(θhu))

= − (ν(ch + α)D(ρhu), D(θhu)) + ((ν(ch + α)

− ν(c+ α))D(u), D(θhu))− B̂0(θhu,uh, θ
h
u)−B0(rhu, ρ

h
u, θ

h
u)

− B̂0(ρhu,u, θ
h
u)− b(ρp, θhu)− gγ((c− ch))i3, θ

h
u)

≤ ν∗‖ρhu‖1‖θhu‖1 + (νLC0 + gγ)‖ch − c‖1‖θhu‖1
+ CB0

‖θhu‖1(C3‖θhu‖1 + ‖rhu‖1‖ρhu‖1 + C3‖ρhu‖1) + ‖ρp‖‖θhu‖1 .

Notice that by (3.17)

‖ch − c‖1 ≤ ‖ρhc ‖1 + ‖θhc ‖1

≤ ‖ρhc ‖1 +
1

θ
C2

Ω
− U

(
(θ + U + CB‖rhu‖1)‖ρhc ‖1 + CBC4(‖θhu‖1 + ‖ρhu‖1)

)
.

This implies that

(
ν∗
C2

Ω

− CB0
C3 − (νLC0 + gγ)

CBC4

θ
C2

Ω
− U

)‖θhu‖1 ≤ (ν∗ + CB0
‖rhu‖1 + CB0

C3

+
CBC4(νLC0 + gγ)

θ
C2

Ω
− U

)‖ρhu‖1 + (νLC0 + gγ)

(
1 +

θ + U + CB‖rhu‖1
θ
C2

Ω
− U

)
‖ρhc ‖1 + ‖ρp‖ .

By assumption (H4) and (3.13) we obtain

(3.18) ‖θhu‖1 ≤ C(‖ρhu‖1 + ‖ρhc ‖1 + ‖ρp‖) ,

and by (3.17) and (3.13) we have

(3.19) ‖θhc ‖1 ≤ C(‖ρhu‖1 + ‖ρhc ‖1 + ‖ρp‖) .

From (3.12), (3.18) and (3.19) we obtain

(3.20) ‖u− uh‖1 + ‖c− ch‖1 ≤ C
(
‖ρhu‖1 + ‖ρhc ‖1 + ‖ρhp‖

)
.
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It remains to estimate ‖p− ph‖. Subtracting (3.8) from (2.6) gives

−b(v, θhp ) = (ν(c+ α)D(u), D(v))− (ν(ch + α)D(uh), D(v))

+B̂0(u,u,v)− B̂0(uh,uh,v) + b(ρhp ,v) + gγ((c− ch))i3,v) .

By (3.1), (3.7), (2.22) and (3.11) we have that

‖θhp‖ ≤
1

β
sup
v∈Xh

1

‖v‖1
(−(ν(ch + α)D(u− uh), D(v))

− ((ν(c+ α)− ν(ch + α))D(u), D(v))− B̂0(u− uh,u,v)

+ B̂0(uh,u− uh,v)− b(ρhp ,v)− gγ((c− ch)i3,v))

≤ 1

β
sup
v∈Xh

1

‖v‖1
((ν∗ + 2CB0C3)‖u− uh‖1‖v‖1

+ (νLC0 + gγ)‖c− ch‖1‖v‖1 + ‖ρhp‖‖v‖1)

≤C(‖u− uh‖1 + ‖c− ch‖1 + ‖ρhp‖) .

Combing the above estimate with (3.18) and (3.19), we obtain

(3.21) ‖p− ph‖1 ≤ C(‖ρhu‖1 + ‖ρhc ‖1 + ‖ρhp‖) .

The result of the theorem then follows from (3.13). �

4. Numerical experiments

In this section we shall conduct two numerical experiments. The first one uses
artificial data to verify the error estimates while the second one uses data obtained
from lab experiments. We shall use Taylor-Hood finite element spaces ([19]) for Vh

and Qh and continuous piecewise quadratic function spaces for Sh.

Example 1 In this example we choose the domain Ω = [−1, 1]× [−1, 1], and γ,
U , θ and ν as

γ = 0.1, U = 0.1, θ = 1 ,

and

ν(x) = sin2 x+ 1, x ∈ Ω .

The forcing terms are chosen so that the exact solution is given by

u = (sinπx sinπy, sinπx sinπy)T ,

p = sinπx sinπy ,

c = sinπx sinπy.

The numerical errors for different mesh sizes are listed in Table 1. The conver-
gence rates listed in the table are consistent with our theoretical result.

Example 2 In this example we consider a 10 cm × 10 cm container filled with
micro-organisms suspensions under zero external force, i.e., f ≡ 0. For computa-
tion simplicity, we study the domain on x-z plane. The parameters of the model,
obtained from lab experiments (see [12]), are given in Table 2.

As a volume concentration, c is given by

c = nv0 ,
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Table 1. Convergence rate

h ‖p− ph‖ ‖u− uh‖ ‖c− ch‖ ‖p− ph‖1 ‖u− uh‖1 ‖c− ch‖1
1/2 0.2520 0.0078 0.0049 0.9846 0.0854 0.0460
1/4 0.0323 0.0010 6.8E-04 0.3847 0.0207 0.0118
1/8 0.0055 1.31E-04 8.88E-05 0.1786 0.0050 0.030
1/16 0.0011 1.65E-05 1.13E-05 0.0877 0.0012 7.45E-04
1/32 2.28E-04 2.07E-06 1.42E-06 0.0436 3.09E-04 1.86E-04
1/64 4.90E-05 2.60E-07 1.80E-07 0.0216 7.68E-05 4.7E-05

conv. rate 2.22 2.99 2.97 1.02 2.01 2.00

Table 2. Parameter values

ν0 g γ θ U
cm2/sec m/sec2 cm2/sec cm/sec

0.01 9.81 0.1 0.0025 0.01

where n is the number of organisms per unit volume and v0 is the volume of an
individual organism. Define

(4.1) ν(c) =


ν0 , c < 0 ,
ν0(1 + 2.5 c+ 5.3 c2) , 0 < c < 10% ,

ν0 exp(
2.5 c

1− 1.4 c
) , 10% < c < 60% ,

ν0 exp(9.375) , c > 60% ,

where ν0 is the viscosity of the culture fluid. (4.1) combines the work of Batchelor’s
[2] for low concentration and Mooney’s [17] for high concentration. Note that
exp( 2.5 c

1−1.4 c ) has a low limit ν∗ = ν0 but tends to infinity when the maximum

concentration ϕm = 1
1.4 is reached since the suspension is acting like a solid, where

no movement of neighboring particles are allowed. Therefore we set the upper
bound ν∗ = ν0 exp(9.375) such that the viscosity defined in (4.1) satisfies property
(1.6). In what follows, we consider four different cases with various values for α.

Case 1: α = 1%. The velocity and concentration are given in Figure 1. We
can see that a bioconvection pattern can not be formed and the concentration has
a homogeneous horizontal distribution. This is because the right hand side of the
first equation in (1.1) almost equal to −g. As a result, u ≈ 0 while p is almost
linear with ∇p ≈ −g and ∂c

∂x ≈ 0 because of zero velocity u. The micro-organisms
do not move and the concentration stays linear in the vertical direction with zero
horizontal gradient. From observed experiments, for a shallow container with low
concentration of micro-organisms, the micro-organisms will stay at the surface of
the suspension due to the upswimming since the effect of gravity can be neglected.
In fact, bioconvection only occurs for sufficiently deep container. The higher the
concentration, the shallower the container will be. In this case, 1% concentration
is not large enough to form a bioconvection pattern in a 10 cm deep container.

Case 2: α = 20%. Figure 2 shows the distribution of concentration and the
velocity filed with streamlines. Here the color denotes the magnitude of the velocity.
The figure shows that a bioconvection pattern can be formed for sufficiently large
concentration. Our simulation result is consistent with the results obtained in
[12]. From the figure we also observe that two convections, separated from the
center, flow steadily in opposite directions. The highest velocity happens in the
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Figure 1. Concentration and velocity field for α = 1%

Figure 2. Concentration and velocity field for α = 20%

middle, where the concentration is low, due to the upswimming under small effect
of the gravity. Another high speed motion is observed on the left and right side
of the container, which is caused mostly by gravity due to high concentration in
the left and right up corners. In this way, randomly upswimming micro-organisms
form steady convections because of drag force generated by the motion. Only a
few micro-organisms remain at the bottom while most of the micro-organisms stay
close to the surface.

Case 3: α = 20%, however the constant viscosity ν(c) ≡ 0.01 is used in this
case to compare with Case 2 where concentration dependent viscosity (4.1) is used.
The result is shown in Figure 3. From the graph, we can see that both models
capture the motion of the bioconvection but the concentration distribution and
velocity field are slightly different. The velocity of the nonlinear case are slower
and smoother due to a relatively higher viscosity, which involves the concentration.
The difference is more notable where the concentration is high. The nonlinear
viscosity case reflects higher concentrated micro-organisms at the top corners since
more micro-organisms are washed up by the drag force and stays there due to a high
viscosity. One can see that the introduction of nonhomogeneous viscosity captures
the feature of the bioconvection better in the simulation.

Case 4: α = 30%. The velocity field and concentration distribution are given in
Figure 4. From the figure we observe that as concentration increases, the effect of
the gravity become more significant, which leads to a faster convection. However,
once the pattern is formed, the distribution of the contraction stays the same.
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Figure 3. Concentration and velocity field for α = 20% with
constant viscosity

Figure 4. Concentration and velocity field for α = 30%
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