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A COMMENT ON LEAST-SQUARES FINITE ELEMENT

METHODS WITH MINIMUM REGULARITY ASSUMPTIONS

JAEUN KU

Abstract. Least-squares(LS) finite element methods are applied successfully to a wide range of
problems arising from science and engineering. However, there are reservations to use LS methods
for problems with low regularity solutions. In this paper, we consider LS methods for second-order
elliptic problems using the minimum regularity assumption, i.e. the solution only belongs to H1

space. We provide a theoretical analysis showing that LS methods are competitive alternatives
to mixed and standard Galerkin methods by establishing that LS solutions are bounded by the
mixed and standard Galerkin solutions.
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1. Introduction

The purpose of this paper is to show that LS methods could compete favorably
with mixed Galerkin methods under minimum regularity assumptions, i.e. the solu-
tion only belongs to H1 space. We consider first-order LS methods for second-order
elliptic problems proposed by Cai et. al [6] and Pehlivanov et. al [10]. They trans-
formed the second-order equations into a system of first-order by introducing a new
variable(flux) σ = −A∇u. Least-squares type methods applied to the system lead
to a minimization problem and resulting algebraic equation involves a symmetric
and positive definite matrix. The approximate spaces do not require the inf-sup
condition and any conforming finite element spaces can be used as approximate
spaces.

While the LS methods are successfully applied to a wide range of problems in
science and engineering, there are reservations to use LS methods for problems with
low regularity solutions such as problems with discontinuous coefficients, problems
on nonconvex domains etc. This is due to the fact that most of the error estimates
concerning LS methods require high regularity solutions.

In this paper, we consider errors of LS solutions, and mixed and standard
Galerkin solutions under the assumption, ‖u‖1 ≤ C‖f‖−1, and establish

‖σ − σh‖0 + ‖u− uh‖0 ≤ C(‖σ − σ
m
h ‖0 + ‖u− uGh ‖0),

where (uh,σh) is the LS solution for (u,σ = −A∇u), and σ
m
h and uGh is the mixed

and Galerkin solution for σ and u, respectively. From this estimate, we observe
that LS solutions compete favorably with mixed and Galerkin solutions. For other
results concerning error estimates with minimum regularity assumptions, we refer
the reader to [12], where the error estimates for the Ritz-Galerkin methods are
presented with the minimum regularity assumption considered here. For results
concerning smooth problems, we refer to [1, 3] and references therein.
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2. Problem formulation

Let Ω be bounded domain in R
n, n = 2, 3 with ∂Ω = ΓD

⋃

ΓN , where ΓD 6= ∅.
Let n denote the unit outward normal vector to the boundary. We consider the
following boundary value problem:

(1) −∇ · (A∇u) = f in Ω,

with boundary conditions

(2) u = 0 on ΓD and n · A∇u = 0 on ΓN ,

where the symbols ∇· and ∇ stand for the divergence and gradient operators,
respectively; f ∈ L2(Ω) and A = (aij(x))

n
i,j=1 , x ∈ Ω. We shall assume that aij ∈

L∞(Ω) and the matrix A is symmetric and uniformly positive definite, i.e., there
exist positive constants α0 > 0 and α1 > 0 such that

(3) α0ζ
T ζ ≤ ζTAζ ≤ α1ζ

T ζ,

for all ζ ∈ R
n and all x ∈ Ω. We assume that there exists a unique solution to (1).

Let Hs(Ω) denote the Sobolev space of order s defined on Ω. The norm in Hs(Ω)
will be denoted by ‖ · ‖s. For s = 0, Hs(Ω) coincides with L2(Ω). We shall use the
spaces

V = {u ∈ H1(Ω) : u = 0 on ΓD},

W = {σ ∈ (L2(Ω))n : ∇ · σ ∈ L2(Ω) and n · σ = 0 on ΓN},

with norms

‖u‖21 = (u, u) + (∇u , ∇u) and ‖σ‖2H(div) = (∇ · σ , ∇ · σ) + (σ , σ).

We assume the following a priori estimate for u satisfying (1): there exists a
positive constant C independent of f satisfying

(4) ‖u‖1 ≤ C ‖f‖−1.

Here, ‖f‖−1 is defined in the standard way by ‖v‖−1 = supφ∈V
(v,φ)
‖φ‖1

. As noted

in [12], it is not known in general whether u ∈ H1+s(Ω) for some s > 0 even if
f ∈ C∞(Ω), under the assumption on the coefficients aij .

Here and thereafter, we use C with or without subscripts to denote a generic
positive constant, possibly different at different occurrences, that is independent of
the mesh size h and f .

By introducing a new variable σ = −A∇u ∈ W, we transform the original
problem into a system of first-order

σ +A∇u = 0 in Ω,

∇ · σ = f in Ω,(5)

with boundary conditions

(6) u = 0 on ΓD and n · σ = 0 on ΓN ,

Then, the least-squares method for the first-order system (5) is: Find u ∈ V,σ ∈
W such that

b(u,σ; v,q) ≡ (∇ · σ,∇ · q) +
(

A−1(σ +A∇u),q+A∇v
)

(7)

= (f,∇ · q),

for all v ∈ V,q ∈ W.
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3. Finite element approximation

Let Th be a regular triangulation of Ω (see [7]) with triangular/tetrahedra ele-
ments of size h = max{diam(K);K ∈ Th}. Let Pk(K) be the space of polynomials
of degree k on triangle K and denote the local Raviart-Thomas space of order k on
K:

RTk(K) = Pk(K)n + xPk(K)

with x = (x1, ..., xn). Then the standard (conforming) continuous piecewise poly-
nomials of degree r and the standard H(div) conforming Raviart-Thomas space of
index k [11] are defined, respectively, by

V r
h = {q ∈ V : q|K ∈ Pr(K) ∀ K ∈ Th},(8)

Wk
h = {τ ∈ W : τ |K ∈ RTk(K) ∀ K ∈ Th}.(9)

The finite element approximation to (7) is: Find uh ∈ V r
h and σh ∈ Wk

h such
that

(10) b(uh,σh; vh,qh) = (f,∇ · qh),

for all vh ∈ V r
h ,qh ∈ Wk

h. Note that the bilinear form b(·, ·; ·, ·) satisfies the following
coercivity property: For any (v, τ ) ∈ V ×W,

(11) ‖v‖21 + ‖τ‖2H(div) ≤ C b(v, τ ; v, τ ).

From the above coercivity property and Lax-Milgram Theorem, it can be easily
shown that (10) has a unique solution. Moreover, the error has the orthogonality
property

(12) b(u− uh,σ − σh; vh,qh) = 0, for all vh ∈ V r
h ,qh ∈ Wk

h.

3.1. Mixed and Standard Galerkin methods. We briefly introduce the mixed
and standard Galerkin methods. First, define

(13) Qr
h = {q ∈ L2(Ω) : q|K ∈ Pr(K), for each K ∈ Th}.

The mixed finite element method corresponding to (5) is defined as follows: Find
a pair (umh ,σm

h ) ∈ Qk
h ×Wk

h such that

(14)
(A−1

σ
m
h ,qh)− (∇ · qh, u

m
h ) = 0,

(∇ · σm
h , vh) = (f, vh)

for all (vh ,qh) ∈ Qk
h ×Wk

h. The pair (u− umh ,σ− σ
m
h ) satisfy the following error

equations

(A−1(σ − σ
m
h ),qh)− (∇ · qh, u− umh ) = 0,(15)

(∇ · (σ − σ
m
h ), vh) = 0.(16)

The standard Galerkin solution uGh ∈ V r
h is defined as

(17) (A∇(u − uGh ),∇ψ) = 0, for all ψ ∈ V r
h .
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4. Upper bound of LS solution with mixed and Galerkin solutions

We provide our main result showing that LS methods provide competitive alter-
natives to mixed and Galerkin methods. In other words, we establish that the LS
solution is bounded by the mixed and Galerkin solutions under minimum regular-
ity assumption, i.e. u ∈ H1(Ω). The proof given here is based on the technique
developed in [5].
Theorem 1. Let (uh,σh) be the LS solutions satisfying (12), (umh ,σ

m
h ) be the

mixed solution satisfying (14), and uGh be the Galerkin solution satisfying (17).
Then,

(18) ‖σ − σh‖0 + ‖u− uh‖0 ≤ C(‖σ − σ
m
h ‖0 + ‖u− uGh ‖0).

Proof. By the triangle inequality and the definition of norms, we have

‖σ − σh‖0 + ‖u− uh‖0 ≤ ‖σ − σ
m
h ‖0 + ‖u− uGh ‖0

+‖σm
h − σh‖0 + ‖uGh − uh‖0

≤ ‖σ − σ
m
h ‖0 + ‖u− uGh ‖0 + ‖σm

h − σh‖H(div) + ‖uGh − uh‖1.(19)

Using coercivity (11) and orthogonal property (12), we have

‖σm
h − σh‖

2
H(div) + ‖uGh − uh‖

2
1 ≤ C b(uGh − uh,σ

m
h − σh ;u

G
h − uh,σ

m
h − σh)

= Cb(uGh − u,σm
h − σ ;uGh − uh,σ

m
h − σh).(20)

Now, by the definition of b(·; ·) in (7), and (16), (17), integration by parts and
Cauchy-Schwarz inequality, we have

b(uGh − u,σm
h − σ ;uGh − uh,σ

m
h − σh) = (∇ · (σm

h − σ) ,∇ · (σm
h − σh))

+(A−1(σm
h − σ +A∇(uGh − u)) , σm

h − σh +A∇(uGh − uh))

= (A−1(σm
h − σ),σm

h − σh) + (σm
h − σ,∇(uGh − uh))− (uGh − u,∇ · (σm

h − σh))

≤ C1(‖σ − σ
m
h ‖20 + ‖u− uGh ‖

2
0) +

1

C1
(‖σm

h − σh‖
2
H(div) + ‖uGh − uh‖

2
1).

Plugging the above inequality into (20) and using a kickback argument for suffi-
ciently large C1, we obtain

‖σm
h − σh‖H(div) + ‖uGh − uh‖1 ≤ C(‖σ − σ

m
h ‖0 + ‖u− uGh ‖0).

Finally, plugging the above estimate into (19), we obtain the desired inequality.
This completes the proof. �
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