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NONCONFORMING MIXED FINITE ELEMENT METHODS FOR

STATIONARY INCOMPRESSIBLE

MAGNETOHYDRODYNAMICS

DONGYANG SHI⋆ AND ZHIYUN YU

Abstract. The main aim of this paper is to study the approximation of nonconforming mixed
finite element methods for stationary, incompressible magnetohydrodynamics (MHD) equations
in 3D. A family of nonconforming finite elements are taken as the approximation spaces for the
velocity field, the piecewise constant element for the pressure and the Nédélec’s element with the
lowest order for the magnetic field on hexahedra or tetrahedra. A new simple method is adopted to
prove the discrete Poincaré-Friedrichs inequality instead of the discrete Helmholtz decomposition
method. The existence and uniqueness of the approximate solutions are shown. The convergence
analysis is presented and the optimal order error estimates for the pressure in L2-norm, as well
as those in a broken H1-norm for the velocity field and H(curl)−norm for the magnetic field are
derived.

Key words. Incompressible MHD equations, Nonconforming mixed finite element methods,
Optimal error estimates

1. Introduction

Magnetohydrodynamics (MHD) equations is the complicated coupling problem
which is composed of electrically conducting fluid and electromagnetic fields. The
MHD equations arises in several applications, for example, astronomy and geo-
physics as well as the associated numerous engineering problems, such as liquid-
metal cooling of nuclear reactors, electromagnetic casting of metals, MHD power
generation and MHD ion propulsion [1]. Many studies have been already devoted
to the incompressible MHD equations. For theoretical results, G. Duvaut and J.-L.
Lions [2] first established the existence and uniqueness results for weak and strong
solutions of the MHD equations. M. Sermange and R. Temam [3] then analyzed
the large time behavior, the regularity properties and bound on the solutions to the
MHD equations which are valid for all time. On one hand, a considerable amount
of research activity has been devoted to the analysis of numerical methods for the
simulation of MHD flows by using finite difference methods (FDMs) [4]-[7]. On the
other hand, most of the numerical solutions of the MHD equations are performed
with the finite element methods (FEMs) [8]-[12], [14]-[22].

More precisely, in [8]-[12], the studies required that the magnetic field belongs
to H1(Ω)3. However, in the presence of reentrant corners or edges, setting the
magnetic unknowns of the incompressible MHD equations inH1(Ω)3 leads to a well-
posed problem where the magnetic field cannot be correctly approximated because
the magnetic field may have regularity below H1(Ω)3 [13]. In order to overcome this
difficulty, M. Costabel and M. Dauge [13] first presented a method of regularizing
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time harmonic Maxwell equations where the magnetic field belongs to H(curl; Ω).
This observation recently motivated the work [14], where a mixed formulation of
the stationary incompressible MHD problem based on H(curl)−conforming (edge)
elements to approximate the magnetic field was proposed, and the convergence to
weak solutions of the discrete problem was proved. A different strategy to achieve
convergence in general polyhedral domains was realized in [15], where an interior
penalty discontinuous Galerkin method for a linearized incompressible MHD model
problem was applied. Based on the mixed formulation introduced in [14], there have
been numerical analysis for schemes available, whose convergence was shown either
in the context of existing weak or strong solutions [16]-[26]. A recent summary of
known results for the MHD equations, including modeling, analysis, and numerics is
[1]. But, almost all the analysis in (FEMs) [8]-[12], [14]-[1] are about the conforming
FEMs except [16]. To the best of our knowledge, until now there are few papers
focusing on the nonconforming finite element methods (NFEMs).

It is well known that NFEMs play an important role in the numerical approxi-
mation of partial differential equations. Firstly, NFEMs have been used effectively
especially in fluid and solid mechanics when conforming FEMs and others seem
too costly or unstable. Secondly, the mixed finite element approximation to MHD
equations needs the stability and the compatibility between the velocity and the
pressure finite element spaces satisfying the discrete inf-sup condition [27], NFEMs
are much easier to be constructed to satisfy the above condition than conforming
FEMs. Thirdly, for some Crouzeix-Raviart type finite elements with the degrees
of freedom defined on the edges (or faces) of element or element itself, since the
unknowns are associated with the element faces, each degree of freedom belongs to
at most two elements, the use of the nonconforming finite elements facilitates the
exchange of information across each subdomain and provides spectral radius esti-
mates for the iterative domain decomposition operator [28]. Furthermore, NFEMs
for the resolution of a wide range of linear and nonlinear boundary value problems
have a great development in the last years [29]-[40]. The authors [41] also proposed
a family of low-order nonconforming mixed FEMs to approximate stationary MHD
equations and obtained the optimal error estimates in convex polyhedral domains,
or domains with a boundary C1,1.

As an attempt, we are concerned with NFEMs for nonlinear, fully coupled sta-
tionary incompressible MHD equations by the mixed formulation in general Lips-
chitz polyhedra. We will adopt a family of nonconforming finite elements as ap-
proximation space for the velocity field, the piecewise constant element for the
pressure and the first kind Nédélec’s elements on tetrahedra or hexahedra with the
lowest order for the magnetic field. A new method is introduced to prove the dis-
crete Poincaré-Friedrichs inequality, which is much easier than the methods used in
[27, 42, 43]. Finally, we will show the existence and uniqueness of the approximate
solutions and obtain the optimal order error estimates.

This paper is organized as follows: In Section 2, we introduce the variational
formulation for the MHD equations. Section 3 will give the nonconforming finite
element spaces. In Section 4, we state some important lemmas and prove the exis-
tence and uniqueness of discrete solutions. Section 5 will present the convergence
analysis and derive the optimal order error estimates.

In this paper, we will use the notations ‖ · ‖l, ‖ · ‖l,K for H l(Ω)3, H l(K)3-
norm, | · |m, | · |m,K for Hm(Ω)3, Hm(K)3-seminorm, where H0(Ω)3 = L2(Ω)3 and
H0(K)n = L2(K)3, l ≥ 0,m ≥ 0 are integer numbers. Throughout the paper, C
indicates a positive constant, possibly different at different occurrences, which is
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independent of the mesh parameter h, but may depend on Ω and other parameters
introduced in this paper. Notations without especially explained are used with
their usual meanings.

2. Equations and the mixed variational formulation

We consider the the following stationary, incompressible MHD equations in a
bounded domain in three dimensions [14]:

Problem (I): Find the velocity field u = (u1, u2, u3), the pressure p, the magnetic
field B = (B1, B2, B3) and the scalar function r satisfying





−R−1
s △u+ (u · ∇)u +∇p− Sc(curlB)×B = f in Ω,

R−1
m Sccurl(curlB)− Sccurl(u×B)−∇r = g in Ω,

divu = 0, divB = 0 in Ω,
u = 0 on ∂Ω,
B · n = 0, n× curlB = 0 on ∂Ω.

(2.1)

Here, we take Ω to be a bounded Lipschitz polyhedron in R3 with outward normal
unit vector n = (n1, n2, n3) on Γ = ∂Ω, Rs is the hydrodynamic Reynolds number,
Rm the magnetic Reynolds number, Sc the coupling number, respectively, and
f ∈ H−1(Ω)3 and g ∈ L2(Ω)3 are given source terms.

The mixed variational formulation for Problem (I) is written as:
Problem (I1): Find (u,B) ∈ W, (p, r) ∈ V such that

{
a((u,B), (u,B), (v,Ψ)) + b((v,Ψ), (p, r)) = F ((v,Ψ)), ∀(v,Ψ) ∈ W,

b((u,B), (χ, q)) = 0, ∀(χ, q) ∈ V,

where W = H1
0 (Ω)

3 ×H(curl; Ω), V = L2
0(Ω)×H1

0 (Ω).
Set

H(curl; Ω) = {v ∈ L2(Ω)3; curlv ∈ L2(Ω)3},

H(div; Ω) = {w ∈ L2(Ω)3; divw ∈ L2(Ω)},

H0(div; Ω) = {w ∈ H(div; Ω);w · n = 0 on ∂Ω},

H(div0; Ω) = {c ∈ H(div; Ω); divc = 0}, H(Ω) = H(curl; Ω) ∩H0(div; Ω),

J = H1
0 (Ω)

3 ∩H(div0; Ω), X = H(Ω) ∩H(div0; Ω),

L2
0(Ω) = {q ∈ L2(Ω);

∫

Ω

qdx = 0},

hereafter, x = (x, y, z).
We first equip the product spaces W and V with the norms

‖(w,Φ)‖W := (‖w‖21 + ‖Φ‖2curl)
1

2 ,

‖(χ, q)‖V := (‖χ‖20 + ‖q‖21)
1

2

and the spaces H(Ω) and H(curl; Ω) with the norms

‖Φ‖2H = ‖Φ‖20 + ‖curlΦ‖20 + ‖divΦ‖20,

‖Φ‖2H(curl;Ω) = ‖Φ‖20 + ‖curlΦ‖20,

respectively.
Next, we introduce the bilinear and trilinear forms as:

a((u,B), (v,Ψ), (w,Φ)) := a0((v,Ψ), (w,Φ)) + a1((u,B), (v,Ψ), (w,Φ)), (2.2)

a0((v,Ψ), (w,Φ)) := R
−1
s

∫
Ω

∇v : ∇wdx+R
−1
m

Sc

∫
Ω

curlΨ · curΦdx, (2.3)

a1((u,B), (v,Ψ), (w,Φ)) := c0(u; v, w)− c1(B;w,Ψ) + c2(B; v,Φ), (2.4)

c0(u; v, w) :=
1

2

∫
Ω

(u · ∇)v · wdx−
1

2

∫
Ω

(u · ∇)w · vdx, (2.5)
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c1(B;w,Ψ) := Sc

∫

Ω

(curlΨ×B) · wdx, (2.6)

c2(B; v,Φ) := Sc

∫

Ω

(curlΦ×B) · vdx, (2.7)

b((v,Ψ), (χ, q)) := b1(v, χ) + b2(Ψ, q), (2.8)

b1(v, χ) := −

∫

Ω

χdivvdx, b2(Ψ, q) := −

∫

Ω

∇q ·Ψdx, (2.9)

F ((v,Ψ)) :=

∫

Ω

fvdx+

∫

Ω

gΨdx. (2.10)

Set

‖F‖∗ := sup
(0,0) 6=(v,Ψ)∈J×X

F ((v,Ψ))

‖(v,Ψ)‖W
,

‖F‖−1 := [‖f‖2−1 + ‖g‖20]
1

2 , (2.11)

Z = {(v,Ψ) ∈ W | b((v,Ψ), (χ, q)) = 0, ∀(χ, q) ∈ V }.

Then the following conclusions can be found in [14]:
(I) ‖F‖∗ ≤ ‖F‖−1 and Z = J ×X .
(II) for u, v, w ∈ H1(Ω)3, B ∈ X,Ψ,Φ ∈ H(curl; Ω), there hold

c0(w; v, v) = 0, (2.12)

a1((u,B), (v,Ψ), (w,Φ)) = −a1((u,B), (w,Φ), (v,Ψ)), (2.13)

a1((u,B), (v,Ψ), (v,Ψ)) = 0. (2.14)

(III) If f ∈ H−1(Ω)3, g ∈ L2(Ω)3, then Problem (I1) has at least a solution

((u,B), (p, r)) ∈ Z × V,

in addition, is unique provided that

C2γ3(C1γ1)
−2‖F‖−1 < 1,

and has the stability bound

‖(u,B)‖W ≤ (C1γ1)
−1‖F‖−1,

where

γ1 = min{R−1
s , R−1

m Sc}, γ2 = max{R−1
s , R−1

m Sc}, γ3 = max{1, Sc}

and C1, C2 are two positive constants only depending on Ω.

3. Nonconforming finite element spaces

We consider the regular and quasi-uniform meshes Γh of mesh-size h that
partiting Ω into tetrahedra or hexahedra K. Let X1h * H1

0 (Ω)
3 and Mh ⊂ L2

0(Ω)
be finite element spaces for approximating the unknowns u and p, the interpolation
operator associated to X1h is denoted by Π1. Let ΠK = Π1|K for K ∈ Γh, P1(K)
be the polynomial space of degree less than or equal to 1 on K, and satisfy the
following assumptions [41]:

(A) ∀K ∈ Γh, v ∈ P1(K)3 ⊂ X1h,ΠKv = v;
(B) Mh = {χh ∈ L2

0(Ω);χ
h|K is a constant, ∀K ∈ Γh};

(C) ‖ · ‖1h = (
∑

K∈Γh

| · |21,K)
1

2 is a norm over X1h;

(D) ∀vh ∈ X1h,

∫

F

[vh]ds = 0, ∀F ⊂ ∂K,

∫

F

vhds = 0, ∀F ⊂ ∂Ω;

(E) b1h(v −Π1v, qh) = 0, ‖Π1v‖1h ≤ C|v|1, ∀v ∈ H1
0 (Ω)

3, qh ∈ Mh.



908 D. SHI AND Z. YU

It can be checked the nonconforming finite elements studied in [29]-[41], [44]-[48]
satisfy the above assumptions.

To approximate the unknowns B and r in Problem (I1), the associated finite
element spaces on hexahedra K are defined by

X2h = {Ψh ∈ H(curl; Ω) | Ψh|K ∈ Q0,1,1(K)×Q1,0,1(K)×Q1,1,0(K), ∀K ∈ Γh},

Nh = {qh ∈ H1
0 (Ω) | q

h|K ∈ Q1(K), ∀K ∈ Γh},

and on tetrahedra K

X2h = {Ψh ∈ H(curl; Ω) | Ψh|K = a+ b× x, a, b ∈ R3, ∀K ∈ Γh},

Nh = {qh ∈ H1
0 (Ω) | q

h|K ∈ P1(K), ∀K ∈ Γh},

where Qi,i,i(K) is a space of polynomials whose degrees for x, y, z are equal to i,
respectively. Here we point out that X2h is the first kind Nédélec’s element with
the lowest order [49, 50].

4. The existence and uniqueness of the approximate solutions and some

lemmas

In this section, we will first introduce the mixed finite element approximation of
MHD equations in (2.1).

Now we let Wh = X1h ×X2h, Vh = Mh × Nh and introduce the trilinear forms
ah, a1h and the bilinear forms a0h, bh as:

for (uh, Bh), (vh,Ψh), (wh,Φh) ∈ Wh and (χh, qh) ∈ Vh,

ah((u
h, Bh), (vh,Ψh), (wh,Φh)) := a0h((v

h,Ψh), (wh,Φh))

+a1h((u
h, Bh), (vh,Ψh), (wh,Φh)), (4.1)

a0h((v
h,Ψh), (wh,Φh)) :=

∑

K∈Γh

{R−1
s

∫

K

∇vh : ∇wh

+R−1
m Sc

∫

K

curlΨh · curlΦh}dx, (4.2)

a1h((u
h, Bh), (vh,Ψh), (wh,Φh)) := c0h(u

h; vh, wh)

−c1h(B
h;wh,Ψh) + c2h(B

h; vh,Φh), (4.3)

c0h(u
h; vh, wh) :=

1

2

∑

K∈Γh

∫

K

[(u
h

· ∇)vh · wh − (u
h

· ∇)wh · vh]dx, (4.4)

c1h(B
h;wh,Ψh) := Sc

∑

K∈Γh

∫

K

(curlΨh ×Bh) · whdx, (4.5)

c2h(B
h; vh,Φh) := Sc

∑

K∈Γh

∫

K

(curlΦh ×Bh) · vhdx, (4.6)

bh((v
h,Ψh), (χh, qh)) := b1h(v

h, χh) + b2h(Ψ
h, qh), (4.7)

b1h(v
h, χh) := −

∑

K∈Γh

∫

K

χhdivvhdx, b2h(Ψ
h, qh) := −

∑

K∈Γh

∫

K

∇qh ·Ψhdx, (4.8)

respectively.
Then the approximation formulation of Problem (I1) reads as:
Problem (I2): Find (uh, Bh) ∈ Wh, (p

h, rh) ∈ Vh such that





ah((u
h, Bh), (uh, Bh), (vh,Ψh)) + bh((v

h,Ψh), (ph, rh))
= F ((vh,Ψh)), ∀(vh,Ψh) ∈ Wh,

bh((u
h, Bh), (χh, qh)) = 0, ∀(χh, qh) ∈ Vh.

(4.9)
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From the definition of (4.3), a1h satisfies the following antisymmetric properties
[14]:

a1h((u
h, Bh), (vh,Ψh), (vh,Ψh)) = 0, (4.10)

Let

Jh = {vh ∈ X1h, b1h(v
h, χh) = 0, ∀χh ∈ Mh},

Xh = {Ψh ∈ X2h | b2h(Ψ
h, qh) = 0, ∀qh ∈ Nh}

and

Zh = {(vh,Ψh) ∈ Wh | bh((v
h,Ψh), (χh, qh)) = 0, ∀(χh, qh) ∈ Vh},

we have

Zh = Jh ×Xh ⊂ Wh.

For vh = (vh1 , v
h
2 , v

h
3 ) ∈ X1h,Ψ

h = (Ψh
1 ,Ψ

h
2 ,Ψ

h
3 ) ∈ X2h, we define

‖ vh ‖0h= (
∑

K∈Γh

‖ vh ‖20,K)
1

2 ,

‖ vh ‖1h= (
∑

K∈Γh

|vh|21,K)
1

2 = (
∑

K∈Γh

∫

K

∇vh : ∇vhdx)
1

2 ,

‖ (vh,Ψh) ‖h= (‖vh‖21h + ‖Ψh‖2H(curl;Ω))
1

2 ,

‖F‖∗h := sup
(0,0) 6=(vh,Ψh)∈Jh×Xh

F ((vh,Ψh))

‖(vh,Ψh)‖h

and

‖F‖h := sup
(0,0) 6=(vh,Ψh)∈X1h×X2h

F ((vh,Ψh))

‖(vh,Ψh)‖h
,

respectively. Then it is easy to see that ‖ · ‖0h and ‖ · ‖1h are the norms over X1h,
and ‖ (·, ·) ‖h is the norm over Wh.

In order to prove the existence and uniqueness of the solutions of (4.9), first of
all, we need to prove the following important lemmas.

Lemma 4.1. The following discrete Poincaré-Friedrichs inequality holds

‖Ψh‖0 ≤ C‖curlΨh‖0, ∀Ψh ∈ X2h. (4.11)

Proof. We consider the following problem





curl(curlB̃) = f in Ω,

divB̃ = 0 in Ω,

B̃ · n = 0 on ∂Ω,

curlB̃ × n = 0 on ∂Ω.

(4.12)

Due to the regularity of the solution [3], we have

‖curlB̃‖0 ≤ C‖f‖0. (4.13)

By Green’s formula and Hölder’s inequality, we deduce that

|

∫

Ω

fΨhdx| = |
∑

K∈Γh

∫

K

curlB̃ · curlΨhdx|

≤ ‖curlB̃‖0‖curlΨ
h‖0. (4.14)

Then, using (4.13) and (4.14) and choosing f = Ψh implies

‖Ψh‖0 ≤ C‖curlΨh‖0.

The proof is completed. �
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Remark 1: The technique used in this lemma is different from [27, 42] and sim-
plifies the proof of the above inequality (4.11) compared with the discrete Helmholtz
decomposition method.

Lemma 4.2. For (uh, Bh) ∈ X1h ×X(h), and (vh,Ψh), (wh,Φh) ∈ X1h ×X2h,

we have
(1) |c0h(u

h; vh, wh)| ≤ C‖uh‖1h‖v
h‖1h‖w

h‖1h,
(2) |c1h(B

h;wh,Ψh)| ≤ CSc‖curlΨ
h‖0‖B

h‖H(curl;Ω)‖w
h‖1h,

(3) |c2h(B
h; vh,Φh)| ≤ CSc‖curlΦ

h‖0‖B
h‖H(curl;Ω)‖v

h‖1h.
Proof. The first result is well-known [14, 27, 42]. To prove the second result, we

start by noting that ‖Bh‖H(Ω) = ‖Bh‖curl (for B
h ∈ X). Furthermore, due to the

imbedding property H(Ω) →֒ L3+δ1(Ω)3 [14] and the discrete imbedding inequality
over X1h in, e.g., [32, 34, 35]

‖vh‖0,2k,Ω ≤ C(k)‖vh‖1h, ∀v
h ∈ X1h, k = 1, 2. (4.15)

Firstly, by choosing δ1 = 1, k = 2 and using Hölder’s inequality, we get

|c1h(B
h;wh,Ψh)| ≤

∑

K∈Γh

∫

K

Sc|(curlΨ
h ×Bh) · wh|dx

≤ Sc‖curlΨ
h‖0‖B

h‖0,4‖w
h‖0,4

≤ CSc‖curlΨ
h‖0‖B

h‖H(curl;Ω)‖w
h‖1h.

Secondly, for Bh ∈ Xh, set X(h) = X +Xh. Then there exists a linear mapping
̥ : Xh → X satisfying curlBh = curl(̥Bh) and the Poincaré-Friedrichs inequality
in X (see [14, 50, 51]):

‖curl̥Bh‖0 ≥ C‖̥Bh‖0.

We have

|c1h(B
h;wh,Ψh)| ≤ |c1h(B

h −̥Bh;wh,Ψh)|+ |c1h(̥Bh;wh,Ψh)|,

|c1h(̥Bh;wh,Ψh)| ≤ CSc‖curlΨ
h‖0‖̥Bh‖H(curl;Ω)‖w

h‖1h

≤ CSc‖curlΨ
h‖0‖curl(̥Bh)‖0‖w

h‖1h

= CSc‖curlΨ
h‖0‖curlB

h‖0‖w
h‖1h

≤ C‖curlΨh‖0‖B
h‖H(curl;Ω)‖w

h‖1h.

On the other hand, for all piecewise polynomial functions ϕ, Bh ∈ Xh and l > 1
2 ,

[53] and [14, 50] have shown that the following inverse estimate

‖φ‖0,q ≤ Ch3( 1

q
− 1

p
)‖φ‖0,q, 1 ≤ p ≤ q ≤ ∞ (4.16)

and the inequality

‖Bh −̥Bh‖0 ≤ Chl‖curlBh‖0 (4.17)

hold, respectively.
So, by Hölder’s inequality and let q = ∞, p = 2 in (4.16), l = 3

2 in (4.17) and
k = 1 in (4.15), respectively, we deduce that

|c1h(B
h −̥Bh;wh,Ψh)|

≤ Sc‖w
h‖0,∞‖Bh −̥Bh‖0‖curlΨ

h‖0

≤ CSch
− 3

2h
3

2 ‖wh‖0,2‖curlB
h‖0‖curlΨ

h‖0

≤ CSc‖w
h‖1h‖curlB

h‖0‖curlΨ
h‖0.
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Similarly, choosing p = 2, q = 4 in (4.16), k = 2 in (4.15) and l = 3
4 in (4.17) leads

to

|c1h(B
h −̥Bh;wh,Ψh)|

≤ Sc‖w
h‖0,4‖B

h −̥Bh‖0‖curlΨ
h‖0,4

≤ CSch
− 3

4h
3

4 ‖wh‖0,4‖curlB
h‖0‖curlΨ

h‖0

≤ CSc‖w
h‖1h‖curlB

h‖0‖curlΨ
h‖0.

Thus, the assertion for c1h is proved, the proof for c2h is analogous. �

Lemma 4.3. Let (uh, Bh) ∈ X1h ×X(h), and (vh,Ψh), (wh,Φh) ∈ X1h ×X2h,

then the following results hold:

(1) |a1h((u
h, Bh), (vh,Ψh), (wh,Φh))| ≤ Ccγ3‖(u

h, Bh)‖h‖(v
h,Ψh)‖h‖(w

h,Φh)‖h,

(2) |a0h((u
h, Bh), (uh, Bh))| ≥ Caγ1‖(u

h, Bh)‖2h,

(3) |a0h((u
h, Bh), (vh,Ψh))| ≤ Cγ2‖(u

h, Bh)‖h‖(v
h,Ψh)‖h,

where Cc, Ca are two positive constants, independent of h.
Proof. Using the triangle inequality and Lemma 4.2, we get

|a1h((u
h, Bh), (vh,Ψh), (wh,Φh))|

≤ |c0h(u
h; vh, wh)|+ |c1h(B

h;wh,Ψh)|+ |c2h(B
h; vh,Φh)|

≤ Ccmax{1, Sc}‖(u
h, Bh)‖h‖(v

h,Ψh)‖h‖(w
h,Φh)‖h

= Ccγ3‖(u
h, Bh)‖h‖(v

h,Ψh)‖h‖(w
h,Φh)‖h.

Applying Lemma 4.1 gives

a0h((u
h, Bh), (uh, Bh))

=
∑

K∈Γh

{R−1
s

∫

K

∇uh : ∇uh +R−1
m Sc

∫

K

curlBh · curlBh}dx

= R−1
s ‖∇uh‖20 +R−1

m Sc‖curlB
h‖20

≥ Camin{R−1
s , R−1

m Sc}[‖u
h‖21h + ‖Bh‖2H(curl;Ω)]

= Caγ1‖(u
h, Bh)‖2h.

By Hölder’s inequality yields and the definition of ‖ · ‖, we have

|a0h((u
h, Bh), (vh,Ψh))|

≤
∑

K∈Γh

{R−1
s

∫

K

|∇uh : ∇vh|dx+R−1
m Sc

∫

K

|curlBh · curlΨh|}dx

≤ {R−1
s ‖∇uh‖0‖∇vh‖0 +R−1

m Sc‖curlB
h‖0‖curlΨ

h‖0}

≤ Cmax{R−1
s , R−1

m Sc}‖(u
h, Bh)‖h‖(v

h,Ψh)‖h

= Cγ2‖(u
h, Bh)‖h‖(v

h,Ψh)‖h.

The proof is completed. �

Lemma 4.4. The spaces Wh and Vh satisfy the discrete inf-sup condition, i.e.,

inf
(χh,qh)∈Vh

sup
(vh,Ψh)∈Wh

bh((v
h,Ψh), (χh, qh))

‖(vh,Ψh)‖h‖(χh, qh)‖V
≥ β⋆, (4.18)

where β⋆ is a positive constant independent of h .
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Proof. On one hand, by [27, 42], there exists a constant β1 > 0 such that

inf
06=χ∈L2

0
(Ω)

sup
06=v∈H1

0
(Ω)3

b1(v, χ)

‖v‖1‖χ‖0
≥ β1. (4.19)

Therefore, by the assumption (E) and (4.20), we get

sup
vh∈X1h

b1h(v
h, χh)

‖vh‖1h
≥ sup

v∈H1

0
(Ω)3

b1h(Π
1v, χh)

‖Π1v‖1h
= sup

v∈H1

0
(Ω)3

b1h(v, χ
h)

‖Π1v‖1h

≥
1

C
sup

v∈H1

0
(Ω)3

b1h(v, χ
h)

‖v‖1h
=

1

C
sup

v∈H1

0
(Ω)3

b1(v, χ
h)

‖v‖1
≥

β1

C
‖χh‖0. (4.20)

On the other hand, there exists a constant β2 > 0 such that [14, 50, 51]

inf
06=qh∈Nh

sup
06=Ψh∈X2h

b2h(Ψ
h, qh)

‖Ψh‖H(curl;Ω)‖qh‖1
≥ β2. (4.21)

Combining (4.20) and (4.21) yields the desired result. �

From Lemmas 4.3-4.4, we get the following conclusion.
Theorem 4.1. For f ∈ H−1(Ω)3, Problem (I2) has at least one solution

((uh, Bh), (ph, rh)) ∈ Zh × Vh

satisfying the stability bound

‖(uh, Bh)‖h ≤ (Caγ1)
−1‖F‖h. (4.22)

Moreover, Problem (I2) has a unique solution provided that

Ccγ3(Caγ1)
−2‖F‖∗h < 1.

5. Convergence analysis

Based on the lemmas in Section 4, we state the main results of this paper in this
section.

Theorem 5.1. Assume that

Ccγ3‖F‖−1

CaC1γ
2
1

<
1

2
.

Let ((u,B), (p, r)) ∈ Z×V and ((uh, Bh), (ph, rh)) ∈ Zh×Vh denote the solutions of
Problem (I1) and Problem (I2), respectively, then there exist two positive constants
C3, C4 independent of h such that

(1)‖(u,B)− (uh, Bh)‖h ≤ C3{ inf
(vh,Ψh)∈Wh

‖(u,B)− (vh,Ψh)‖h

+ inf
(χh,qh)∈Vh

‖(p, r)− (χh, qh)‖V

+ sup
(vh,Ψh)∈Zh

|E((vh,Ψh))|

‖(vh,Ψh)‖h
} (5.1)

and

(2)‖(p, r)− (ph, rh)‖V ≤ C4{ inf
(vh,Ψh)∈Wh

‖(u,B)− (vh,Ψh)‖h

+ inf
(χh,qh)∈Vh

‖(p, r)− (χh, qh)‖V

+ sup
(vh,Ψh)∈Wh

|E((vh,Ψh))|

‖(vh,Ψh)‖h
}, (5.2)
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where

E((vh,Ψh)) =
∑

K∈Γh

∫

∂K

[R−1
s

∂u

∂n
vh − pvh · n−

1

2
(u · n)(u · vh)]ds.

Proof. We proceed in two steps.
Step 1 For (vh,Ψh) ∈ Wh, using Green’s formula, we get

a0h((u,B), (vh,Ψh)) + a1h((u,B), (u,B), (vh,Ψh))

+bh((v
h,Ψh), (p, r)) − F ((vh,Ψh))

=
∑

K∈Γh

{

∫

K

R−1
s ∇u · ∇vhdx+R−1

m Sc

∫

K

curlB · curlΨhdx

+
1

2

∫

K

[(u · ∇)u · vh − (u · ∇)vh · u]dx

−Sc

∫

K

[(curlB ×B) · vh − (curlΨh ×B) · u]dx

−

∫

K

pdivvhdx−

∫

K

∇r ·Ψhdx−

∫

K

fvhdx−

∫

K

gΨhdx}

=
∑

K∈Γh

{

∫

K

−R−1
s △u · vhdx+

∫

∂K

R−1
s

∂u

∂n
vhds

+

∫

K

R−1
m Sccurl(curlB) ·Ψhdx+

∫

∂K

R−1
m Sc(curlB × n) ·Ψhds

+

∫

K

(u · ∇)u · vhdx−

∫

∂K

1

2
(u · n)(u · vh)ds

−Sc

∫

K

(curlB ×B) · vhdx− Sc

∫

K

(curlu×B) ·Ψhdx

+

∫

∂K

(u ×B × n) ·Ψhds

+

∫

K

∇p · vhdx−

∫

∂K

pvh · nds−

∫

K

∇r ·Ψhdx

−

∫

K

fvhdx−

∫

K

gΨhdx}

=
∑

K∈Γh

{

∫

K

(−R−1
s △u+ (u · ∇)u+∇p− Sc(curlB)×B − f) · vhdx

+

∫

K

(R−1
m Sccurl(curlB)− Sccurl(u×B)−∇r − g) ·Ψhdx

+

∫

∂K

[R−1
s

∂u

∂n
vh −

1

2
(u · n)(u · vh)− pvh · n]ds}

= E((vh,Ψh)).

So there holds

a0h((u,B), (vh,Ψh)) + a1h((u,B), (u,B), (vh,Ψh)) + bh((v
h,Ψh), (p, r))

= F ((vh,Ψh)) + E((vh,Ψh)). (5.3)

From (4.9), we see that

a0h((u
h, Bh), (vh,Ψh)) + a1h((u

h, Bh), (uh, Bh), (vh,Ψh))
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+bh((v
h,Ψh), (ph, rh)) = F ((vh,Ψh)). (5.4)

Subtraction of (5.4) from (5.3) yields

a0h((u,B)− (uh, Bh), (vh,Ψh)) + a1h((u,B)− (uh, Bh), (u,B), (vh,Ψh))

+a1h((u
h, Bh), (u,B)− (uh, Bh), (vh,Ψh))

+bh((v
h,Ψh), (p, r) − (ph, rh)) = E((vh,Ψh)). (5.5)

Setting (wh,Φh) be an arbitrary element of Zh, i.e.,

bh((w
h,Φh), (χh, qh)) = 0, ∀(χh, qh) ∈ Vh. (5.6)

Then, for (χh, qh) ∈ Vh,

bh((u
h − wh, Bh − Φh), (χh, qh))

= bh((u
h, Bh), (χh, qh))− bh((w

h,Φh), (χh, qh)) = 0, (5.7)

so (uh − wh, Bh − Φh) ∈ Zh and by (5.5), we get

a0h((w
h,Φh)− (uh, Bh), (vh,Ψh))

+a1h((w
h,Φh)− (uh, Bh), (u,B), (vh,Ψh))

+a1h((u
h, Bh), (wh,Φh)− (uh, Bh), (vh,Ψh))

+bh((v
h,Ψh), (χh, qh)− (ph, rh))

= a0h((w
h,Φh)− (u,B), (vh,Ψh))

+a1h((w
h,Φh)− (u,B), (u,B), (vh,Ψh))

+a1h((u
h, Bh), (wh,Φh)− (u,B), (vh,Ψh))

+bh((v
h,Ψh), (χh, qh)− (p, r)) + E((vh,Ψh)),

∀(vh,Ψh) ∈ Wh, (χ
h, qh) ∈ Vh. (5.8)

Note that

a1h((u
h, Bh), (wh,Φh)− (uh, Bh), (wh,Φh)− (uh, Bh)) = 0,

bh((u
h − wh, Bh − Φh), (χh, qh)− (ph, rh)) = 0,

set (vh,Ψh) = (wh,Φh)− (uh, Bh) and by (5.8), we obtain

a0h((w
h,Φh)− (uh, Bh), (wh,Φh)− (uh, Bh))

+a1h((w
h,Φh)− (uh, Bh), (u,B), (wh,Φh)− (uh, Bh))

= a0h((w
h,Φh)− (u,B), (wh,Φh)− (uh, Bh))

+a1h((w
h,Φh)− (u,B), (u,B), (wh,Φh)− (uh, Bh))

+a1h((u
h, Bh), (wh,Φh)− (u,B), (wh,Φh)− (uh, Bh))

+bh((w
h,Φh)− (uh, Bh), (χh, qh)− (p, r)) + E((wh,Φh)− (uh, Bh)). (5.9)
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Thus, using the continuity of the forms a0h, a1h and the stability bounds for ‖(u,B)‖W
and ‖(uh, Bh)‖h, the right-hand side of (5.9) can be bounded by

r.h.s. ≤ ‖(wh,Φh)− (uh, Bh)‖h[Cγ2‖(w
h,Φh)− (u,B)‖h

+Cc‖(w
h,Φh)− (u,B)‖h‖(u,B)‖W

+Cc‖(w
h,Φh)− (u,B)‖h‖(u

h, Bh)‖h

+C‖(χh, qh)− (p, r)‖V +
E((wh,Φh)− (uh, Bh)

‖(wh,Φh)− (uh, Bh)‖h
)]

≤ C‖(wh,Φh)− (uh, Bh)‖h[‖(w
h,Φh)− (u,B)‖h

+‖(χh, qh)− (p, r)‖V +
E((wh,Φh)− (uh, Bh)

‖(wh,Φh)− (uh, Bh)‖h
)].

Similarly, employing the coercivity property of the form a0h, continuity of a1h in

Lemma 4.3, the stability bound for ‖(u,B)‖W and the assumption Ccγ3‖F‖
−1

CaC1γ
2

1

< 1
2

allows us to bound the left-hand side of (5.9) as

l.h.s. ≥ Caγ1‖(w
h,Φh)− (uh, Bh)‖2h − Ccγ3‖(w

h,Φh)− (uh, Bh)‖2h‖(u,B)‖W

≥
1

2
Caγ1‖(w

h,Φh)− (uh, Bh)‖2h

≥ C‖(wh,Φh)− (uh, Bh)‖2h.

Combining these bounds yields

‖(wh,Φh)− (uh, Bh)‖h ≤ C[‖(wh,Φh)− (u,B)‖h + ‖(χh, qh)− (p, r)‖V

+
E((wh,Φh)− (uh, Bh))

‖(wh,Φh)− (uh, Bh)‖h
)].

Therefore, applying the triangle inequality gives

‖(u,B)− (uh, Bh)‖h ≤ C[‖(wh,Φh)− (u,B)‖h + ‖(χh, qh)− (p, r)‖V

+
E((wh,Φh)− (uh, Bh))

‖(wh,Φh)− (uh, Bh)‖h
]. (5.10)

Now, for (wh,Φh) ∈ Zh, (χ
h, qh) ∈ Vh, taking the infimum of (5.10) leads to

‖(u,B)− (uh, Bh)‖h ≤ C[ inf
(wh,Φh)∈Zh

‖(wh,Φh)− (u,B)‖h

+ inf
(χh,qh)∈Vh

‖(χh, qh)− (p, r)‖V + sup
(vh,Ψh)∈Zh

E((vh,Ψh))

‖(vh,Ψh)‖h
]. (5.11)

With the same argument as [27, 42], we get

inf
(wh,Φh)∈Zh

‖(wh,Φh)− (u,B)‖h ≤ C inf
(vh,Ψh)∈Wh

‖(wh,Φh)− (u,B)‖h. (5.12)

Substituting (5.12) into (5.11) implies (5.1).
Step 2 For (χh, qh) ∈ Vh and by (5.8), we have

bh((v
h,Ψh), (χh, qh)− (ph, rh))

= bh((v
h,Ψh), (χh, qh)− (p, r)) + bh((v

h,Ψh), (p, r) − (ph, rh))

= bh((v
h,Ψh), (χh, qh)− (p, r)) − a0h((u,B)− (uh, Bh), (vh,Ψh))

−a1h((u,B)− (uh, Bh), (u,B), (vh,Ψh))

−a1h((u
h, Bh), (u,B)− (uh, Bh), (vh,Ψh))

+E((vh,Ψh)), ∀(vh,Ψh) ∈ Wh.
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Thus, taking into account the stability bounds for a0h and a1h and the discrete
inf-sup condition (4.19) of Lemma 4.4 yields

‖(χh, qh)− (ph, rh)‖V ≤
1

β⋆
{C‖(χh, qh)− (p, r)‖V + [Cγ2 + Cc(‖(u,B)‖W

+‖(uh, Bh)‖h)]‖(u,B)− (uh, Bh)‖h

+
E((vh,Ψh))

‖(vh,Ψh)‖h
}.

Then, with the help of the triangle inequality and (5.1), we complete the proof of
(5.2). �

Theorem 5.2. Let

u ∈ (H1
0 (Ω)

3 ∩H2(Ω)3), B, curlB ∈ H1(Ω)3, r ∈ H2(Ω), p ∈ (L2
0(Ω) ∩H1(Ω))

and ((uh, Bh), (ph, rh)) ∈ Zh×Vh denote the solutions of Problem (I1) and Problem
(I2), respectively, then we get

‖(u,B)− (uh, Bh)‖h + ‖(p, r)− (ph, rh)‖V

≤ Ch(|u|2 + ‖p‖1 + ‖B‖1 + ‖curlB‖1 + ‖r‖2). (5.13)

Proof. On one hand, the interpolation theory gives

inf
vh∈X1h

‖u− vh‖21h ≤ ‖u−Π1u‖21h =
∑

K∈Γh

|u−Π1
Ku|21,K ≤ Ch2|u|22 (5.14)

and [1, 14, 50, 51, 52]

inf
Ψh∈X2h

‖B −Ψh‖2H(curl;Ω) ≤ Ch2[‖B‖1 + ‖curlB‖1]
2. (5.15)

Therefore, by (5.14)-(5.15), we obtain

inf
(vh,Ψh)∈Wh

‖(u,B)− (vh,Ψh)‖h ≤ Ch(|u|2 + ‖B‖1 + ‖curlB‖1). (5.16)

At the same time, for any p ∈ L2
0(Ω), we define the interpolation Rh

0p ∈ Mh on
each element K as ∫

K

(p−Rh
0p)dx = 0.

Then we have

inf
χh∈Mh

‖p− χh‖0 ≤ ‖p−Rh
0p‖0 ≤ Ch‖p‖1. (5.17)

Similarly,

inf
qh∈Nh

‖r − qh‖1 ≤ Ch‖r‖2. (5.18)

On the other hand, by the similar techniques to [29]-[41], we can estimate the
consistency error as

|E((vh,Ψh))| ≤ Ch(|u|2 + ‖p‖1)‖(v
h,Ψh)‖h. (5.19)

Substituting (5.14)-(5.18) into (5.1) and (5.2) yields the desired result. �

Remark 2: The results obtained in this work are also valid to the MHD
problems with the boundary condition u = 0, n × B = 0, r = 0 on ∂Ω when
B ∈ H0(curl; Ω), r ∈ H1

0 (Ω).
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