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FAST OPTIMAL H2 MODEL REDUCTION ALGORITHMS

BASED ON GRASSMANN MANIFOLD OPTIMIZATION

YUESHENG XU AND TAISHAN ZENG∗

Abstract. The optimal H2 model reduction is an important tool in studying dynamical systems
of a large order and their numerical simulation. We formulate the reduction problem as a min-
imization problem over the Grassmann manifold. This allows us to develop a fast gradient flow
algorithm suitable for large-scale optimal H2 model reduction problems. The proposed algorithm
converges globally and the resulting reduced system preserves stability of the original system.
Furthermore, based on the fast gradient flow algorithm, we propose a sequentially quadratic ap-
proximation algorithm which converges faster and guarantees the global convergence. Numerical
examples are presented to demonstrate the approximation accuracy and the computational effi-
ciency of the proposed algorithms.

Key words. H2 approximation, gradient flow, Grassmann manifold, model reduction, MIMO
system, stability, large-scale sparse system.

1. Introduction

Model reduction, which approximates a linear dynamic system of a higher order
by a system of a significantly lower order, received considerable attention in recent
years. This problem is important for many applications, such as design of large scale
integration chips, analysis and design of micro electro mechanical system devices,
weather prediction and control of partial differential equations. There are many
existing methods that produce lower-order systems from given high-order systems.
Most of these methods fall into two categories. The first category is projection-based
methods, such as the Krylov subspace (moment matching) methods, the balanced-
truncation method, and proper orthogonal decomposition (POD) methods. The
second category is optimization-based methods such as the Hankel optimal model
reduction [6] and the H2 optimal model reduction. For nice reviews of model
reduction for large-scale dynamical systems, the readers are referred to [3, 7, 28].

The present paper concerns the optimal H2 norm model reduction problem,
which has been studied by many investigators, see, for instance [4, 9, 13, 15, 22, 23,
24, 25, 26] and the references cited therein. Most of the existing algorithms are not
suitable for the reduction of large-scale systems. Algorithms proposed in [9, 15, 22]
require solving large-scale Lyapunov equations at each iteration step, making them
computationally expensive for large scale systems. Gradient flow algorithm [26]
requires computing the exponential of a large-scale matrix at each iteration step
which is computationally expensive. Interpolation-based algorithms were proposed
in [4, 13, 23, 25] for solving large-scale H2 optimal model reduction problems. A
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drawback of interpolation-based algorithms is that they often cannot guarantee
convergence and the stability of the reduced model.

The main purpose of this paper is to develop fast algorithms suitable for sparse
systems of large scales, with the resulting reduced system preserving stability of the
original system. Specifically, we treat the optimal H2 model reduction problem as a
minimization problem on the Grassmann manifold. We propose a fast gradient flow
algorithm based on the geodesic of the Grassmann manifold which is suitable for
large sparse multi-input multi-output (MIMO) systems. The geodesic equation of
the Grassmann manifold is easy to compute, which makes it possible to reduce the
computational cost. The new algorithm avoids computing the matrix exponential
and only involves computation with matrices of small size. We also reformulate the
partial derivatives of the cost function to be more computationally effective. The
proposed algorithm has nice properties that starting from any initial orthogonal
matrix, the iterations remain on the manifold. The convergence of the algorithm is
guaranteed. We also derive sufficient conditions for the algorithms to preserve the
stability. Based on approximating the cost function by a quadratic function, we
propose an algorithm with faster convergence. By combining with the gradient flow
method, the global convergence is guaranteed. The two Grassmann manifold-based
algorithms proposed in this paper have low computational cost and are suitable for
large-scale sparse systems. Since they do not rely on the assumption that the target
system has simple poles, they remain robust when the target system has multiple
poles.

This paper is organized in eight sections. In Section 2, we introduce the optimal
H2 model reduction problem minimizing over the Grassmann manifold. In Section
3, we describe the gradient flow on the Grassmann manifold for solving the H2

optimal model reduction problem. Section 4 centers at the development of fast
numerical algorithms for the gradient flow on the Grassmann manifold and provides
complexity analysis. In Section 5, we compare the proposed fast gradient flow
algorithm with the existing gradient flow algorithm. In Section 6, an algorithm
with faster convergence is proposed. Section 7 is devoted to a presentation of
numerical results of the proposed algorithms. Finally, in Section 8, we draw a
conclusion.

2. Optimal H2 Model Reduction

We describe in this section the optimal H2 model reduction problem.
For given matrices A ∈ Rn×n, B ∈ Rn×p and C ∈ Rq×n, we consider the linear

dynamical systems described by

dx

dt
= Ax(t) +Bu(t),(1)

y(t) = Cx(t),(2)

where t ≥ 0 is the time variable, u ∈ Rp is the input, y ∈ Rq is the output and
x ∈ Rn is the state of the system. Here, n is the system order, p and q are the
number of system inputs and outputs, respectively. The linear system described by
equations (1) and (2) is uniquely determined by the state space realization (A,B,C)
and the initial condition x(t0) = x0. In this paper, we assume that the numbers of
input and output of the full order system described by equations (1) and (2) are
small, that is, q ≪ n and p ≪ n. Moreover, we assume that the matrix A is sparse.

If the system order n is too big, it is not computationally efficient to solve various
control problems. We need to construct a reduced order system to approximate the
full order system, with preserving certain system properties such as stability and
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passivity. In this paper, we will construct reduced order models via projection.
The basic idea is to project the system’s state space of dimension n to a space
of lower dimension m with m ≪ n. Specifically, the projection based reduction
scheme involves selecting a matrix U ∈ Rn×m such that UTU = I. Letting Am :=
UTAU , Bm := UTB and Cm := CU , we then obtain a lower order system through
projection

dxm

dt
= Amxm(t) +Bmu(t),(3)

ym(t) = Cmxm(t).(4)

A dynamical system can be reformulated via its transfer function. For a vector-
valued function f , its Laplace transform is defined by

F (s) := L{f(t)} =

∫ +∞

0

f(t)e−stdt, s ∈ C,

where C denotes the set of all complex numbers. Let v̂ denote the Laplace transform
of a function v. If the initial condition x(0) = x0 = 0, then

ŷ(s) = C(sI −A)−1Bû(s), s ∈ C,

where I denotes the identity matrix. The function

G(s) = C(sI −A)−1B, s ∈ C

is called the transfer function of the full order system (A,B,C). Likewise, the
transfer function of the reduced system described by equations (3) and (4) is given
by

(5) Gm(s) = Cm(sI −Am)−1Bm = CU(sI − UTAU)−1UTB.

A transfer function G is called stable if the eigenvalues of A have strictly negative
real parts. If G is unstable, its H2 norm is defined to be +∞. Otherwise its square
H2 norm is defined as the trace of a matrix integral (cf. [28]) :

‖G‖22 =
1

2π

∫ +∞

−∞

trace{G(iω)∗G(iω)}dω,

where i =
√
−1 is the imaginary unit. We introduce the error of the two transfer

functions by setting

Ge(s) := G(s)−Gm(s), s ∈ C

and clearly, we have that

(6) Ge(s) = C(sI −A)−1B − CU(sI − UTAU)−1UTB.

The cost function is defined by

(7) J(U) := ‖Ge‖22 .
In this paper, if G or Gm is unstable, we will define J(U) to be +∞.

Given a stable system with state space realization (A,B,C), A ∈ Rn×n, B ∈
Rn×p, C ∈ Rq×n, the optimal H2 model reduction problem can be formulated as a
minimization problem

(8) min
UTU=I, U∈Rn×m

J(U).

It is interesting to point out that problem (8) can be reformulated as a minimization
problem over a smooth manifold. In [26], problem (8) is rewritten as a minimization
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problem on the Stiefel manifold. For an integer m with 1 ≤ m ≤ n, the Stiefel
manifold St(m,n) is defined by

St(m,n) := {U ∈ R
n×m|UTU = I}

and problem (8) can be rewritten as

(9) min
U∈St(m,n)

J(U).

In this paper, we shall show that problem (8) can be rewritten as a minimization
problem over the Grassmann manifold. We now recall the notion of the Grassmann
manifold (cf. [8]). For an integer m with 1 ≤ m ≤ n, the real Grassmann manifold
Gr(m,n) is defined as the set of all m-dimensional real linear subspaces of Rn.
From the definition of the Grassmann manifold, a point in the Grassmann manifold
Gr(m,n) is an m-dimensional linear subspace. An orthogonal basis of the linear
subspace can be stored as an n×m matrix in the Stiefel manifold. The Grassmann
manifold can be thought as a quotient space of the Stiefel manifold. This can be
explained as follows. Two points Ux, Uy ∈ St(m,n) are defined to be equivalent
if the columns of Ux and Uy span the same m dimensional subspace, denoted as
Ux ≡ Uy. For m > 0, the orthogonal group Om is the group of m×m orthogonal
matrices. It is clear that Ux ≡ Uy if and only if there exists an orthogonal matrix
Qm ∈ Om such that UxQm = Uy. The equivalent class [U ] for a point U ∈ St(m,n)
is defined to be

[U ] := {UQm|Qm ∈ Om}.
It is clear that there is a one-to-one correspondence between a point in the Grass-
mann manifold Gr(m,n) and an equivalent classes of St(m,n). Thus, the Grass-
mann manifold can be written as

Gr(m,n) = St(m,n)/Om,

(cf. [8]). When performing computation on the Grassmann manifold, we will use
the matrix U ∈ St(m,n) to represent an entire equivalent class [U ], the subspace
spanned by the columns of U . For more details of the Grassmann manifold, we
refer to [2, 8].

For optimal H2 model reduction problem (9), it is easy to see from the definition
(7) of J(U) and equation (6) that J(U) = J(UQm), for any orthogonal matrix Qm.
In other words, the cost function J(U) depends only on the subspaces spanned
by the columns of U . This means that the cost function J(U) is a function on
the Grassmann manifold Gr(m,n). Therefore, the optimal H2 model reduction
problem (8) can be reformulated as the following minimization problem over the
Grassmann manifold

(10) min
[U ]∈Gr(m,n)

J(U).

By utilizing the geometry of the Grassmann manifold, a fast gradient flow algorithm
can be developed. It will be described in the next section.

3. Gradient Flow on the Grassmann Manifold

In this section, we describe the gradient flow method for solving the optimization
problem (10). To this end, we first present an explicit formula for the cost function
J(U) and then we derive the partial derivatives of the cost function J(U). Finally,
we propose a gradient flow method on the Grassmann manifold.
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To solve the optimal H2 model reduction problem, it is beneficial to have an
explicit formula for J(U). To reformulate the function Ge in a simpler form, we
introduce the following three matrices

Ae =

(
A 0
0 UTAU

)
, Be =

(
B

UTB

)
, Ce =

(
C −CU

)
.

The function Ge defined in (6) is then rewritten as

Ge(s) = Ce(sI −Ae)
−1Be, s ∈ C.

Actually, matricesAe, Be and Ce define an error system with realization (Ae, Be, Ce).
The function Ge is called the transfer function of the error system. The following
Lyapunov equations

AeEc + EcA
T
e +BeB

T
e = 0,(11)

AT
e Eo + EoAe + CT

e Ce = 0,(12)

can be solved to obtain Ec and Eo, the controllability and observability gramians
of the error system. Partitioning the controllability gramian Ec and observability
gramian Eo into

Ec =

(
Σc X
XT P

)
, Eo =

(
Σo Y
Y T Q

)
,

Σc,Σo ∈ R
n×n and P,Q ∈ R

m×m,

the Lyapunov equations (11) and (12) are equivalent to the following Sylvester
equations

AΣc +ΣcA
T + BBT = 0,(13)

ATΣo +ΣoA+ CTC = 0,(14)

UTAUP + PUTATU + UTBBTU = 0,(15)

UTATUQ+QUTAU + UTCTCU = 0,(16)

AX +XUTATU +BBTU = 0,(17)

ATY + Y UTAU − CTCU = 0.(18)

From equations (13) and (14), we know that Σc and Σo are the controllability and
observability gramians of the system with the realization (A,B,C), respectively. If
G and Gm are stable, it is a standard fact (cf. [28]) that the cost function J(U)
can be expressed in terms of the controllability gramian Ec,

J(U) = trace(CeEcC
T
e )

= trace[CTC(Σc + UPUT − 2XUT )],(19)

or equivalently in terms of observability gramian Eo,

J(U) = trace(BT
e EoBe)

= trace[BBT (Σo + UQUT + 2Y UT )].(20)

We define the n × m matrix JU as the partial derivatives of the cost function
J(U) with respect to the entries of U ∈ Rn×m, that is,

(JU )ij =
∂J

∂Uij

, i = 1, 2, . . . , n, j = 1, 2, . . . ,m.

The derivation of partial derivatives JU can be found in [26].
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Lemma 3.1. Suppose that P , Q, X and Y are the solutions of equations (15),
(16), (17) and (18) for given matrices A, B, C and U ∈ Rn×m. Let

R :=(−CTC +ATUY T )X + (CTCU +ATUQ)P

+ (BBT +AUXT )Y + (BBTU +AUP )Q.
(21)

Then, the partial derivatives of J(U) at U is given by JU = 2R.

It is easy to see that R defined in (21) can be rewritten as

R =AT [U(Y TX +QP )] +A[U(XTY + PQ)]

+ CT [C(−X + UP )] +B[BT (Y + UQ)].
(22)

As we will see later, it will be more numerically efficient to use formula (22) for
computing R.

We now present the gradient flow on the Grassmann manifold for solving problem
(10). Following [8], the tangent space T[U]Gr(m,n) at [U ] ∈ Gr(m,n) is given by

T[U]Gr(m,n) = {ξ ∈ R
n×m|UT ξ = 0}.

The Grassmannmanifold becomes a Riemannian manifold by endowing T[U]Gr(m,n)
with the inner product

〈ξ, η〉 := 2trace(ξT η) for ξ, η ∈ T[U]Gr(m,n).

From Lemma 3.1, the partial derivative of the cost function J(U) at [U ] ∈ Gr(m,n)
is given by JU = 2R. The gradient of J at the point [U ] ∈ Gr(m,n) is defined as
the tangent vector ∇J ∈ T[U]Gr(m,n) such that

(23) trace((JU )
T ξ) = 〈∇J, ξ〉 = 2trace(∇JT ξ)

for all tangent vector ξ at [U ]. Solving (23) for ∇J such that UT∇J = 0, the
gradient of the cost function J at [U ] ∈ Gr(m,n) is

∇J = R− UUTR.

The gradient flow on the Grassmann manifold is

(24)
dU

dt
= −∇J(U(t)) = U(t)U(t)TR(t)−R(t).

We remark that the gradient flow (24) enjoys the same form of the gradient flow
method on the Stiefel manifold [26]. A numerical algorithm for solving the gradient
flow (24) will be presented in the next section.

4. A Numerical Algorithm for the Gradient Flow on the Grassmann

Manifold

In this section, we develop a fast numerical algorithm for solving the gradient
flow problem (24) and analyze its computational complexity.

The fast gradient flow algorithm to be proposed is based on gradient flow (24).
It performs a series of decent steps, each taking along a geodesic, at the direction
being the negative gradient of the cost function.

We first describe how the direction of the gradient flow is computed. To this
end, we compute the partial derivatives of the cost function J(U). Let (A,B,C)
be the state space realization of the full order system. For k = 0, 1, . . ., we denote
by Uk the projection matrix for model reduction attaining by the fast gradient
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flow algorithm at the k-th step. We compute matrices Pk ∈ Rm×m, Qk ∈ Rm×m,
Xk ∈ Rn×m and Yk ∈ Rn×m by solving the following Sylvester equations,

UT
k AUkPk + PkU

T
k ATUk + UT

k BBTUk = 0,(25)

UT
k ATUkQk +QkU

T
k AUk + UT

k CTCUk = 0,(26)

AXk +XkU
T
k ATUk +BBTUk = 0,(27)

ATYk + YkU
T
k AUk − CTCUk = 0.(28)

We then compute Rk by the formula

Rk =AT [Uk(Y
T
k Xk +QkPk)] +A[Uk(X

T
k Yk + PkQk)]

+ CT [C(−Xk + UkPk)] + B[BT (Yk + UkQk)].
(29)

From Lemma 3.1, the partial derivatives JUk
at the point Uk are given by JUk

=
2Rk. The gradient of the cost function J at [Uk] ∈ Gr(m,n) is thus given by

∇J(Uk) = Rk − Uk(U
T
k Rk).

The direction of the gradient flow at Uk is the negative gradient direction, i.e.,

Fk = −∇J(Uk).

Next, we construct the orthogonal matrix Uk+1 when Uk is available. The pro-
posed gradient flow algorithm constructs Uk+1 by performing a decent step along
the geodesic at the direction Fk. To introduce the geodesic on the Grassmann man-
ifold, we define the matrix functions sin and cos by the convergent power series,

(30) sin(Z) :=

∞∑

i=0

(−1)i

(2i+ 1)!
Z2i+1, cos(Z) :=

∞∑

i=0

(−1)i

(2i)!
Z2i,

respectively, where Z ∈ Rm×m. A geodesic is the curve of shortest length between
two points on a manifold. The geodesic on the Grassmann manifold at the point
U ∈ St(m,n), with the direction F ∈ R

n×m, is given by (cf. [8])

(31) U(t) = UV cos(tΛ)V T +W sin(tΛ)V T , t ∈ R,

where WΛV T is the singular value decomposition of F , W ∈ Rn×m, Λ ∈ Rm×m,
V ∈ Rm×m. It is easily verified that

U(t)TU(t) = I for t ∈ R.

Suppose that the singular value decomposition of Fk is

Fk = WkΛkV
T
k ,

where

V T
k Vk = I and Λk = diag(λ1k, λ2k, . . . , λmk).

Thus, the geodesic of the Grassmann manifold Gr(m,n) at the point Uk, with the
direction Fk, is given by

(32) Uk(t) = UkVk cos(tΛk)V
T
k +Wksin(tΛk)V

T
k .

By choosing a suitable time step tk ≥ 0, we can construct Uk+1 by

(33) Uk+1 = UkVk cos(tkΛk)V
T
k +Wksin(tkΛk)V

T
k .

Note that Uk+1 is an orthogonal matrix for any tk.
We summarize below the fast algorithm for computing the gradient flow.
Algorithm 1 describes a fast gradient flow algorithm (FGFA) for the optimal H2

model reduction problem. One nice thing about this algorithm is that it has the
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Input: System realization (A,B,C), the size m of the reduced order system.
Output: Reduced model realization (Am, Bm, Cm).

1 Choose a matrix U0 ∈ Rn×m such that UT
0 U0 = I and set k = 0;

2 for k = 0, 1, . . . , N − 1 do

3 Compute Pk, Qk, Xk and Yk by solving equations (25), (26), (27) and (28);

4 Compute Rk using formula (29);

5 Compute the gradient ∇J(Uk) = Rk − Uk(U
T
k Rk);

6 Set the new search direction Fk = −∇J(Uk);

7 Compute the singular value decomposition of Fk = WkΛkV
T
k ;

8 Minimize J(Uk(t)) over t ≥ 0 where

(34) Uk(t) = UkVk cos(tΛk)V
T
k +Wksin(tΛk)V

T
k .

Set tk = tmin and Uk+1 = Uk(tk) ;

9 end

10 Get the projection matrix U = UN ;

11 Am = UTAU ;Bm = UTB;Cm = CU ;

Algorithm 1: A fast gradient flow algorithm (FGFA).

ability to generate a sequence of orthogonal matrices from any orthogonal matrix
U0 ∈ Rn×m for any step-size.

In the algorithm FGFA, we need to choose a suitable step length tk by solving
the minimization problem (34). In practical computation, we can use the inexact
line search methods to compute the step length tk. A popular inexact line search
condition is the Armijo condition. A step size tAk = βjγ is called Armijo step size
if j is the smallest nonnegative integer such that the following inequality holds

(35) J(Uk)− J(Uk(β
jγ)) ≥ −αβjγ 〈∇J(Uk), Fk〉

for some given constants β, α ∈ (0, 1), γ > 0, where Fk is the search direction.
There are other methods that select a suitable search step size, such as adaptive
step size selection strategy proposed in [26] and the accelerated line search method
[2].

We denote the transfer function of the reduced model by

G(k)
m (s) = C(k)

m (sI −A(k)
m )−1B(k)

m , k = 0, 1, . . . ,

where
A(k)

m := UT
k AUk, B(k)

m := UT
k B, C(k)

m := CUk.

The following theorem shows that the algorithm FGFA guarantees stability and is
globally convergent.

Theorem 4.1. For a stable system with realization (A,B,C), let {Uk} be an in-
finite sequence generated by algorithm FGFA. If tk is the Armijo step size and the

transfer function G
(0)
m is stable, then G

(k)
m is stable for each k with

J(Uk+1) ≤ J(Uk), k = 0, 1, 2, . . . .

Proof. Since tk is the Armijo step size, we have that

J(Uk+1) = J(Uk(tk)) ≤ J(Uk) + αβjγ 〈∇J(Uk), Fk〉 ,
where β, α ∈ (0, 1), γ > 0. Noting that Fk = −∇J(Uk), we observe that 〈∇J(Uk), Fk〉 ≤
0. Then

J(Uk+1) ≤ J(Uk), k = 0, 1, . . . .
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From the definition of J(U), it follows from that stability of G that

J(Uk) := ‖G−G(k)
m ‖22

will be equal to ∞ if and only if G
(k)
m is unstable. From the assumption that G

(0)
m

is stable, we have that J(Uk) ≤ J(U0) < ∞. Thus, G
(k)
m is also stable for each

k = 0, 1, . . .. �

Theorem 4.2. Under the assumption of Theorem 4.1, if A+AT is negative definite,
then the algorithm FGFA is globally convergent in the sense that, for any initial
projection matrix U0,

lim
k→∞

‖∇J(Uk)‖ = 0.

Proof. Since A + AT is negative definite, it follows that the eigenvalues of UTAU
have strictly negative real parts for any orthogonal matrix U ∈ Rn×m. This implies
that the transfer function of reduced order model Gm is stable. It follows that
J(U) is a smooth function on the Grassmann manifold. The global convergence of
Algorithm FGFA can be proved by applying the convergent analysis of the linear
search method on a general Riemann manifold [2]. �

We remark that an adaptive step size selection strategy [26] and the accelerated
line search method [2] guarantee the global convergence of gradient flow algorithm.

In Algorithm 1, we are required to choose an initial orthogonal matrix U0. There
are several different possibilities for choosing such a matrix. For example, denoting
by Colsp(U0) the column space of U0, we can choose U0 such that

Colsp(U0) = Km(A−1, B),

where Km(A−1, B) is a block Krylov space (cf. [11])

Km(A−1, B) := span{B,A−1B, . . . , A−m+1B},
A ∈ R

n×n and B ∈ R
n×p. We can also choose Colsp(U0) = Dm(A,B,C), m

dominant subspaces as in [19]. The dominant subspaces are the union of domi-
nant eigen-spaces of the controllability and observability gramians to produce an
approximate balanced-truncation reduced-order model (cf. [19]).

At each iterative step of algorithm FGFA, we need to solve Sylvester equations
(25), (26), (27) and (28) to compute Pk, Qk, Xk and Yk. Since both UT

k AUk and
UT
k ATUk are m×m matrices and m is a small integer, we use the standard solvers

(cf. [5]) to solve the Sylvester equations (25) and (26). To solve equations (27)
and (28) efficiently, we employ the algorithm described in [3]. The main idea of the
algorithm is to first compute the Schur decompositions of UT

k AUk and UT
k ATUk,

and then solve m large sparse linear equations of the special type

(36) (A− ηI)x = b, η 6∈ σ(A), b ∈ R
n,

to obtain the solution, where σ(A) is the set of all eigenvalues of A.
Next, we turn to analyzing the computational complexity of the fast gradient

flow algorithm FGFA. The computational complexity will be measured by number
of floating point multiplications. The following theorem presents an estimate of
the computational complexity for the fast gradient flow algorithm FGFA. Let Ns

denote the maximum number of search steps for solving the minimization problem
(34) by the inexact line search method. By N we denote the maximum number of
iterations for the algorithm FGFA. Let σ(A) denote the set of all eigenvalues of A
and N (A) the number of nonzero entries of A.
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Theorem 4.3. Let (A,B,C) be the system realization of a stable system. Suppose
that A ∈ Rn×n is a sparse matrix. If the linear equation (36) is solved by using
the GMRES(r) algorithm or the like, which requires O(rn+N (A)) multiplications,
where r is a fixed integer, then the computational complexity of the algorithm FGFA
is O(N(nmr +mN (A) +Nsnm

2 + nmp+ nmq)).

Proof. For k = 0, 1, . . ., at the k-th step of iterations, the computational cost of the
algorithm FGFA comes from three parts.

Part one is the cost for solving the Sylvester equation (25), (26), (27) and (28).
Since UT

k AUk and UT
k ATUk are m × m matrices, it requires O(m3) number of

multiplications to solve (25) and (26). To solve equation (27) and (28), we need
first to compute a Schur decomposition of an m×m matrix, and then to solve large
sparse linear equations (36) m times. Computing the Schur decomposition requires
O(m3) floating point multiplications. By assumption, solving the large sparse linear
equation (36) requires O(rn +N (A)) floating point multiplications. Therefore the
computational cost for solving (27) and (28) is O(nmr +mN (A) +m3).

Part two is the cost for computing the search directions. It is straightforward to
see that computing Rk needs O(mN (A)+nm2+nmp+nmq) number of multiplica-
tions for given A, B, C and Uk. Thus, it requires O(mN (A) + nm2 + nmp+ nmq)
number of multiplications to compute the search direction Fk for the algorithm
FGFA.

The last part is the cost for solving the minimization problem (34) to obtain the
solution tmin by the (inexact) line search method. In each search step, we need to
compute geodesic (32) for some t ≥ 0. Since the cost for computing the geodesic is
O(nm2) and the maximum number of search steps is Ns, the cost for solving the
minimization problem (34) by the inexact line search method is O(Nsnm

2).
Therefore, for each iteration the algorithm FGFA requires O(nmr +mN (A) +

Nsnm
2+nmp+nmq) number of floating point multiplications. Since the maximum

number of iterations of the algorithm FGFA is N , we obtain the desired overall
computational complexity for the algorithm. �

We remark that the restarted GMRES algorithm, i.e., GMRES(r) algorithm
requires O(rn+N (A)) floating point multiplications to solve the large sparse linear
equation (36), (cf. [21]).

In most practical cases, the order m of the reduced model is much smaller than
the order n of the original model. For a fixed m, if the full order system is sparse,
the computational cost of the algorithm FGFA grows linearly as the dimension of
the full order system.

5. Comparison with the Existing Gradient Flow Algorithm

In this section, we first review the existing gradient flow algorithm (we shall
call it the GFA algorithm) on the Stiefel manifold proposed in [26]. We then
show that under certain conditions, the gradient flow algorithm on the Grassmann
manifold proposed in this paper and the GFA algorithm generate the same sequence
of orthogonal matrices. We compare the numerical efficiency of the two algorithms
and show that the proposed algorithm has computational advantage over the GFA
algorithm.

We first review the gradient flow approach proposed in [26] for the minimization
problem (9). We then review the numerical algorithm proposed by the same authors
for the gradient flow on the Stiefel manifold.
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Let P , Q, X and Y be the solutions of Sylvester equations (15), (16), (17) and
(18) for given state space realization (A,B,C) and U . We define

R̃ :=(−CTC +ATUY T )X + (CTCU +ATUQ)P

+ (BBT +AUXT )Y + (BBTU +AUP )Q.
(37)

The gradient of the cost function J(U) at the point U ∈ St(m,n) is ∇J = R̃ −
UUT R̃. The gradient flow method on the Stiefel manifold is given by

(38)
dU

dt
= −∇J(U(t)) = (U(t)U(t)T − I)R̃(t).

It is easy to see that R defined in (22) and R̃ defined in (37) are equal for given
A, B, C and U . As a result, the gradient flow (24) and the gradient flow (38)
are equal. However, their major difference is that the gradient flow (24) is defined
on the Grassmann manifold while the gradient flow (38) is defined on the Stiefel
manifold.

To derive the numerical algorithm for gradient flow (38), the following lemma

from [26] which shows the symmetry of matrix UT R̃ is useful.

Lemma 5.1. Suppose that P , Q, X and Y are the solutions of Sylvester equations
(15), (16), (17) and (18) for given matrices A ∈ Rn×n, B ∈ Rn×p, C ∈ Rq×n and

U ∈ St(m,n). If R̃ is defined by (37), then

(39) UT R̃ = −Y TAX −QUTAUP −XTATY − PUTATUQ,

and UT R̃ is a symmetric matrix.

In passing, we indicate that there is a typo in paper [26] where UT R̃ was mis-

takenly written as UT R̃ = Y TAX +QUTAUP +XTATY + PUTATUQ.

Since UT R̃ is symmetric, the gradient of the cost function J(U) is given by

∇J = R̃− UUT R̃ = R̃− UR̃TU.

Let Γ := UR̃T − R̃UT , Γ ∈ Rn×n. The gradient flow (38) is reformulated in [26] as

dU

dt
= −∇J(U(t)) = Γ(t)U(t).(40)

We next outline the numerical algorithm presented in [26] for solving the gradient
flow algorithm (38). At the k-th step, suppose that matrix Uk is available, we want
to construct Uk+1 from Uk. Matrices Pk ∈ R

m×m, Qk ∈ R
m×m, Xk ∈ R

n×m,
Yk ∈ Rn×m are the solutions of Sylvester equations (25), (26), (27) and (28) for

given state space realization (A,B,C) and Uk. Suppose that R̃k ∈ Rn×m is defined
by

R̃k :=(−CTC +ATUkY
T
k )Xk + (CTCUk +ATUkQk)Pk

+ (BBT +AUkX
T
k )Yk + (BBTUk +AUkPk)Qk.

(41)

Let Γk ∈ Rn×n be defined by

(42) Γk := UkR̃
T
k − R̃kU

T
k .

For any matrix Z ∈ Rn×n, we recall the matrix exponential by the convergent series

(43) eZ :=

∞∑

i=0

1

i!
Zi.
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For given tk ∈ R, Uk ∈ St(m,n) and Γk, the gradient flow on the Stiefel manifold
proposed in [26] is defined as follows

(44) Uk+1 = etkΓkUk, k = 0, 1, . . . .

We next show that the gradient flow (33) proposed in this paper and the gradient
flow on the Stiefel manifold (44) are equivalent in the sense that the two algorithms
generate the same sequence of orthogonal matrices under certain conditions. To
this end, we first introduce a useful lemma. We recall the matrix function sinc
defined by a convergent series.

Definition 5.2. For a matrix Z ∈ Rn×n, the matrix function sinc is defined by the
convergent infinite sums:

sinc(Z) :=

∞∑

i=0

(−1)i

(2i+ 1)!
Z2i, Z ∈ R

n×n.

Lemma 5.3. Assume N ∈ Rn×n, Ũ ∈ Rn×m. If there exists a matrix M ∈ Rm×m

such that

(45) N2Ũ = −ŨM2,

then
etN Ũ = Ũ cos(tM) + tNŨsinc(tM), t ∈ R.

Proof. Write the power series of etN in two series according to the even and odd
powers

etN =

∞∑

i=0

1

(2i)!
(tN)2i +

∞∑

i=0

1

(2i+ 1)!
(tN)2i+1.

Repeatedly using hypothesis (45), we obtain for each positive integer i that

N2iŨ = (−1)iŨM2i.

Combining this formula with the last equation, we observe that

etN Ũ = Ũ

∞∑

i=0

(−1)i

(2i)!
(tM)2i + tNŨ

∞∑

i=0

(−1)i

(2i+ 1)!
(tM)2i.

Using the definition of matrix functions cos and sinc, we obtain the desired result.
�

Lemma 5.3 shows that the matrix exponential etN Ũ , which is expensive in com-
putation, can be implemented by a significantly less expensive method. Another
interesting method of efficiently computing the matrix exponential was presented
in [12].

Lemma 5.4. Suppose that P , Q, X and Y are the solutions of Sylvester equations
(15), (16), (17) and (18) for given matrices A ∈ Rn×n, B ∈ Rn×p, C ∈ Rq×n and

U ∈ St(m,n). Let R and R̃ be defined respectively by (22) and (37). Let Γ :=

UR̃T − R̃UT and F := U(UTR)−R. If WΛV T is the singular value decomposition
of F , with W ∈ Rn×m, Λ ∈ Rm×m and V ∈ Rm×m, then

etΓU = UV cos(tΛ)V T +W sin(tΛ)V T , t ∈ R.

Proof. By Lemma 5.1, we know that UT R̃ is symmetric. Therefore, UTR = UT R̃

is symmetric since R = R̃. It is easy to see that F = ΓU . Using the definition of Γ

and the relation that R = R̃, we obtain that

(46) Γ2U = −U(RTR−RTURTU).
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Since F = U(UTR)−R, again using the symmetry of UTR, we have that

FTF = RTR−RTURTU.(47)

Combining (46) and (47), we observe that Γ2U = −U(FTF ).
Letting H := V ΛV T , since WΛV T is the singular value decomposition of F ,

there holds H2 = FTF . Thus, we have Γ2U = −UH2. By Lemma 5.3, we can get

(48) etΓU = U cos(tH) + tF sinc(tH).

Using the facts that H = V ΛV T and V TV = I, we have that

cos(tH) = V cos(tΛ)V T and sinc(tH) = V sinc(tΛ)V T .

Substituting these equations into (48) yields the formula

etΓU = UV cos(tΛ)V T + tFV sinc(tΛ)V T .

Using the singular decomposition of F and noting Zsinc(Z) = sinZ, we obtain the
desired equation. �

Lemma 5.4 leads to the following result.

Theorem 5.5. If the same state space realization (A,B,C), initial orthogonal ma-
trix U0 and the step size tk, k = 0, 1, . . ., are used, then the gradient flow algorithm
(33) on the Grassmann manifold and the gradient flow algorithm (44) on the Stiefel
manifold generate the same sequence of orthogonal matrices Uk, k = 1, 2, . . ..

Proof. This theorem follows directly from Lemma 5.4 at each iterative step. �

We now begin the comparison of the computational complexity of the two gra-
dient flow algorithms. Under the same state space realization and the initial condi-
tions, the comparison of the computational complexity is mainly on the following
two respects:

(1) The comparison of the computational complexity for computing

R and R̃. It is easy to see that the computational costs for computing

R and R̃ are O(mN (A) + nm2 + nmp + nmq) and O(n2m + n2p + n2q),
respectively. Clearly, if A is a sparse matrix (for example, N (A) = O(n)),

computing R requires much less computational costs than computing R̃.
(2) The comparison of computational complexity for computing gra-

dient flows (33) and (44). The complexity for computing the geodesic
(33) is O(nm2). The algorithm (44) requires computing the matrix ex-
ponential of a matrix at each iterative step. Such computation is very
costly. It needs at least O(n3) or even O(n4) floating point multiplications
to compute the matrix exponential for general matrices (cf. [17]).

From the above discussion, we know that the computational complexity for solv-
ing the gradient flow (44) is at least O(n3) while the complexity for computing
the gradient flow (33) is O(mN (A) + Nsnm

2 + nmp + nmq), depending on the
sparsity N (A) of the state space realization. In most cases, the order m of the re-
duced model is much smaller than the order n of the original model. Therefore, the
fast gradient flow algorithm (33) is much more numerically efficient than algorithm
(44). In summary, the proposed algorithm generates the same matrix sequence as
the existing gradient flow algorithm does, with much less computational effort.
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6. Sequentially Quadratic Approximation

In this section, we propose a globally convergent algorithm which converges
faster. Since the cost function J(U) is a nonlinear and implicit function of U , it
seems not easy to apply the superlinear convergent methods such as the Newton
algorithm [27], the trust region method [2], and the BFGS algorithm [20] directly to
the optimal H2 model reduction problem. In order to construct an algorithm that
converges faster, we approximate the cost function locally by a quadratic function at
each iterative step, and then search along the geodesic of the Grassmann manifold
at the search direction constructed by the approximate quadratic function. The
combination with the fast gradient flow algorithm makes it globally convergent.

We describe the construction of the quadratic function which approximates the
cost function at each iterative step. For k = 0, 1, . . ., we denote by Uk the projection
matrix at the k-th step. Matrices Pk and Xk are computed by solving the Sylvester

equations (25) and (27). We construct a quadratic function J̃ of U

(49) J̃(U) = trace[CTC(Σc + UPkU
T − 2XkU

T )]

to approximate the cost function J by fixing P with Pk and X with Xk. Solving
the minimization problem

(50) min
UTU=I, U∈Rn×m

J̃(U)

will give a good estimate of the solution of the original minimization problem (10).
We can construct a search direction by solving the minimization problem (50).

If Ũk+1 satisfies Ũk+1Pk = Xk, then the partial derivatives J̃
Ũk+1

= 0. Let Ũk+1 =

XkP
−1
k if Pk is invertible. Since Ũk+1 is not an orthogonal matrix in general, we

can not use Ũk+1 directly to produce a reduced model. However, we can utilize the

difference Ũk+1 − Uk to construct the search direction. We project Ũk+1 − Uk to
tangent space T[Uk]Gr(m,n) of the point [Uk] ∈ Gr(m,n), that is

∆k = Π(Ũk+1 − Uk)

= (Ũk+1 − Uk)− Uk[U
T
k (Ũk+1 − Uk)]

= Ũk+1 − Uk(U
T
k Ũk+1).

Here Π = (I −UkU
T
k ) denotes the projection onto the tangent space T[Uk]Gr(m,n)

of the Grassmann manifold (cf. [8]).
Next, we discuss how a globally convergent algorithm is constructed by com-

bining the search direction ∆k and the negative gradient direction −∇J(Uk). In
order to construct a globally convergent algorithm, some restrictions need to be
imposed on the search direction Fk. The sequence Fk ∈ T[Uk]Gr(m,n) is said to be
gradient-related if for any subsequence of Uk that converges to a non-critical point
of the cost function J , the corresponding subsequence Fk is bounded and satisfies

lim
k→∞

sup
k∈K

〈∇J(Uk), Fk〉 < 0.

For more information about the gradient-related sequence, we refer to the book [2].
It is easy for us to construct a gradient-related sequence by combining the search
direction ∆k and the negative gradient −∇J(Uk). If for some constants c1 > 0 and
c2 ∈ (−1, 0), ∆k satisfies

(51) ‖∆k‖ > c1 and
〈∇J(Uk),∆k〉

‖∇J(Uk)‖ · ‖∆k‖
< c2,
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then we set the new search direction Fk to be Fk = ∆k, or else the search direction
is set to be Fk = −∇J(Uk). It is easy to prove that the sequence Fk constructed
in this way is gradient-related. The condition (51) is called the gradient-related
condition.

The following is the sequentially quadratic approximation algorithm (SQA).

1 Initialization: Choose U0 ∈ Rn×m such that UT
0 U0 = I;

2 for k = 0, 1, 2, . . . , N − 1 do

3 Compute Xk, Pk and compute Ũk+1 = Xk(Pk)
−1;

4 Project Ũk+1 − Uk to the tangent space T[Uk]Gr(n,m) of [Uk]

∆k = Ũk+1 − Uk(U
T
k Ũk+1).

5 if ∆k satisfies the gradient-related condition (51) then
6 set the search direction Fk = ∆k;

7 else

8 set the search direction Fk = −∇J(Uk);

9 end

10 Compute the singular value decomposition of Fk = WkΛkV
T
k ;

11 Minimize J(Uk(t)) over t ≥ 0 where

Uk(t) = UkVk cos(tΛk)V
T
k +Wksin(tΛk)V

T
k .

12 Set tk = tmin and Uk+1 = Uk(tk) ;

13 end

Algorithm 2: Sequentially quadratic approximation algorithm (SQA).

The above algorithm is numerically efficient and has low computational costs.
For model reduction of many large-scale systems, this algorithm produces satis-
factory result and converges quickly. The quadratic convergence is observed in
numerical experiments.

The transfer function of the reduced model is denoted by

G(k)
m (s) = C(k)

m (sI −A(k)
m )−1B(k)

m , k = 0, 1, . . . ,

where
A(k)

m = UT
k AUk, B(k)

m = UT
k B, C(k)

m = CUk.

The following theorem shows that the algorithm SQA guarantees the stability of
the reduced model and it is globally convergent.

Theorem 6.1. Given a stable system with realization (A,B,C), let Uk be an in-
finite sequence generated by algorithm SQA. If tk is the Armijo step size and the

transfer function G
(0)
m (s) is stable, then G

(k)
m (s) is stable for each k with

J(Uk+1) ≤ J(Uk), k = 0, 1, . . . .

Proof. From the construction of the gradient-related sequece Fk, we know that
〈∇J(Uk), Fk〉 ≤ 0. Since tk is the Armijo step size, we have that

J(Uk+1) = J(Uk(tk)) ≤ J(Uk) + αβjγ 〈∇J(Uk), Fk〉
≤ J(Uk),

where β, α ∈ (0, 1), γ > 0. As in the discussion of Theorem 4.1, G
(k)
m is stable for

each k if G
(0)
m is stable. �
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Theorem 6.2. Under the assumption of Theorem 6.1, if A+AT is negative definite,
then the algorithm SQA is globally convergent

lim
k→∞

‖∇J(Uk)‖ = 0.

Proof. As in the discussion of Theorem 4.2, J(U) is a smooth function on the
Grassmann manifold. It is known from [2] that if the search direction is gradient-
related and the search step size is the Armijo step size, then the linear search
method on manifolds is globally convergent. Therefore, the global convergence of
algorithm SQA is guaranteed. �

We remark that another way of constructing a quadratic function to approximate
the cost function J is to fix Q with Qk and Y and Yk in the equation (20). The
construction of search directions ∆k is similar to the algorithm SQA.

The orthogonal projection based model reduction method is known to be easier
to preserve the stability and passivity of the reduced order system (cf. [10, 11, 18]).
For example, if the system realization (A,B,C) satisfies that A + AT is negative
definite and C = BT , then the reduced model (UTAU,UTB,CU) is also passive (cf.
[11]). So the algorithms FGFA and SQA guarantee passivity in this case. System
realizations of this kind often arise in RC or RLC interconnect circuits.

7. Numerical Experiments

We present in this section numerical experiments to confirm the approximation
accuracy and computational efficiency of the algorithms introduced in this paper.
All numerical programs are run by using Matlab 7. 4 (R2007a), on a PC with a
Intel Xeon 3.06 GHz processor and 3.3 GBytes of RAM.

7.1. Heat transfer model. Consider the heat transfer equation in the domain
Ω = (0, 1)2. The underlying parabolic differential equation is given by

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2

with u = u(t, x, y), (x, y) ∈ Ω, t ∈ [0,∞), (cf. [14]). Suppose that the differential
equation is discretized by finite differences using a uniform grid with d2 grid points.

The resulting stiffness matrix A ∈ Rd2×d2

is sparse, stable, and its bandwidth is
d. Let n = d2 be the system order. Let b1 ∈ Rn be the vector with each entry
equal to 1, b2 ∈ Rn be a random vector. Let B = [b1, b2] and C = BT . The system
constructed in this way is a multi-input multi-output (MIMO) system.

We apply the proposed fast gradient flow algorithm FGFA to reduce this MI-
MO system. We use the gradient flow algorithm GFA (44) for comparison. The
algorithms FGFA and GFA start from the same state space realization (A,B,C)
and use the same initial orthogonal matrix U0 such that Colsp(U0) = D3(A,B,C).
We choose the same step length tk at each iterative step for algorithms FGFA and
GFA.

The numerical results are presented in Table 1. The relativeH2 error is computed

by using
‖G−Gm‖

2

‖G‖
2

. The estimate relative H2 error is computed by the relative H2

difference between the reduced order model Gm and a sufficiently accurate reduced
model (in this example, it is a reduced model of order 100 generated by the Krylov
subspace based method [3]). The CPU time is the total computing time for each
algorithm measured in seconds. The last column (n,m) stands for the order of the
systems, where n is the order of the full order system and m is the order of the
reduced order system. We can see from Table 1 that the proposed algorithm FGFA
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spends less computing time than Algorithm GFA does. Moreover, we observe that
the computational time for the proposed algorithm FGFA grows linearly, while that
for Algorithm GFA grows cubically. In the case n = 25600, Algorithm GFA fails to
compute the reduced system due to its large computational cost, while the proposed
algorithm FGFA still works very well.

Table 1. Example 1. Comparison.

Relative error CPU time (s) (n,m)
GFA 4.07× 10−3 89 (900, 3)
FGFA 4.05× 10−3 7

Relative error CPU time (s) (n,m)
GFA 5.96× 10−3 447 (1600, 3)
FGFA 5.96× 10−3 11

Relative error CPU time (s) (n,m)
GFA 7.15× 10−3 4793 (3600, 3)
FGFA 7.15× 10−3 21

Relative error CPU time (s) (n,m)
(estimate)

GFA (25600, 3)
FGFA 6.55× 10−4 302

We investigate this example further by reporting the convergence curve (n = 900)
in Figure 1. At each step of the iteration, we compute the relative H2 error and plot
this error vs the number of iterations. We can see from Figure 1 that the relative
H2 error of the two algorithms decreases as the number of iterations increases.
Note that algorithms FGFA and GFA obtain the same relative H2 error at each
iteration step. This confirms that the two algorithms generate the same sequence
of orthogonal matrices.
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Figure 1. Relative error for heat transfer model, n = 900.
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7.2. PEEC model. The PEEC model is a model of a spiral inductor, taken from
Oberwolfach benchmark collection [1]. The system originally obtained from the
PEEC model is a generalized symmetric SISO system of order n = 1434. In order
to get a MIMO system, we modified the input and output of the PEEC model by
adding to it random vectors. The resulting system is a symmetric MIMO system
with 2 inputs and 2 outputs.

We apply the proposed sequentially quadratic approximation algorithm (SQA)
to reduce this model. We use the iterative rational Krylov algorithm (IRKA) pro-
posed in [13], the algorithm (VGA) proposed in [23] and the trust region algorithm
(TRA) proposed in [4] for comparison. We reduce the order to m = 2, 4 with the
same initial orthogonal matrix for all these algorithms. The resulting relative H2

errors are tabulated in Table 2. The column Iter. lists the number of iterations
for reaching the relative H2 error. The proposed algorithm SQA guarantees the
stability of the order-reduced model and converges fast. Algorithms IRKA and
VGA do not guarantee stability of the order-reduced model, while algorithm TRA
guarantees stability but the rate of convergence is relatively slow for this example.
This conforms the numerical efficiency of the proposed algorithm SQA.

Table 2. Comparison of Relative H2 error (PEEC model)

m = 2 m = 4 Preserving
Relative error Iter. Relative error Iter. stability

SQA 2.99× 10−2 5 9.53× 10−3 15 Yes
IRKA 2.99× 10−2 6 9.53× 10−3 17 No
VGA 2.99× 10−2 6 9.53× 10−3 17 No
TRA 2.99× 10−2 24 1.21× 10−2 50 Yes

The convergence curves (m = 2) of the four algorithms are depicted in Figure
2. At each step of the iteration, we compute the relative H2 error and plot this
error vs the number of iterations. The superlinear convergence of algorithm SQA is
observed from Figure 2. This example demonstrates the effectiveness of sequentially
approximating the cost function by a quadratic function.
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Figure 2. Relative H2 errors for PEEC model, m = 2.
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8. Conclusion

In this paper, we reformulate the optimal H2 model reduction problem as a
minimization problem over the Grassmann manifold. Based on the geodesic of the
Grassmann manifold, we propose a fast gradient flow algorithm which is numer-
ically effective and suitable for large-scale MIMO systems. Furthermore, based
on approximating the cost function by a quadratic function at each iterative step,
we propose a globally convergent algorithm which converges quickly and preserves
stability of the reduced-order system. Numerical examples are presented to demon-
strate the computational efficiency of the proposed algorithms.
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