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THE SOLUTION OF THE BOUNDARY-VALUE PROBLEMS FOR

THE SIMULATION OF TRANSITION OF PROTEIN

CONFORMATION
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Abstract. Under certain kinetic or thermodynamic conditions, proteins make large conforma-
tional changes, formally called state transitions, resulting in significant changes in their chemical
or biological functions. These dynamic properties of proteins can be studied through molecular
dynamics simulation. However, in contrast to conventional dynamics simulation protocols where
an initial-value problem is solved, the simulation of transition of protein conformation can be
done by solving a boundary-value problem, with the beginning and ending states of the protein
as the boundary conditions. While a boundary-value problem is generally more difficult to solve,
it provides a more realistic model for transition of protein conformation and has certain computa-
tional advantages as well, especially for long-time simulations. Here we study the solution of the
boundary-value problems for the simulation of transition of protein conformation using a standard
class of numerical methods called the multiple shooting methods. We describe the methods and
discuss the issues related to their implementations for our specific applications, including the def-
inition of the boundary conditions, the formation of the initial trajectories, and the convergence
of the solutions. We present the results from using the multiple shooting methods for the study
of the conformational transition of a small molecular cluster and an alanine dipeptide, and show
the potential extension of the methods to larger biomolecular systems.
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1. Introduction

Under certain kinetic or thermodynamic conditions, proteins make large confor-
mational changes, formally called state transitions, resulting in significant changes
in their chemical or biological functions. Of various types, protein folding or mis-
folding may be those of the most important conformational transitions of proteins.
Folding accounts for the whole process of a one-dimensional polypeptide chain fold-
ing into a stable three-dimensional protein. The process can be considered as the
protein making a conformational transition, or a series of conformational transi-
tions, from an arbitrary state to its native state [36]. Instead, misfolding, as the
word implies, is a process that the protein folds to a nonnative state, either from an
arbitrary state or its native state. Proper folding is necessary for a protein to as-
sume its normal function, while misfolding often leads to an abnormal protein. The
latter could alter the normal behaviors of a biological system and cause complex
diseases [32].

The dynamic properties of proteins can be studied through molecular dynam-
ics simulation. A conventional molecular dynamics simulation protocol solves an
initial-value problem for the equation of motion defined for the molecule, with
the positions and velocities of the atoms in the molecule as the initial conditions
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[38]. Such a procedure can be used to track protein conformational transitions, but
the simulation has to be carried out for a very long time to make it possible for
the expected transition to occur. Alternatively, the conformational transition of
a molecule can be formulated more naturally as a boundary-value problem, with
the beginning and ending positions of the atoms in the molecule as the bound-
ary conditions. This latter approach has been adopted by several research groups
[35, 16, 4, 8, 20]. However, an accurate solution to the boundary-value problem has
not been fully developed.

In this paper, we study the solution of the boundary-value problems for the
simulation of transition of protein conformation using a standard class of numeri-
cal methods called the multiple shooting methods. We describe the methods and
discuss the issues related to their implementations for our specific applications,
including the definition of the boundary conditions, the formation of the initial tra-
jectories, and the convergence of the solutions. We present the results from using
the multiple shooting methods for the study of the conformational transition of a
small molecular cluster and an alanine dipeptide, and show the potential extension
of the methods to larger biomolecular systems.

2. Classical Simulation

A protein is composed of a sequence of amino acids. The neighboring amino
acids in the sequence are connected by strong chemical bonds and form an amino
acid chain called a polypeptide. The polypeptide chain, once generated in the
cell, quickly folds into a three dimensional structure and then becomes a live and
functional protein (see Figure 1). The folding of a protein has been one of the most
fundamental yet challenging scientific problems in the past several decades. Today,
it is still unclear why and how a given sequence of amino acids can fold into a
specific three dimensional protein, and it is still not possible to predict the folding
pathway and the folded structure for an arbitrarily given protein [9, 30].

A protein may misfold to a “wrong” structure and lose its normal function. This
may happen when the folding process makes a “wrong” turn or the native structure
unfolds to another structure under certain conditions [14, 37]. The study of protein
misfolding is as difficult as the study of protein folding. Many important diseases
are in fact caused by or related to protein misfolding. For example, the well-known
mad cow disease is believed to be the result of the misfolding of the prion protein,
which damages the neuron cells in the brain [1, 32] (see Figure 2).

Both folding and misfolding can be viewed as special types of conformational
transitions: During folding, a protein changes its conformation from an initial state
to the native state. During misfolding, a protein makes a conformational transition
from an initial (and perhaps the native) state to a misfolded state. In either case,
the process can be considered as a transition of protein conformation between two
conformational states. Without loss of generality, we assume that the two states
correspond to two energy minima of the protein. Then, the problem of finding a
folding or misfolding pathway is to find a conformational trajectory from one energy
minimum to another in the protein conformational space.

A protein conformation (or structure) is difficult to determine experimentally.
The tracking of a conformational trajectory is certainly even harder. Theoretically,
it may be approached through molecular dynamics simulation, which basically tries
to follow the conformational changes along the trajectory based on the known
physical interactions in the protein. Mathematically, a system of equations, defined
by the Newton’s Second Law of Motion for the atoms in the protein, needs to be
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Figure 1. Central dogma of molecular biology In cell, a
gene, as a DNA sequence, is transcribed to a RNA sequence. The
RNA sequence is then translated to an amino acid sequence. The
amino acids are connected with strong chemical bonds, forming
a polypeptide chain. The polypeptide chain folds into a three-
dimensional structure and becomes a live protein.

solved to obtain the changes of the positions of the atoms and hence the changes
of the conformation of the protein over the time [38, 5].

Let x(t) be the configuration of a molecule at time t,

x = {xi : xi = (xi,1, xi,2, xi,3)
T , i = 1, . . . , n},

where xi is the position vector of atom i and n the total number of atoms in the
molecule. Then, the equations of motion for the molecule can be written as

mi
d2xi
dt2

= fi(x1, . . . , xn), i = 1, . . . , n,(2.1)

where mi is the mass and fi the force for atom i. If the potential energy function
E(x1, . . . , xn) of the molecule is known, fi = −∂E/∂xi. Let

f = {fi : fi = (fi,1, fi,2, fi,3)
T , i = 1, . . . , n}.

Then, the equations of motion can be put into a more compact form:

m
d2x

dt2
= f(x),(2.2)

where m is the mass matrix, m = diag[m1, . . . ,mn], and f is the force field, f(x) =
−∇E(x). If we write the equation in a linear form,

dx

dt
= v,

dv

dt
= m−1f(x),(2.3)



SIMULATION OF TRANSITION OF PROTEIN CONFORMATION 923

Figure 2. Protein misfolding A normal prion protein PrPC
(a) may misfold to an abnormal form PrPSc (b). The abnormal
prions make large aggregates and damage neuron cells, causing
serious diseases such as the mad cow disease.

we can see that the system is Hamiltonian with the Hamiltonian

H(x, v) =
vTmv

2
+ E(x).

In classical molecular dynamics simulation, the above equations of motion are
solved with a set of initial conditions as can be defined as follows:

xi(t0) = x0i , vi(t0) = v0i , i = 1, . . . , n,(2.4)

where xi and vi are position and velocity of atom i, and x0i and v0i are initial
position and velocity of atom i at time t0. In other words, an initial value problem,

mi
d2xi
dt2

= fi(x1, . . . , xn),(2.5)

xi(t0) = x0i , vi(t0) = v0i , i = 1, . . . , n,

needs to be solved. In a more compact form, the problem can be written equiva-
lently as,

m
d2x

dt2
= f(x),(2.6)

x(t0) = x0, v(t0) = v0.

Let xki be the function value of xi at time tk. Then, the second derivative
d2xi/dt

2 at time tk can be approximated with

xk+1
i − 2xki + xk−1

i

∆t2
,
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and the equations of motion in (2.5) are reduced to

xk+1
i − 2xki + xk−1

i

∆t2
=
fi(x1, . . . , xn)

mi
, i = 1, . . . , n.(2.7)

By rearranging the above equations, we obtain,

xk+1
i = 2xki − xk−1

i +
fi(x1, . . . , xn)

mi
∆t2, i = 1, . . . , n.(2.8)

By applying the above formulas iteratively with x1i = x0i + v0i∆t, we can obtain
the values xki for all i and any arbitrary k, and by connecting all the values of xki for
a sequence of k, we can obtain an approximate trajectory for xi. The algorithm with
such a scheme is called a Verlet algorithm due to Verlet’s early work in molecular
dynamics simulation [41].

Let h = ∆t. Then, two types of Verlet algorithms are in fact used in practice:
One called the position Verlet and the other the velocity Verlet, with two slightly
different iterative formulas, respectively:

Position Verlet :

xk+1
i = 2xki − xk−1

i + h2
fk
i

mi
(2.9)

vk+1
i = vki + h

fk
i

mi
i = 1, . . . , n, k = 1, . . .(2.10)

Velocity Verlet :

xk+1
i = xki + hvki + h2

fk
i

2mi
(2.11)

vk+1
i = vki + h

fk
i + fk+1

i

2mi
i = 1, . . . , n, k = 1, . . .(2.12)

The position Verlet has a higher accuracy than the velocity Verlet for the calcu-
lation of the positions, but the velocity Verlet is more popular in practice because it
is simplectic and preserves energy and volume of the system, which is important for
obtaining an relatively accurate simulation after a long sequence of iterations. We
write these numerical properties of the Verlet algorithms formally in the following
theorems.

Theorem 2.1. The position Verlet has the fourth order accuracy for the calculation
of the positions.

Proof Based on the Taylor theory, the function values xi(tk−1) and xi(tk+1) can
be expressed in the following forms.

xi(tk−1) = xi(tk)− hx′i(tk) + h2x′′i (tk)/2!− h3x′′′i (tk)/3! +O(h4)

xi(tk+1) = xi(tk) + hx′i(tk) + h2x′′i (tk)/2! + h3x′′′i (tk)/3! +O(h4)

The sum of the two equations is

xi(tk+1) = 2xi(tk)− xi(tk−1) + h2x′′i (tk)/2! +O(h4)

By comparing the above formula with the one used in the position Verlet algo-
rithm, we can see that the difference between xk+1

i calculated using the position

Verlet and the true value of xi at time tk+1 is in the order of h4 if xki and xk−1
i are

accurate. �
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Theorem 2.2. The velocity Verlet has the third order accuracy for the calculation
of the positions.

Proof Based on the Taylor theory, the function values xi(tk+1) can be expressed
in the following form.

xi(tk+1) = xi(tk) + hx′i(tk) + h2x′′i (tk)/2! +O(h3)

By comparing the above formula with the one used in the velocity Verlet algo-
rithm, we can see that the difference between xk+1

i calculated using the velocity
Verlet and the true value of xi at time tk+1 is in the order of h3 if xki is assumed
to be accurate. �

Theorem 2.3. The velocity Verlet is simplectic.

Proof See [38] for a proof. �

The classical molecular dynamics simulation can be used to estimate the macro-
scopic properties such as temperature, pressure, or volume of a given molecular
system, or to observe the microscopic motions of the molecule such as atomic fluc-
tuations, local interactions, and conformational transitions. However, there are
several limitations in classical molecular dynamics simulation. First, the time step
of the simulation is very small in an order of femto (1.0E-15) seconds – a time scale
for atomic vibrations in a molecule, and therefore, the simulation is limited to short
time motions such as those in pico to nano seconds, while the time frame for many
biologically interesting motions such as protein folding or misfolding are usually in
the order of seconds. Second, for the transition of protein conformation, the simu-
lation is nondeterministic in the sense that it has to be carried out for a long time
period so that the transition may occur, and the waiting time is unknown priori for
a given system. Finally, the numerical methods used for the solution of the initial-
value problem in the classical simulation are all sequential methods because the
calculations in each iteration have to be completed before they can be continued in
the next iteration, and therefore, the methods cannot be parallelized for massively
parallel computation, which further limits the use of available computing power for
long time simulations.

3. The Boundary-Value Formulation

To simulate the conformational transition of a molecule, a more natural way is
to model the problem as a boundary-value problem, namely, solving the equations
of motion of the molecule with a set of conditions on the beginning and ending
states of the molecule. Elber et al [35, 16, 17, 18] are among the pioneers who
have investigated such an approach for the study of conformational transitions of
macromolecules such as proteins.

The boundary-value problem for the simulation of the conformational transition
of a molecule can be stated as a system of equations describing the movement
of the atoms in the molecule, along with a set of beginning and ending positions
for the atoms. Similar to the definitions in the previous section, let x(t) be the
configuration of the molecule at time t,

x = {xi : xi = (xi,1, xi,2, xi,3)
T , i = 1, . . . , n},

where xi is the position vector of atom i and n the total number of atoms in the
molecule. Let x0i and xei be the beginning and ending positions of atom i at time
t0 and te, respectively. Then, the boundary-value problem for the conformational
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transition of the molecule between its beginning and ending configurations at t0
and te can be written as

mi
d2xi
dt2

= fi(x1, . . . , xn),(3.1)

xi(t0) = x0i , xi(te) = xei , i = 1, . . . , n,

where mi is the mass and fi the force for atom i, fi = −∂E/∂xi, where E is the
function for the potential energy of the molecule. Again, let

f = {fi : fi = (fi,1, fi,2, fi,3)
T , i = 1, . . . , n}.

In a more compact form, the problem can be written equivalently as,

m
d2x

dt2
= f(x),(3.2)

x(t0) = x0, x(te) = xe.

where m is the mass matrix, m = diag[m1, . . . ,mn], f the force field, f = −∇E,
and x0 = {x0i : i = 1, . . . , n} and xe = {xei : i = 1, . . . , n}.

Based on the theory of classical mechanics [2, 21], the trajectory of molecular
motion between two molecular states minimizes the total action of the motion.
Then, given the beginning and ending time t0 and te, x(t) in [t0, te] defines a
trajectory connecting two molecular states x0 = x(t0) and xe = x(te). Let L(x, x

′, t)
be the difference of the kinetic and potential energy of the molecule at time t. The
functional L is called the Lagrangian of the molecule. Let S be the action of the
molecule in [t0, te]. Then, S is defined as the integral of the Lagrangian L in [t0, te],
and according to the least action principle, the trajectory x(t) as t changes from t0
to te minimizes the action S in [t0, te], i.e.,

min S(x) =

∫ te

t0

L(x, x′, t)dt,(3.3)

x(t0) = x0, x(te) = xe.

Theorem 3.1. Let L be a continuously differentiable functional. Let {x(t) : t ∈
[t0, te]} be a solution of the least action problem in (3.3). Then, x(t) satisfies the
following Euler-Lagrange Equation,

∂L(x, x′, t)

∂x′
−
d

dt

[

∂L(x, x′, t)

∂x

]

= 0(3.4)

Proof: Let δx be a small variation of x and δx(t0) = δx(te) = 0. By the principle of
variation, the necessary condition for x to be a solution of the least-action problem
in (3.3) is that,

δS =

∫ te

t0

(

∂L(x, x′, t)

∂x
δx+

∂L(x, x′, t)

∂x′
δx′

)

dt = 0

Since δx′ = δ

(

dx

dt

)

= d

(

δx

dt

)

, we obtain, after integrating the second term in the

integrand by parts,

δS =

∫ te

t0

(

∂L(x, x′, t)

∂x
−
d

dt

[

∂L(x, x′, t)

∂x′

])

δxdt = 0

Since δS should be zero for all δx, the integrand must be zero and (3.4) follows. �
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Theorem 3.2. Let L =
x′

T
mx′

2
−E(x), where m is the mass matrix of the molecule

and E the potential energy function. Then, a necessary condition for x to minimize
the action S is that,

m
d2x

dt2
= f(x), f(x) = −∇E(x)(3.5)

x(t0) = x0, x(te) = xe.

Proof: It follows from Theorem 3.1 and the facts that
d

dt

∂L

∂x′
= m

d2x

dt2
and

∂L

∂x
= −∇E. �

Note that Theorem 3.1 and 3.2 show that a molecular trajectory x that minimizes
the action S between two molecular states necessarily satisfies the equations of
motion and the boundary conditions in (3.1). In other words, a solution x to
the boundary-value problem (3.1) has a meaningful physical basis: It satisfies a
necessary condition to be a solution to the least-action problem (3.3). Of course, not
all trajectories x that solve the boundary-value problem (3.1) necessarily minimize
the action S. Some may be maxima and others may be saddle points. Even if
it is a minimizer, it may not necessarily the global minimum as the function S is
nonconvex in general [19, 33].

4. Multiple Shooting

The idea of the shooting methods for the solution of the boundary-value problem
in (3.1) is to find a molecular trajectory between two molecular states by mimicking
the process of shooting a basketball from a given position to a target position by
choosing a correct initial speed and direction for the ball. Let x(t) be the position
of a basketball at time t, m the mass, and f(x) the force at position x. Then, x
can be obtained as the solution to a boundary-value problem,

m
d2x

dt2
= f(x), x(t0) = x0, x(te) = xe,(4.1)

where t0 and te are the beginning and ending times, and x0 and xe the beginning
and ending positions. In order to find a solution to the above problem, first, let x
be the solution to the following initial value problem,

m
d2x

dt2
= f(x), x(t0) = x0, v(t0) = v0.(4.2)

Then, x(t) depends on the initial velocity v0, and can be written as x(t) = x(t; v0)
and considered as a function of v0. For an arbitrary v0, x(t) may not necessarily
satisfy the ending condition, x(te) = xe. In order to find such a solution or in other
words, to find a solution to the original boundary-value problem, we need to find an
appropriate v0 so that x(te) = x(te; v

0) = xe. Let φ(v0) = x(te)−x
e = x(te; v

0)−xe.
Then, the problem becomes finding v0 so that φ(v0) = 0.

In general, let x be a vector, m a mass matrix, and f the force field. We then
have a nonlinear system of equations,

φ(v0) = x(te; v
0)− xe = 0,(4.3)

where v0 and xe are all vectors, and

m
d2x

dt2
= f(x), x(t0) = x0, v(t0) = v0.(4.4)
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By solving the nonlinear system of equations, we can find a solution to the general
boundary value problem,

m
d2x

dt2
= f(x), x(t0) = x0, x(te) = xe.(4.5)

Such a method is called the single shooting method [3, 12].
The single shooting method is not stable, as we can imagine that if the time

is long or in other words, the distance is long, the shot will be very sensitive to
the changes in the initial velocity and difficult to reach the target accurately. To
overcome this difficulty, we can divide the time interval into smaller subintervals,
and make the shootings separately within the subintervals. Then, the positions
and velocities of the solution trajectory at the intermediate points are of course
all unknown. We need to determine them all so that the solution trajectories
obtained in the subintervals can be connected into a smooth trajectory over the
entire interval. The method for obtaining such a trajectory is called the multiple-
shooting method [3, 12].

For a general description of the multiple-shooting method, we write the problem
in (4.5) in the following form, without the mass matrix,

d2x

dt2
= f(x), x(t0) = x0, x(te) = xe.(4.6)

We first divide the time interval [t0, te] uniformly intoN subintervals [t0, t1], . . . , [tN−1, tN ],
with tN = te. Then, on each subinterval [ti, ti+1], 0 ≤ i < N , we solve an initial
value problem,

d2x

dt2
= f(x), x(ti) = r(i), v(ti) = s(i), ti ≤ t ≤ ti+1.(4.7)

Let the solution be denoted by x(i)(t; r(i); s(i)). Then, in the entire interval,

x(t) = x(i)(t; r(i); s(i)), ti ≤ t ≤ ti+1, 0 ≤ i < N.(4.8)

Here, we need to find r = [r(0); . . . ; r(N−1)] and s = [s(0); . . . ; s(N−1)] such that

x(i)(ti+1; r
(i); s(i)) = r(i+1),(4.9)

v(i)(ti+1; r
(i); s(i)) = s(i+1),

0 ≤ i < N − 1,

and x(0)(t0; r
(0); s(0)) = x0, x(N−1)(tN ; r(N−1); s(N−1)) = xe. If we define a vector

function F such that

F (r; s) =

























x(0)(t1; r
(0); s(0))− r(1)

v(0)(t1; r
(0); s(0))− s(1)

· · ·
· · ·

x(N−2)(tN−1; r
(N−2); s(N−2))− r(N−1)

v(N−2)(tN−1; r
(N−2); s(N−2))− s(N−1)

x(0)(t0; r
(0); s(0))− x(0)

x(N−1)(tN ; r(N−1); s(N−1))− x(e)

























,(4.10)

then, we essentially need to determine (r; s) such that F (r; s) = 0. The latter
can be solved by using a conventional nonlinear equation solver, say, the Newton
method [11, 39, 13].
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Note that the system of equations F (r; s) = 0 has N subsystems,

x(i)(ti+1; r
(i); s(i))− r(i+1) = 0,(4.11)

v(i)(ti+1; r
(i); s(i))− s(i+1) = 0,

0 ≤ i < N − 1,

and

x(0)(t0; r
(0); s(0))− x0 = 0,(4.12)

x(N−1)(tN ; r(N−1); s(N−1))− xe = 0,

where each subsystem in turn has 6n equations. There are a total of 6nN equa-
tions. The variables include the initial position and velocity vectors of the solution
trajectory in all the subintervals. Therefore, the total number of variables is also
6nN .

For proteins, n is typically in the order of 10,000. Therefore, if the interval is
divided into 100 subintervals, there will be a system of one million equations with
one million variables to solve. Suppose that each subinterval has a length of ten
pico-seconds. A nanosecond trajectory would require the solution of a system of
roughly this size.

However, the system can be solved more efficiently than it looks. First, each
of the equations in the system has only a small subset of all variables, and there-
fore, the Jacobian of F is very sparse. By exploiting the sparse structure of the
problem, the calculations can be significantly reduced. Second, the evaluation of
the equations in each subsystem requires the solution of an initial value problem
in the corresponding time subinterval. While evaluating the equations for all the
subsystems would take a substantial amount of computing time, the evaluations of
the equations of the subsystems are independent of each other, and can be carried
out in parallel on their own subintervals. The latter property makes the multiple-
shooting method more scalable and hence more efficient on parallel computers than
conventional molecular dynamics simulation schemes.

Note also that the system of equations F (r; s) = 0 may not necessarily have
an exact solution. There are at least three possible reasons. First, the boundary
conditions may have errors and hence are hard to satisfy. Second, the boundary
value problem may not have a solution at the first place. Third, the system is so
large and complex that a solution is hard to approach if a good initial guess is not
provided. A general approach to this problem is to solve the system approximately
by using a least-squares method [11, 33]. One of such approaches is to separate
the system into two parts as in (4.11) and (4.12). Let the subsystem in (4.11) be
denoted as F̄ (r; s) = 0. We can try to solve this subsystem relatively accurately,
while solving the equations in (4.12) approximately by minimizing the squares of
the norms,

||x(0)(t0; r
(0); s(0))− x0||2 and(4.13)

||x(N−1)(tN ; r(N−1); s(N−1))− xe||2.

Here, the norms measure the coordinate differences between the two molecular
structures. Therefore, the structures have to be translated and rotated properly
before the the structures are compared. Also, the structures are usually flexible with
different parts fluctuating differently. Therefore, the coordinates in more fluctuating
parts of the structures should be compared with lower accuracy requirements. In
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general, the following formulation may serve the purpose even better,

min ||x(0)(t0; r
(0); s(0))− x0||2H0

(4.14)

+ ||x(N−1)(tN ; r(N−1); s(N−1))− xe||2He

+ kF̄T (r; s)F̄ (r; s),

where k is a constant, and H0 and He are the Hessian matrices of the energy
function for the molecule evaluated at the beginning and ending positions of the
trajectory, and ||x||H = xTHx. The eigenvalues of the Hessian matrices correspond
to the vibrational modes of the conformations [31, 10]. Therefore, minimizing the
Hessian-weighted norms of the beginning and ending structures automatically takes
the fluctuations of structures into account.

5. Implementation

We have implemented a multiple shooting algorithm in MATLAB for the solution
of the boundary-value problem in (3.1). We have coded a Newton method with
trust-region for the solution of the system of equations in (4.9) and directly called
the initial-value solver in MATLAB for the solution of the initial-value problems
in the subintervals. We have applied the algorithm to two test problems: a six
atom argon cluster and a twenty-two atom alanine dipeptide. The argon clusters
have been studied widely in physical chemistry. Each cluster has many local energy
minima and the transition of the cluster from one energy minimum to another has
been an important topic of research [24, 34]. The alanine dipeptide is a small
polypeptide with only two residues. We chose this molecule because it is perhaps
the smallest possible protein fragment that can be studied yet has almost all the
necessary local interactions in a protein. This molecule has several energy minima
with respect to two specific torsion angles called ϕ-ψ-angles [8]. We are interested
in using the multiple shooting algorithm to find the molecular trajectories among
these energy minima.

The multiple shooting algorithm is essentially solving a special nonlinear system
of equations. In order for the algorithm to converge, a good initial guess for the
solution is necessary and even critical, given the fact that the system is large and
unstable. The initial guess for the conformational transition problem has to be a
molecular trajectory, which is not easy to construct in general. We have used a
so-called distance interpolation method [27, 28, 29] to obtain the initial trajectory,
which is essentially a rough approximation to the true trajectory. The idea is to use
the interatomic distances in the beginning and ending structures to generate a set
of intermediate distances and then use the intermediate distances to construct a set
of intermediate structures (see Figure 3). By connecting these structures together,
a piecewise linear molecular trajectory can be obtained as the initial trajectory for
the shooting algorithm. More specifically, let d0i,j and dei,j be two corresponding
distances between atoms i and j in the beginning and ending structures. Then,
an intermediate distance between atoms i and j can be generated by using the
following formula:

dki,j = λkd
0
i,j + (1 − λk)d

e
i,j ,(5.1)

where λk = k/M , k = 1, . . . ,M − 1, if M intermediate distance sets are to be
generated.

For the kth intermediate structure, a set of distances {dki,j : i, j = 1, . . . , n} is
generated. Such a set of distances may not define a three-dimensional structure,
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Figure 3. Distance interpolation For every pairs of distances
in the beginning and ending structures, a set of intermediate dis-
tances is generated. The generated distances can then be used to
form a set of intermediate structures, via the solution of a set of
distance geometry problems. An initial trajectory can be obtained
by connecting the generated intermediate structures, along with
the beginning and ending structures.

but we can still obtain an approximated one by approximately solving a so-called
distance geometry problem as can be given in the following,

||xki − xkj || = dki,j , i, j = 1, . . . , n.(5.2)

One of the approximation methods is based on singular value decomposition [22].
First, set xkn to the origin. Then, let xk = {xki : i = 1, . . . , n − 1} and dk =
{([dki,n]

2 − [dki,j ]
2 + [dkj,n]

2)/2 : i, j = 1, . . . , n − 1}. Then, it is easy to verify that

[xk][xk]T = dk. Let the singular value decomposition of dk = usuT . Then, an
approximate solution to the equation [xk][xk]T = dk can be obtained by setting
xk = ūs̄1/2, where ū = u(:, 1 : 3) and s̄ = s(1 : 3, 1 : 3). Here, if the rank of dk is
less than or equal to three, xk in fact solves the equation exactly. If the rank of dk

is greater than three, xk is the best possible approximation to the solution of the
equation in the following sense.

Theorem 5.1. xk = ūs̄1/2 is an approximate solution to the equation [xk][xk]T =
dk in the sense it minimizes ||[xk][xk]T − dk||F .

Proof: See a proof in [23] �

6. Test Results on Argon Cluster

Let xi be the coordinate vector of argon atom i. Then, the energy function for
a cluster of n argon atoms can be defined by using the following formula:

E(x) =

n
∑

i=1

n
∑

j=i+1

hi,j(||xi − xj ||),(6.1)

where x = {xi : i = 1, . . . , n} is the set of coordinate vectors of the atoms in
the cluster, which fully defines the configuration of the cluster, and hi,j is the
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pairwise potential for atoms i and j defined on the distance between the two atoms
di,j = ||xi − xj ||:

hi,j(di,j) = ǫi,j

[

σi,j
d12i,j

− 2
σi,j
d6i,j

]

,(6.2)

where ǫi,j and σi,j are appropriately chosen parameters. The parameters are usu-
ally different for different pairwise interactions, but for homogeneous clusters, they
should be the same for all the (i, j)-pairs and can be denoted simply as ǫ and σ.
For argon atoms, ǫ = 661.6E-23 J and σ = 3.405E-10 m [41].

Let ǫ be the unit for energy and σ the unit for length. We can then reduce the
above formula for hi,j to:

hi,j(di,j) =
1

d12i,j
−

2

d6i,j
,(6.3)

which achieves a minimum energy −1 at 1 unit length. For simplicity, we have used
this formula in all our calculations and we have only considered the cluster of 6
argon atoms. According to previous studies [24, 34], the cluster of 6 argon atoms
has two local minima, among many others. One of the two minima, considered
as the global minimum, is equal to -12.7 energy units, and is achieved when the
cluster forms a symmetric octahedra as shown in Figure 4. Another one, very close
to the global minimum, is equal to -12.3 energy units, and is achieved when the
cluster forms a stretched structure as if there are three tetrahedra connected in
sequence as shown in Figure 5. The energy difference between the two minima is
small, but it seems that there is a big energy barrier in between them, because a
local optimization routine can often be trapped into the -12.3 minimum and cannot
find the other one easily.

We are interested in finding out the condition under which the cluster of 6 argon
atoms changes its configuration between the above two energy minima. Let the
configuration corresponding to the -12.7 energy minimum be denoted by x0 and
the one corresponding to the -12.3 energy minimum by xe. Then, x0 = {x0i , i =
1, . . . , 6} and xe = {xei , i = 1, . . . , 6}, and the problem can be formulated as a
boundary-value problem as shown below.

m
d2x

dt2
= −∇E(x)(6.4)

x(t0) = x0, x(te) = xe

where E(x) is given in (6.1) and m an n× n mass matrix with n = 6.
We have applied the multiple shooting algorithm discussed in previous section

to the above problem. Our goal was to determine if the algorithm converges (for
different numbers of subintervals) and is able to find the correct solution for the
problem, when given a reasonably constructed initial solution.

In order to generate an initial solution, we ran a conventional molecular dynamics
simulation algorithm for 453 steps with a (very small!) time step of 0.0049 femto
seconds. We divided the entire time interval into 1, 3 or 6 subintervals, and over
these intervals, we perturbed the initial positions and velocities to obtain an initial
trajectory. With such an initial trajectory, we ran a maximum of 25 iterations of
two different algorithms, the damped Newton and the Newton with trust region, to
find the correct trajectory. The convergence results are summarized in Table 1. For
either choice for the algorithm, if the algorithm converged, the convergence seemed
linear until the last few steps when the super-linear convergence was observed. In
fact, for small perturbations, convergence could be rapid and super-linear. The
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Figure 4. Argon cluster configuration 1 A octahedra is
formed with six argon atoms. It corresponds to the global po-
tential energy minimum of the cluster.

data in Table 1 shows that 5 of 6 simulations converged super-linearly in less than
12 iterations. One simulation did not converge before the maximum number of
iterations was reached.

Table 1. Convergence Results for the Shooting Methods

iteration trust region Newton damped Newton
N = 1 N = 3 N = 6 N = 1 N = 3 N = 6

1 1.59E-01 1.42E+00 2.76E+00 1.42E+00 2.76E+00 5.50E-02
2 1.52E-02 1.28E+00 1.95E+00 7.04E-01 1.24E+00 9.86E-03
3 6.98E-04 1.15E+00 1.38E+00 2.51E-01 3.03E-01 6.63E-04
4 3.50E-06 1.03E+00 1.00E+00 1.17E-01 2.35E-01 6.35E-06
5 3.07E-10 8.22E-01 9.46E-01 1.08E-02 6.76E-02 6.88E-10
6 - 4.84E-01 9.93E-01 3.72E-04 9.37E-03 1.98E-15
7 - 9.91E-02 7.73E-01 4.58E-07 1.49E-04 -
8 - 2.01E-02 9.36E-01 8.17E-13 5.61E-08 -
9 - 3.60E-04 3.57E-01 - 3.71E-14 -
10 - 1.08E-06 3.51E-01 - - -
11 - 4.69E-12 3.51E-01 - - -
12 - - 3.51E-01 - - -

The results of the simulations revealed a converged trajectory of the argon cluster
moving from the octahedra configuration to the connected tetrahedra configuration,
as shown in Figure 6. If the cluster makes a direct configuration change by moving
the middle two atoms strictly down and stretching the bottom two atoms strictly
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Figure 5. Argon cluster configuration 2 Three tetrahedra are
connected to form a structure for the six atom argon cluster. It
has a local minimal potential energy.

apart, it will have to overcome some high energy barriers. Instead, it seemed that
the cluster first pull the middle two atoms and the bottom two atoms apart at the
same time and then pushed the middle two atoms down. Since the atoms were
made far apart, the energy barriers became small when the middle two atoms went
down, and the cluster was able to make an “easy” transition path between the two
energy states.

7. Test Results on Alanine Dipeptide

Let xi be the coordinate vector for atom i in an alanine dipeptide capped with
an acetyl group at the N-terminus and amine (amide) and methyl groups at the C-
terminus as shown in Figure 7. Let x = {xi : i = 1, . . . , n} be the set of coordinate
vectors for all the atoms in the molecule, where n = 22. Then, the potential energy
function for this molecule can be defined in a general form as follows.

E(x) =
∑

bonds

Kb(b− b0)
2 +

∑

bond angles

Kθ(θ − θ0)
2(7.1)

+
∑

dihedral angles

Kφ cos(nφ− δ) +
∑

improper dihedral angles

Kω(ω − ω0)
2

+
∑

nonbonded

Ai,j

r12i,j
−
Bi,j

r6i,j
+
qiqj
εri,j

where Kb is the bond stretching force constant; b, the bond length; b0, the ideal
bond length; Kθ, the bond angle bending force constant; θ, the bond angle; θ0,
the ideal bond angle; Kφ, the proper dihedral angle bending force constant; φ, the
proper dihedral angle; n, the dihedral angle multiplicity term; δ, the phase factor;
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Figure 6. Conformational transition of argon cluster The
cluster first pulls the middle two atoms and the bottom two atoms
apart at the same time and then pushes the middle two atoms
down. Since the atoms are made far apart, the energy barriers are
small when the middle two atoms move down, and the cluster is
able to make an “easy” transition path between the two energy
states.

Kω, the improper dihedral angle bending force constant; ω, the improper dihedral
angle; ω0, the ideal improper dihedral angle; Ai,j , the Lennard-Jones repulsion
parameters; Bi,j , the Lennard-Jones attraction parameters; ri,j , the interatomic
distances; qi, the atomic electrostatic charges; ε, the dielectric constant.

The above function can be used to compute the energy for any protein. Of
course, for each different protein, the parameters in the function need to be properly
assigned. There are several software packages providing these parameters, including
AMBER [7] and CHARMM [6]. The software MOIL developed by Elber et al. [18]
combines the parameters in AMBER with some in CHARMM. We have followed the
implementation of MOIL and made a simplified version of MOIL in MATLAB for
our calculations. We call our code MAM as an abreviation for MATLAB AMBER
MOIL.

Alanine dipeptide has a single sidechain CH3 branched from the Cβ position
and two blocked amide planes. The C − N − C − Cα dihedral angle ϕ and the
N − C − Cα − C dihedral angle ψ are the two so-called soft degrees of freedom
and these angles are thought to be of primary importance in classification of the
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Figure 7. Alanine dipeptide The dipeptide has two alanine
peptides capped with an acetyl group at the N-terminus and amine
(amide) and methyl groups at the C-terminus. There are twenty-
two atoms in the molecule.

molecular shape of alanine dipeptide. The other internal degrees of freedom are
thought to deviate relatively slightly from mean values as a function of time.

Because of the relative flexibility and importance of these ϕ and ψ dihedral an-
gles, it is common to use a projection onto a two-dimensional subspace determined
by the values of ϕ and ψ as a way to visualize the potential energy surface and
the conformational change. We have constructed a two dimensional adiabatic en-
ergy map using the MAM energy function. We applied the MATLAB optimization
routine FMINUNC to the energy function of the molecule, fixing 1369 different
combinations of values of ϕ and ψ. We then used the energy minima to obtain an
energy map with varying ϕ and ψ values. The obtained map is shown in Figure 8,
which is similar to the plots in [35, 4] produced with similar methods in similar force
fields. In our calculations, in most time, the optimization routine terminated with
one of the seven minimal energy conformations as shown in Figure 8 and described
in Table 2.

As mentioned in [8], this molecule has been a model system for many compu-
tational studies of biomolecules. And, with respect to the location of local energy
minima, these studies exhibit some variations due to differences in the details of
the effective potential model. However, in [8], it is asserted that the local minima
are typically found in five primary regions: C7eq, C5β, C7ax, αR, and αL in the
ϕ-ψ plot (see Figure 8).

With respect to the alanine dipeptide potential energy surface and the frequen-
cies of the different ending structures for the unconstrained minimization, αL and
lower αR regions seem to have higher energy and lower frequencies than what is
suggested to be common in studies of alanine dipeptide in solution. This may be
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Table 2. Local Minima of Alanine Dipeptide

id conformation ϕ ψ energy
1 C7eq -72 40 -22.7
2 C5β I -152 166 -21.8
3 C7ax 59 -31 -20.4
4 C6 -133 23 -20.1
5 C5β II -150 157 -18.6
6 αR -72 -13 -17.6
7 αL 56 20 -13.6

Figure 8. Energy minima of alanine dipeptide The alanine
dipeptide has seven major energy minima, in terms of two torsional
angle variables, ϕ and ψ, in the backbone, with all other variables
fixed. They are labeled as C7eq, C5β I, C5β II, C7ax, C6, αR, and
αL.

due to the fact that this energy surface corresponds to alanine dipeptide in vacuum
rather than in solution. Also, it could be partly due to the peculiarities of the
optimization methods used to model the potential energy surface. Similar explana-
tions may apply to the existence of the C6 ‘hybrid’ local minimum on this energy
surface. For the purpose of testing the multiple shooting methods on alanine dipep-
tide, these differences do not seem to be critical. In terms of ϕ-ψ plot regions, we
have considered 3 types of conformational transitions:

(1) transitions between primary local minima of the C7eq and C6 potential
energy wells.

(2) transitions between primary local minima of the C7eq and C5β potential
energy wells.

(3) transitions between primary local minima of the C7eq and C7ax potential
energy wells.

We are interested in finding out the condition under which the alanine dipeptide
makes its conformational transitions between the above three pairs of energy mini-
ma. Let the conformation corresponding to the energy minimum C7eq be denoted
by x0 and the one corresponding to one of the other three energy minima, C6, C5β,
and C7ax by xe. Then, x0 = {x0i , i = 1, . . . , 22} and xe = {xei , i = 1, . . . , 22}, and



938 P. VEDELL AND Z. WU

the problem can be formulated as a boundary-value problem as shown below.

m
d2x

dt2
= −∇E(x)(7.2)

x(t0) = x0, x(te) = xe

where m is an n × n mass matrix with n = 22, and E(x) is given in (7.1) and
calculated with MAM.

We have applied the multiple shooting algorithm discussed in previous section
to the above problem. Our goal was to determine if the algorithm converges (for
different numbers of subintervals) and is able to find the correct solution for the
problem, when given a reasonably constructed initial solution. Our study is en
vacuo, so our simulations do not explicitly include the interactions with water
molecules which in general help define and promote the stability of the global
minimum and other local minima on the potential energy surface. However, a
model in vacuum is certainly a reasonable point to start with.

We generated the initial trajectories with the distance interpolation method
described in Section 5. Multiple trajectories were generated for each of three tran-
sitions for testing purposes. For simplicity, we will not discuss the detailed process
of computing the initial trajectories, but refer the readers to the work described
in [40]. Here, we focus on the application of the multiple shooting algorithm. The
algorithm was applied with different numbers of subintervals and with different en-
ergy levels. In particular, for N =1, 2, 3, and 6 subintervals, the algorithm using
the Newton with trust-region was applied at nine different energy levels. We de-
fined a weak convergence for the algorithm if the norm of the system of equations
was less than 0.25 in the final iteration of the algorithm. We also defined a strong
convergence for the algorithm if the norm of the system of equations was less than
1.0E-06. From the point of view of numerical computing, the weak convergence
indicated an approximate solution. However, in practice, it is already enough for
obtaining a meaningful trajectory. In any case, a super-linear convergence was ob-
served in most of our test cases when a strong convergence was achieved. Table 3
shows the frequency of convergence, energy level upon convergence, and transition
time in our testing. For the ensemble of solution trajectories for each transition,
the distribution of total energy is also shown in Figure 9 and the ϕ-ψ plots are
shown in Figure 10.

Table 3. Convergence of Trajectories

transition weak convergence strong convergence transition time energy
C7eq to C6 118 / 120 55 / 120 0.1 2.3 ps -13.6 kCal

C7eq to C5beta 88 / 120 10 / 120 0.1 3.0 ps -6 kCal
C7eq to C7ax 74 / 120 9 / 120 0.1 3.0 ps 7 kCal

8. Concluding Remarks

In this paper, we have formulated the problems of protein conformation tran-
sitions as boundary-value problems and developed multiple shooting methods for
the solution of the problems. We described the methods and discussed related im-
plementation issues, and presented results from using the methods for the study of
conformational transitions of a small molecular cluster and an alanine dipeptide,
and showed the potential extension of the methods to larger biomolecular systems.
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Figure 9. Energy distribution Shown in the graphs are the
distributions of total energy for the ensembles of solution trajecto-
ries for three computed transitions. The trajectories from C7eq to
C6 seem to have lower energies.

The boundary-value approach to the transition of protein conformation in this
work has considered all the atoms in the protein. It is possible, and perhaps more
advantageous, to apply the same approach to more coarse-grained, or reduced, mod-
els of proteins. In [32], interesting results were obtained from molecular dynamics
simulation of prion-like proteins using medium resolution lattice models. We plan
to investigate this possibility in detail in future.

In future work, we also hope to consider the interaction between the molecule
and the surrounding solvent since this interaction is thought to be critical to the
folding process. A simple way to attempt to model the interactions with solvent is to
adjust the dielectric constant in the potential energy function. Another approach
to simulating interaction with water is to use a stochastic approach and apply
Brownian or Langevin dynamics.

It is reasonable to question the physical significance of the deterministic solu-
tions to the specific boundary-value problems presented here. Do their pathways
represent pathways that occur in nature? If so, do they represent common path-
ways? Before comparing different pathways, we must be able to define in some
way the different pathways being compared and develop a method of categorizing
trajectories by pathway. We intend to explore these issues in future.

The actual transition time between local minima can be very fast. While tran-
sition can be somewhat longer in solution than in vacuum, it is still worthwhile to
note that, in vacuum, the transition times are usually 0.5 to 3.0 picoseconds. The
boundary value approach can be more efficient since it is deterministic and can find
a solution trajectory much faster than the initial value approach in conventional



940 P. VEDELL AND Z. WU

Figure 10. Transition paths Ensembles of solution trajectories
or transition paths are obtained for each of the transitions: C7eq
to C6 (pink), C7eq to C5β (brown), and C7eq to C7ax (red).

simulation. The waiting time in the latter approach is usually not known priori
and can be much longer than necessary.
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