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AN OPTIMAL UNIFORM A PRIORI ERROR ESTIMATE FOR

AN UNSTEADY SINGULARLY PERTURBED PROBLEM

MILOSLAV VLASAK AND HANS–GÖRG ROOS

Abstract. A time–dependent convection–diffusion problem is discretized by the Galerkin finite
element method in space with bilinear elements on a general layer adapted mesh and in time by
discontinuous Galerkin method. We present optimal error estimates. The estimates hold true for
consistent stabilization too.

Key words. discontinuous Galerkin, convection–diffusion, layer adapted mesh, error estimate

1. Introduction

We focus ourselves on the analysis of the solution of unsteady linear 2D singularly
perturbed convection–diffusion equation. This type of equation can be considered
as simplified model problem to many important problems, especially to Navier–
Stokes equations.

The space discretization of such a problem is a difficult task and it stimulated de-
velopment of many stabilization methods (e.g. streamline upwind Petrov–Galerkin
(SUPG) method, local projection stabilization methods) and layer–adapting tech-
niques (e.g. Shishkin meshes, Bakhvalov meshes). For the overview see [9] or [8].

In order to achieve optimal diffusion–uniform error estimates we employ lay-
er adapted meshes. On these general layer adapted meshes we assume a general
space discretization covering standard conforming finite element method (FEM)
or consistent stabilization methods. The resulting system of ordinary differential
equations is solved by discontinuous Galerkin (DG) method.

Considering the space discretization on Shishkin meshes, we will follow the theory
for stationary singularly perturbed problems based on the solution decomposition,
which enables us to derive a priori error estimates independent of the diffusion
parameter even with respect to the norms (seminorms) of the exact solution, which
can be also highly dependent on the diffusion parameter. For the details see [9].

The discontinuous Galerkin (DG) method is a very popular approach for solv-
ing ordinary differential equations arising from space discretization of parabolic
problems, which is based on piecewise polynomial approximation in time. Among
important advantages we should mention unconditional stability for arbitrary or-
der, which allows us to solve stiff problems efficiently, and good smoothing property,
which enables us to work with inexact or rough data. For introduction to DG time
discretization see e.g. [11].

In [6] and [1] the authors study DG in time and DG and local projection stabi-
lization method, respectively, in space on standard meshes for singularly perturbed
problems. The error estimates in these papers contain norms of the exact solutions
which go to infinity if diffusion parameter goes to zero.

There are only few papers dealing with finite elements in space on the special
meshes combined with any discretization in time. While in [7] the θ–scheme as
discretization in time is used, in [5] the authors study BDF time discretization.
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In [7] the authors also study DG time discretization and derive suboptimal error
estimates.

Our aim is improving some results from [7] and proving optimal a priori diffusion–
uniform error estimates for DG time discretization in L∞(L2) norm.

The main difficulty in proving optimal diffusion–uniform error estimates for DG
time discretization is the fact that we cannot employ standard technique of the
proof, which is based on the construction of a suitable projection, which enables
us to eliminate discrete time derivative in the error equation, see e.g. [10]. This
technique enforces us to do some upper bound of the projection error contained in
stationary terms, which depends on a higher time derivative of the exact solution
in H1 seminorm, which depends on the diffusion parameter.

2. Continuous problem

Let Ω = (0, 1)2 be a computational domain and T > 0. Then let us consider
parabolic singularly perturbed problem

∂u

∂t
− ε∆u+ b · ∇u+ cu = f, ∀x ∈ Ω, t ∈ (0, T ),(1)

u = 0, ∀x ∈ ∂Ω, t ∈ (0, T ),

u(x, 0) = u0(x), ∀x ∈ Ω,

where function u0 ∈ L2(Ω), 0 < ε << 1 and functions f(x, t), b(x) and c(x) are
sufficiently smooth with b1(x) > β1 > 0 and b2(x) > β2 > 0. By substitution in
time variable we can achieve

c−
1

2
∇ · b ≥ c0 > 0.(2)

To simplify the text we will use the following notation. (., .) and ‖.‖ are L2(Ω)
scalar product and norm, |.|1 and ‖.‖1 are H1(Ω) seminorm and norm. Let us
define bilinear form

a(u, v) = ε(∇u,∇v) + (b · ∇u+ cu, v).(3)

Definition 1. We say that the function u ∈ L2(0, T,H1
0 (Ω)) with the time deriva-

tive ∂u
∂t ∈ L2(0, T,H−1(Ω)) is the weak solution of (1), if the following conditions

are satisfied

(

∂u(t)

∂t
, v

)

+ a(u(t), v) = (f(t), v) ∀t ∈ (0, T ), ∀v ∈ H1
0 (Ω),(4)

u(0) = u0.

It is possible to show that the solution has in general boundary layer around the
border of Ω at x = 1 and y = 1. Assuming sufficiently compatible data we can avoid
the existence of interior layers, which enables us to concentrate on the boundary
layers only, see [9] or [4]. Moreover, it is possible to guarantee the S–decomposition
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of the solution: u = S + V1 + V2 + V12, where
∣

∣

∣

∣

∣

∂i+j+kS(x1, x2, t)

∂xi
1∂x

j
2∂t

k
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∣

≤ C,(5)

∣
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∣
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j
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k

∣

∣

∣

∣

∣

≤ Cε−ie−β1(1−x1)/ε,(6)

∣

∣

∣

∣

∣

∂i+j+kV2(x1, x2, t)
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1∂x

j
2∂t

k

∣

∣

∣

∣

∣

≤ Cε−je−β2(1−x2)/ε,(7)

∣

∣

∣

∣

∣

∂i+j+kV12(x1, x2, t)

∂xi
1∂x

j
2∂t

k

∣

∣

∣

∣

∣

≤ Cε−i−j min{e−β1(1−x1)/ε, e−β2(1−x2)/ε},(8)

where i, j, k are nonnegative integers such that i + j ≤ 3 and k ≤ q + 2, where q
denotes the degree of the intended polynomial approximation in time. S represents
the smooth part of the solution, V1 and V2 represent boundary layers and V12

represents the corner layer. This result shows dependence of space derivatives on
ε, which complicates deriving standard a priori error estimates.

2.1. Discretization. We want to discretize the problem (1) by either standard
finite element method or some consistent stabilization method on general layer
adapted meshes in space. This technique allows us to derive a priori error estimates
that are independent of ε.

We will start with the construction of the general layer adapted mesh. To do
this we will follow the approach described in [8] or [9]. Let us denote N , space mesh
parameter, as an even number. Then let us set

0 = x0 < x1 < . . . < xN = 1, 0 = y0 < y1 < . . . < yN = 1.(9)

The final mesh arises as tensor product mesh with mesh points (xi, yj). Since
the idea of distribution of mesh points is the same in both direction (using either
parameter β1 or β2), we describe the idea only in x1 direction. Let us introduce
the mesh generating function φ satisfying φ(0) = 0 and φ(1/2) = ln(N), moreover
we assume φ be continuous, increasing and differentiable. Let the mesh points are
equally distributed in [0, xN/2] and graded according to the function φ in [xN/2, 1]:

xi =
2i

N

(

1−
σε

β1
φ

(

1

2

))

, ∀i = 0, . . . , N/2(10)

xi = 1−
σε

β1
φ

(

N − i

N

)

, ∀i = N/2, . . . , N.(11)

The parameter σ is chosen to satisfy σ ≥ 5/2. These meshes can be called S–
type meshes. For instance, the special choice of the function φ(s) = 2 ln(N)s leads
to classical Shishikin mesh and the choice φ(s) = − ln(1 − 2s(1 − N−1)) leads to
Bakhvalov–type meshes.

Let us define the conforming bilinear finite element space VN on our mesh. We
denote ast(., .) the space discretization bilinear form and fst the corresponding
right–hand side. In the case of classical finite element method the form ast(., .) and
the right–hand side fst are identical to former bilinear form a(., .) and former right–
hand side f , but they can differ in the case of stabilization methods. Moreover, we
assume that the new bilinear form is consistent, i.e., the exact solution u satisfies

(

∂u

∂t
, v

)

+ ast(u, v) = (fst, v), ∀v ∈ VN .(12)
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The semi–discrete problem reads: find uN ∈ C1(0, T, VN ) satisfying
(

∂uN(t)

∂t
, v

)

+ ast(uN (t), v) = (fst(t), v), ∀v ∈ VN , ∀t ∈ (0, T ),(13)

(uN (0), v) = (u0, v). ∀v ∈ VN

To discretize this problem in time we assume time partition 0 = t0 < t1 < . . . <
tr = T with time intervals Im = (tm−1, tm), time steps τm = |Im| = tm − tm−1 and
τ = maxm=1,...,r τm. We denote the function values at the nodes as vm = v(tm). To
be able to use the Galerkin type of discretization we denote the space of piecewise
polynomial functions

V τ
N = {v ∈ L2(0, T, VN) : v|Im =

q
∑

j=0

vj,mtj , vj,m ∈ VN}.(14)

For the functions from such a space we need to define the values at the nodes of
time partition

vm± = v(tm±) = lim
t→tm±

v(t)(15)

and the jumps

{v}m = vm+ − vm− .(16)

Definition 2. We say that the function U ∈ V τ
N is the approximate solution to the

problem (1) if
∫

Im

(U ′, v) + ast(U, v)dt+ ({U}m−1, v
m−1
+ ) =

∫

Im

(fst, v)dt,(17)

∀v ∈ V τ
N , ∀m = 1, . . . , r

(U0
−, v) = (u0, v) ∀v ∈ VN .

3. Error analysis

We define energy norm

|||v|||2 = ast(v, v), ∀v ∈ H1(Ω).(18)

3.1. Stationary problem. In this part we want to go through some well known
results for the singularly perturbed problems (for the details see [9]). Let us assume
related stationary problem

ast(u, v) = (f∗
st, v), ∀v ∈ H1

0 (Ω),(19)

with some f∗
st ∈ L2(Ω), and corresponding discrete finite element problem on layer–

adapted mesh. Let us define the Ritz projection R : H1
0 (Ω) → VN satisfying

ast(u−Ru, v) = 0, ∀v ∈ VN .(20)

We assume that on layer–adapted mesh following error estimates hold true:

|||u−Ru||| ≤ Cg1(N),(21)

‖u−Ru‖ ≤ Cg2(N),(22)

‖u′ −Ru′‖ ≤ Cg2(N),(23)

with C independent of ε. In the case of classical finite element method on Shishkin
mesh we obtain these results with g1(N) = N−1 ln(N) and g2(N) = (N−1 ln(N))2.
The same situation with Bakhvalov mesh leads to the estimates g1(N) = N−1 and
g2(N) = N−2. Remark that the estimates in L2–norm are based on supercloseness
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results, because it is not possible to use the Nitsche–duality trick. See [9] for more
detailed informations. From this follows easily

Lemma 1. Let u be the exact solution of (1). Then

‖Ru(s1)− u(s1)−Ru(s2) + u(s2)‖ ≤ C|s1 − s2|g2(N).(24)

Proof.

‖Ru(s1)− u(s1)−Ru(s2) + u(s2)‖ = ‖

∫ s1

s2

Ru′(t)− u′(t)dt‖(25)

≤ |s1 − s2| sup
Im

‖Ru′ − u′‖

≤ C|s1 − s2|g2(N)

�

3.2. Radau quadrature. Let us define Radau quadrature on each interval Im
∫

Im

f dt ≈ Q[f ] =

q
∑

i=0

wif(tm,i),(26)

where tm,i are Radau quadrature nodes in Im with tm,0 = tm. Such a quadrature
has algebraic order 2q and the coefficients of the quadrature satisfy 0 ≤ wi ≤ τm
and

q
∑

i=0

wi = τm.(27)

Let us assume for simplicity that right–hand side f (and therefore fst) of our
continuous problem (1) is polynomial up to the degree q. Otherwise, we will need
to use additionally error estimate of following type

∫

Im

(f, v)dt−Q[(f, v)] ≤ τmCτq+1 sup
Im

‖v‖, ∀v ∈ V τ
N ,(28)

which holds true for f sufficiently smooth in time. Then it is possible to express
our method (17) by

Q[(U ′, v)] +Q[ast(U, v)] + ({U}m−1, v
m−1
+ ) = Q[(fst, v)], ∀v ∈ V τ

N .(29)

Since the equation for continuous solution (1) is defined at every point t ∈ Im, we
can see that the exact solution satisfy (29) too.

3.3. Projections. Let us set the space

V τ = {v ∈ L2(0, T,H1
0 (Ω)) : v|Im =

q
∑

j=0

vj,mtj , vj,m ∈ H1
0 (Ω)}.(30)

We define time projection P : C([0, T ], H1
0 (Ω)) → V τ , such that

Pu(t) =

q
∑

i=0

ℓi(t)u(tm,i),(31)

where ℓi is Lagrange interpolation basis function for the quadrature node tm,i. Since

RPu(t) = R

q
∑

i=0

ℓi(t)u(tm,i) =

q
∑

i=0

ℓi(t)Ru(tm,i) = PRu(t),(32)

we can see that projections P and R commute. We define the space–time projection
π = PR : C(0, T,H1

0 (Ω)) → V τ
N .
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Now, we present some basic approximation properties of our projections P and
π.

Lemma 2. Let u be the exact solution of (1). Then

sup
Im

‖Pu− u‖ ≤ Cτq+1,(33)

sup
Im

‖Pu′ − u′‖ ≤ Cτq+1,(34)

where the constant C does not depend on τ .

Proof. The proof can be made by standard arguments. It is an analogy to e.g. [3,
Theorem 3.1.4] in Bochner spaces. �

Lemma 3. Let u be the exact solution of (1). Then

sup
Im

‖πu− u‖ ≤ C(τq+1 + g2(N)),(35)

where the constant C does not depend on τ or N .

Proof. Since |ℓi(t)| ≤ C, where the constant C depends only on q, we obtain

sup
Im

‖πu− u‖ ≤ sup
Im

‖Pu− u‖+ sup
Im

‖PRu− Pu‖(36)

≤ Cτq+1 + C‖

q
∑

i=0

Ru(tm,i)− u(tm,i)‖

≤ Cτq+1 + C(q + 1) max
i=0,...,q

‖Ru(tm,i)− u(tm,i)‖

≤ C(τq+1 + g2(N)).

�

3.4. Auxiliary result. We subtract the equation for exact solution from (29) and
divide the error into projection part η = πu− u and ξ = U − πu ∈ V τ

N . We obtain
∫

Im

(ξ′, v) + ast(ξ, v)dt + ({ξ}m−1, v
m−1
+ )(37)

= −Q[(η′, v)]− ({η}m−1, v
m−1
+ )−Q[ast(η, v)].

Since

Q[ast(η, v)] =

q
∑

i=0

wiast(Ru(tm,i)− u(tm,i), v) = 0(38)

we need to estimate the rest of the right–hand side only.

Lemma 4. Let u be an exact solution of (1). Then

Q[(η′, v)] + ({η}m−1, v
m−1
+ ) ≤ τmC

(

τq+1 + g2(N)
)

sup
Im

‖v‖,(39)

∀v ∈ V τ
N .

Proof.

Q[(η′, v)] + ({η}m−1, v
m−1
+ )(40)

=

∫

Im

((πu)′, v)dt−Q[(u′, v)] + ({η}m−1, v
m−1
+ )

=

∫

Im

(η′, v)dt+ ({η}m−1, v
m−1
+ ) +

∫

Im

(u′, v)dt−Q[(u′, v)]
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We estimate first two terms and last two terms (quadrature error) individually.
∫

Im

(η′, v)dt+ ({η}m−1, v
m−1
+ )(41)

= −

∫

Im

(η, v′) + (ηm− , vm− )− (ηm−1
− , vm−1

+ )

We can see that vm− = vm−1
+ +

∫

Im
v′dt. Using this fact we obtain

−

∫

Im

(η, v′) + (ηm− , vm− )− (ηm−1
− , vm−1

+ )(42)

=

∫

Im

(ηm− − η, v′)dt+ (ηm− − ηm−1
− , vm−1

+ )

We estimate these terms individually. The first term we can rewrite in the following
way

∫

Im

(ηm− − η, v′)dt =

∫

Im

(Rum − um −RPu+ u, v′)dt(43)

=

∫

Im

(Rum − um −RPu+ Pu, v′)dt+

∫

Im

(u− Pu, v′)dt

Since all the terms in the first integral on the right–hand side are polynomials we can
apply Radau quadrature exactly and using (27), Lemma 1 and inverse inequality
we get

∫

Im

(Rum − um −RPu+ Pu, v′)dt(44)

= Q[(Rum − um −RPu+ Pu, v′)]

≤ τm sup
i

‖Rum − um −Ru(tm,i) + u(tm,i)‖ sup
Im

‖v′‖

≤ τmCg2(N) sup
Im

‖v‖

We need to estimate
∫

Im
(u−Pu, v′)dt. To do this we define interpolation operator

P̂ such that P̂ u is a polynomial of degree q + 1 in time which interpolates u in
Radau quadrature nodes tm,i and (in addition) tm−1. Then we get

∫

Im

(P̂ u, v′)dt =

∫

Im

(Pu, v′)dt.(45)

It is possible to show that supIm ‖u − P̂ u‖ ≤ Cτq+2
m by the same arguments as

for interpolation operator P . Then we get with the inverse inequality on the test
function v

∫

Im

(u− Pu, v′)dt =

∫

Im

(u− P̂ u, v′)dt(46)

≤ τmCτq+2
m sup

Im

‖v′‖ ≤ τmCτq+1 sup
Im

‖v‖.

The estimate for the second term follows directly from Lemma 1

(ηm− − ηm−1
− , vm−1

+ ) = (Rum − um −Rum−1 + um−1, vm−1
+ )(47)

≤ τm sup
Im

‖Ru′ − u′‖ sup
Im

‖v‖ ≤ τmCg2(N) sup
Im

‖v‖.
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Finally, we need to estimate quadrature error.
∫

Im

(u′, v)dt−Q[(u′, v)] =

∫

Im

(u′ − Pu′, v)dt(48)

≤ τmCτq+1 sup
Im

‖v‖

�

Remark 1. Lemma 4 can be easily generalized to any time projection that inter-
polates the end points of the intervals and to any space projection that commutes
with the time projection. Then the result will take the following form

Q[(η′, v)] + ({η}m−1, v
m−1
+ )(49)

≤ τmC (’time error’+ ’space error’) sup
Im

‖v‖, ∀v ∈ V τ
N .

For the estimates of supremum term we will need the following lemma.

Lemma 5. Let ξ ∈ V τ
N and

ξ̃ = P

(

τmξ(t)

t− tm−1

)

∈ V τ
N .(50)

Then
∫

Im

(ξ′, 2ξ̃)dt+ (ξm−1
+ , 2ξ̃m−1

+ ) = ‖ξm− ‖2 +
1

τm

∫

Im

‖ξ̃‖2dt.(51)

Proof. The proof can be made as a simple extension of [2, Lemma 2.1], which
describes the same result for scalar polynomials and on unit time interval. �

3.5. Main result. We are ready to present the main result.

Theorem 1. Let u be an exact solution of (1) and U ∈ V τ
N be its discrete approx-

imation given by (17). Then

max
m=1,...,r

sup
Im

‖U − u‖ ≤ C
(

g2(N) + τq+1
)

.(52)

Proof. We can estimate right–hand side of (37) by Lemma 4. Then we obtain
∫

Im

(ξ′, v) + ast(ξ, v)dt+ ({ξ}m−1, v
m−1
+ )(53)

≤ τmC
(

τq+1 + g2(N)
)

sup
Im

‖v‖.

Setting v = 2ξ we get

‖ξm− ‖2 − ‖ξm−1
− ‖2 + ‖{ξ}m−1‖

2 + 2

∫

Im

|||ξ|||2dt(54)

≤ τmC
(

τq+1 + g2(N)
)

sup
Im

‖ξ‖

≤ τmC
(

τ2q+2 + g2(N)2
)

+
τm
2

sup
Im

‖ξ‖2

We need to deal with the last term at the right–hand side.
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It is simple to see that for ξ̃ defined by (50) we get
∫

Im

|||ξ|||2dt =

∫

Im

ast(ξ, ξ)dt(55)

= Q[ast(ξ, ξ)] =

q
∑

i=0

wiast(ξ(tm,i), ξ(tm,i))

≤

q
∑

i=0

wi
τm

tm,i − tm−1
ast(ξ(tm,i), ξ(tm,i))

= Q[ast(ξ, ξ̃)] =

∫

Im

ast(ξ, ξ̃)dt,

since τm/(tm,i − tm−1) ≥ 1.

Since the terms supIm ‖ξ‖2, 1
τm

∫

Im
‖ξ̃‖2dt and supIm ‖ξ̃‖2 are equivalent, we get

by setting v = 2ξ̃ in (53) with the aid of Lemma 5

sup
Im

‖ξ‖2 ≤ C
1

τm

∫

Im

‖ξ̃‖2dt(56)

≤ C

(

‖ξm− ‖2 +
1

τm

∫

Im

‖ξ̃‖2dt+ 2

∫

Im

|||ξ|||2dt

)

≤ C

(

(ξm−1
− , ξ̃m−1

+ ) + C
(

τq+1 + g2(N)
)

sup
Im

‖ξ‖

)

≤ C
(

‖ξm−1
− ‖2 + τ2q+2 + g2(N)2

)

+
1

2
sup
Im

‖ξ‖2

We can substitute this result into our error inequality (54) and we obtain

‖ξm− ‖2 − ‖ξm−1
− ‖2 ≤ τmC

(

τ2q+2 + g2(N)2
)

+ τmC‖ξm−1
− ‖2.

Now, it is sufficient to employ the forward difference form of the discrete Gronwall
lemma to obtain nodal error estimates. Estimates inside of intervals Im follows
from nodal estimates and from (56). �
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