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ERROR ESTIMATES OF THE CRANK-NICOLSON SCHEME

FOR SOLVING BACKWARD STOCHASTIC DIFFERENTIAL

EQUATIONS

WEIDONG ZHAO, YANG LI AND LILI JU

Abstract. In this paper, we study error estimates of a special θ-scheme – the Crank-Nicolson
scheme proposed in [25] for solving the backward stochastic differential equation with a general
generator, −dyt = f(t, yt, zt)dt − ztdWt. We rigorously prove that under some reasonable regu-
larity conditions on ϕ and f , this scheme is second-order accurate for solving both yt and zt when
the errors are measured in the Lp (p ≥ 1) norm.

Key words. Backward stochastic differential equations, Crank-Nicolson scheme, θ-scheme, error
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1. Introduction

Let (Ω,F , P ) be a probability space, T > 0 a finite time, F = (Ft)0≤t≤T a
filtration satisfying the usual conditions. Let (Ω,F ,F, P ) be a complete, filtered
probability space on which a standard d-dimensional Brownian motionWt is defined
and F0 contains all the P-null sets of F . Let L2 = L2

F(0, T ) be the set of all
Ft-adapted and mean-square-integrable vector/matrix processes. We consider the
backward stochastic differential equation (BSDE)

(1.1) −dyt = f(t, yt, zt)dt− ztdWt, ∀ t ∈ [0, T ),

with the terminal condition
yT = ξ,

where the generator f = f(t, yt, zt) is a vector function valued in Rm and is Ft-
adapted for each (y, z), and the terminal variable ξ ∈ L2 is FT measurable. Rewrit-
ing the BSDE (1.1) in the integral form gives us

(1.2) yt = ξ +

∫ T

t

f(s, ys, zs) ds−
∫ T

t

zs dWs, ∀ t ∈ [0, T ).

We note that the second integral term on the right-hand side of (1.2) is an Itô-type
integral. A process (yt, zt): [0, T ] × Ω → Rm × Rm×d is called an L2-solution of
the BSDE (1.2) if, in the probability space (Ω,F ,P), it is {Ft}-adapted, square
integrable, and satisfies the integral equation (1.2) [16].

In 1990, Pardoux and Peng first proved in [16] the existence and uniqueness
of the solution of general nonlinear BSDEs (i.e, f is nonlinear), and later in [17],
obtained some relations between BSDEs and stochastic partial differential equations
(SPDEs). Since then, the theory of BSDEs has been extensively studied by many
researchers and BSDEs have found applications in many fields, such as finance, risk
measure, stochastic control, and etc.. Peng obtained the relation between BSDEs
and parabolic PDEs in [19], and then the generalized stochastic maximum principle
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and the dynamic programming principle for stochastic control problems based on
BSDEs in [18, 21]. The nonlinear g−expectation via a particular nonlinear BSDE
was introduced in [20], and in [7] it was found that a dynamic coherent risk measure
can be represented by a properly defined g-expectation. Thus, it is very important
and useful to study solutions of BSDEs.

In this paper, we consider the case of ξ = ϕ(WT ), and assume that the BSDE
(1.2) has a unique solution (yt, zt). It was shown in [19] that the solution (yt, zt) of
(1.2) can be represented as

(1.3) yt = u(t,Wt), zt = ∇xu(t,Wt), ∀t ∈ [0, T ),

where u(t, x) is the solution of the following parabolic partial differential equation

(1.4)
∂u

∂t
+

1

2

d
∑

i=1

∂2u

∂x2i
+ f(t, u,∇xu) = 0,

with the terminal condition u(T, x) = ϕ(x), and ∇xu is the gradient of u with
respect to the spacial variable x. The smoothness of u clearly depends on φ and f .

It is well-known that it is often difficult to obtain analytic solutions of BSDEs,
so that computing their approximate solutions becomes highly desired. Based on
the relation between the BSDEs and the corresponding parabolic PDEs, some nu-
merical algorithms were proposed to solve BSDEs [3, 11, 12, 13, 14, 15, 19, 24], and
furthermore, a four step algorithm was proposed in [10] to solve a class of more
general equations called forward-backward stochastic differential equations (FBS-
DEs). In [25], a family of θ-schemes were proposed for solving general BSDEs. In
particular, a special case of the θ-scheme – the Crank-Nicolson (C-N) scheme was
numerically demonstrated to be second-order accurate. This accuracy result was
theoretically proven in [22, 26] for the simplified case that the generator function f
is independent of zt in (1.2), however, the proof for the cases of general generators
remains open till now. A family of multi-step schemes were recently developed in
[27] based on the Lagrange interpolation and the Gauss-Hermite quadratures. Ac-
curacies of these multi-step schemes were numerically shown to be of high order for
solving the BSDE (1.2), but again the result was only theoretically confirmed for
BSDEs with a generator f independent of zt. There are also some other numerical
methods for solving BSDEs (or FBSDEs), which were proposed based on directly
discretizing BSDEs or FBSDEs, see [1, 2, 4, 5, 8, 9, 21, 23, 24] and references cited
therein.

The aim of this paper is to study error estimates of the special θ scheme – the
Crank-Nicolson scheme for solving the general BSDE (1.2) with terminal condition
ξ = ϕ(WT ). For the purpose of simple representations, let us first introduce the
following notations:

• ‖X‖Lp (p ≥ 1): the Lp-norm for X ∈ Lp defined by E[|X |p] 1p .
• Cl,k,k

b : the set of continuously differential functions ψ : [0, T ] × Rd × Rm×d →
R with uniformly bounded partial derivatives ∂l1t ψ and ∂k1

y ∂k2

z ψ for l1 ≤ l and
k1 + k2 ≤ k.
• Cl,k

b : the set of functions ψ : (t, x) ∈ [0, T ] × Rd → R with uniformly bounded

partial derivatives ∂l1t ∂
k1
x ψ for l1 ≤ l and k1 ≤ k.

• Ck
b : the set of functions ψ : x ∈ Rd → R with uniformly bounded partial

derivatives ∂k1
x ψ for k1 ≤ k.

• F t,x
s (t ≤ s ≤ T ): the σ-field generated by the Brownian motion {x+Wr−Wt, t ≤

r ≤ s} starting from the time-space point (t, x). Let F t,x = F t,x
T .

• E[X ]: the mathematical expectation of the random variable X .
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• E
t,x
s [X ]: the conditional mathematical expectation of the random variable X

under the σ-field F t,x
s (t ≤ s ≤ T ), that is E

t,x
s [X ] = E[X |F t,x

s ]. Let E
x
t [X ] =

E[X |F t,x
t ].

• ∂xψ: the matrix valued function ∂xψ = (∂xjψi)m×d (1 ≤ i ≤ m, 1 ≤ j ≤ d) for
vector function ψ = (ψ1, · · · , ψm)⊤.
• C: a generic positive constant, and may be different from line to line.

The rest of the paper is organized as follows. In Section 2, we briefly review
the θ-scheme proposed in [25] for solving the BSDE (1.2) and its special case –
the Crank-Nicolson scheme. Then we rigorously derive error estimates of the C-N
scheme in Section 3. Under some reasonable regularity conditions on ϕ and f , we
prove that the C-N scheme is second-order accurate when the errors are measured
in the Lp-norm (p ≥ 1). Some concluding remarks are finally given in Section 4.

2. Review of the θ-Scheme and the Crank-Nicolson Scheme

In this section, we give a brief review of the θ-scheme proposed in [25]. For the
time interval [0, T ], let us introduce the following partition

0 = t0 < · · · < tN = T

with ∆tn = tn+1−tn, n = 0, 1, · · · , N−1. Denote by (tn, x
n) the time-space points,

where xn+1 = xn +Wtn+1
−Wtn for n = 0, 1, · · · , N − 1.

2.1. Reference equations and the θ-Scheme. Let (yt, zt) be the solution of
the BSDE (1.2). Then, for 0 ≤ n ≤ N − 1, it is easy to obtain

(2.1) ytn = ytn+1
+

∫ tn+1

tn

f(s, ys, zs) ds−
∫ tn+1

tn

zs dWs.

Taking the conditional mathematical expectation E
xn

tn [·] on both sides of (2.1), we
get

(2.2) ytn = E
xn

tn [ytn+1
] +

∫ tn+1

tn

E
xn

tn [f(s, ys, zs)] ds.

The integrand E
xn

tn [f(s, ys, zs)] on the right-hand side of (2.2) is a deterministic
smooth function of time s. We can use the the following rule to approximate the
integral in (2.2):

(2.3)

∫ tn+1

tn

E
xn

tn [f(s, ys, zs)] ds =

θ1∆tnf(tn, ytn , ztn) + (1− θ1)∆tnE
xn

tn [f(tn+1, ytn+1
, ztn+1

)] +Rn
y ,

where θ1 ∈ [0, 1] and

Rn
y =

∫ tn+1

tn

{Exn

tn [f(s, ys, zs)]−(1−θ1)Exn

tn [f(tn+1, ytn+1
, ztn+1

)]−θ1f(tn, ytn , ztn)} ds.

Inserting (2.3) into (2.2) leads to the first reference equation

(2.4)
ytn = E

xn

tn [ytn+1
] + θ1∆tnf(tn, ytn , ztn)

+ (1 − θ1)∆tnE
xn

tn [f(tn+1, ytn+1
, ztn+1

)] +Rn
y .

Let ∆tnWs = Ws −Wtn for tn ≤ s ≤ tn+1. Then ∆tnWs is a standard Brownian
motion with mean zero and variance s − tn. Multiplying (2.1) by ∆tnW

⊤
tn+1

, and
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then taking the conditional mathematical expectation E
xn

tn [·] on both sides of the
derived equation, we obtain by the Itô isometry formula
(2.5)

−E
xn

tn [ytn+1
∆tnW

⊤
tn+1

] =

∫ tn+1

tn

E
xn

tn [f(s, ys, zs)∆tnW
⊤
s ] ds−

∫ tn+1

tn

E
xn

tn [zs] ds.

Following similar derivation of the equation (2.4) and using the fact ∆tnWtn = 0,
we can obtain the second reference equation as

(2.6)
− E

xn

tn [ytn+1
∆tnW

⊤
tn+1

] = (1− θ2)∆tnE
xn

tn [f(tn+1, ytn+1
, ztn+1

)∆tnW
⊤
tn+1

]

− {(1− θ3)∆tnE
xn

tn [ztn+1
] + θ3∆tnztn}+Rn

z ,

where

Rn
z =

∫ tn+1

tn

E
xn

tn [f(s, ys, zs)∆tnW
⊤
tn+1

]ds

− (1 − θ2)∆tnE
xn

tn [f(tn+1, ytn+1
, ztn+1

)∆tnW
⊤
tn+1

]

−
∫ tn+1

tn

{Exn

tn [zs]ds− (1− θ3)E
xn

tn [ztn+1
]− θ3ztn} ds.

Define ∆Wn+1 = Wtn+1
− Wtn for n = N − 1, · · · , 1, 0. Clearly ∆Wn+1 =

∆tnWtn+1
. Based on the two reference equations (2.4) and (2.6), the following so-

called θ-scheme was proposed for solving BSDEs in [25]: for n = N−1, N−2, · · · , 0,

yn = E
xn

tn [yn+1] + θ1∆tnf(tn, y
n, zn)

+(1− θ1)∆tnE
xn

tn [f(tn+1, y
n+1, zn+1)](2.7)

−E
xn

tn [yn+1∆W⊤
n+1] = (1− θ2)∆tnE

xn

tn [f(tn+1, y
n+1, zn+1)∆W⊤

n+1]

−{(1− θ3)∆tnE
xn

tn [zn+1] + θ3∆tnz
n}.(2.8)

where (yn, zn) is an approximation (yt, zt) at time tn. This is a semi-discretization,
for further fully discretization in the space and efficient calculation of Exn

tn [·], see
[25, 26, 27] for details.

2.2. The Crank-Nicolson scheme. Notice that at time tN = T we only have
the information ytN = ξ = φ(WT ) and ztN is out of our knowledge. Thus in order to
proceed the θ-scheme we need an initialization process by choosing θ1 = θ2 = θ3 = 1
in (2.7) and (2.8) at n = N − 1 such that we can solve yN−1 and zN−1 from Y N

yN−1 = E
xN−1

tN−1
[yN ] + ∆tN−1f(tN−1, y

N−1, zN−1),(2.9)

∆tN−1z
N−1 = E

xN−1

tN−1
[yN∆W⊤

N ].(2.10)

In the following steps, by setting θ1 = θ2 = θ3 =
1

2
, we obtain a special case of

the θ-scheme – the Crank-Nicolson scheme for solving general BSDEs:

Given yN which is an approximation to ytN .
(i) Solve (yN−1, zN−1) according to (2.9) and (2.10);
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(ii) For n = N − 2, N − 3, · · · , 0, solve (yn, zn) by

yn = E
xn

tn [yn+1] +
1

2
∆tnf(tn, y

n, zn)

+
1

2
∆tnE

xn

tn [f(tn+1, y
n+1, zn+1)],(2.11)

1

2
∆tnz

n = E
xn

tn [yn+1∆W⊤
n+1]−

1

2
∆tnE

xn

tn [zn+1]

+
1

2
∆tnE

xn

tn [f(tn+1, y
n+1, zn+1)∆W⊤

n+1].(2.12)

Remark 1. We note that the C-N scheme defined by (2.11) and (2.12) is explicit
in solving zn. Then the Lipchitz condition of f leads to that the C-N scheme has
a unique solution (yn, zn) for small time partition step ∆t.

Note that the truncation errors of (2.11) and (2.12) in the step (ii) are one-order
smaller (in time step size) than that of (2.9) and (2.10) in the initialization step (i),
thus in order to obtain optimal error estimates of the C-N scheme, we also assume

Assumption 1. ∆tn = ∆t for 0 ≤ n ≤ N − 2 and ∆tN−1 = (∆t)2 where ∆t > 0
is some positive real number.

In the rest of the paper, we will always assume Assumption 1 holds.

Remark 2. Various experiments presented in [25] showed that the above C-N
scheme is numerically second-order accurate. In order to obtain some theoretical
results on convergence of the C-N scheme, the authors in [22, 26] confined the
discussions to the BSDEs in a simplified form

(2.13) yt = ϕ(WT ) +

∫ T

t

f(s, ys) ds−
∫ T

t

zs dWs, t ∈ (0, T ],

i.e., the generator f is independent of zt. It was rigorously proven based on a
variation method that the C-N scheme is second-order accurate for this simplified
case.

3. Error estimates of the Crank-Nicolson Scheme

Without loss of generality, we only consider the case of one-dimensional BSDEs
(i.e., m = d = 1). However we remark that all error estimates obtained in the
sequel also hold for multidimensional BSDEs.

3.1. Some important lemmas. Define ∆xi

ti Ws = xi+Ws−Wti for ti ≤ s ≤ ti+1.
Let us first introduce the following lemma.

Lemma 3.1. If H ∈ C3,5
b , then when ∆t is sufficiently small it holds that for

1 ≤ i ≤ N − 2,
(3.1)
∣

∣

∣
E
xi−1

ti−1

[

∆Wi

∫ ti+1

ti

{

H(t,∆xi

ti Wt)−
H(ti, x

i) +H(ti+1,∆
xi

ti Wti+1
)

2

}

dt
]∣

∣

∣
≤ C(∆t)4,

where C > 0 is a generic constant depending only on upper bounds of derivatives
of H.
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Proof. Since ∆Wi is Fti-measurable, we have the identity
(3.2)

E
xi−1

ti−1

[

∆Wi

∫ ti+1

ti

{

H(t,∆xi

ti Wt)−
H(ti, x

i) +H(ti+1,∆
xi

ti Wti+1
)

2

}

dt
]

= E
xi−1

ti−1

[

∆WiE
xi

ti

[

∫ ti+1

ti

{

H(t,∆xi

ti Wt)−
H(ti, x

i) +H(ti+1,∆
xi

ti Wti+1
)

2

}

dt
]]

.

By Itô’s formula, we have

H(t,∆xi

ti Wt) = H(ti, x
i) +

∫ t

ti

(

Ht(s,∆
xi

ti Ws) +
1

2
Hxx(s,∆

xi

ti Ws)
)

ds

+

∫ t

ti

Hx(s,∆
xi

ti Ws) dWs.

(3.3)

Notice that

H ′
t(s,∆

xi

ti Ws) +
1

2
Hxx(s,∆

xi

ti Ws)

= Ht(ti, xi) +
1

2
Hxx(ti, xi)

+

∫ s

ti

(

Htt(τ,∆
xi

ti Wτ ) +Htxx(τ,∆
xi

ti Wτ ) +
1

4
Hxxxx(τ,∆

xi

ti Wτ )

)

dτ

+

∫ s

ti

(

Htx(τ,∆
xi

ti Wτ ) +
1

2
Hxxx(τ,∆

xi

ti Wτ )

)

dWτ .

(3.4)

By (3.3) and (3.4) we easily get

E
xi

ti

[

∫ ti+1

ti

H(t,∆xi

ti Wt) dt
]

= H(ti, x
i)∆t+

1

2
Ht(ti, x

i)(∆t)2 +
1

4
Hxx(ti, x

i)(∆t)2

+

∫ ti+1

ti

∫ t

ti

∫ s

ti

(

E
xi

ti [Htt(τ,∆
xi

ti Wτ ) +Htxx(τ,∆
xi

ti Wτ )]

+
1

4
E
xi

ti [Hxxxx(τ,∆
xi

ti Wτ )]
)

dτ dsdt,

(3.5)

and

E
xi

ti [

∫ ti+1

ti

H(ti+1,∆
xi

ti Wti+1
) dt]

= H(ti, x
i)∆t+Ht(ti, x

i)(∆t)2 +
1

2
Hxx(ti, x

i)(∆t)2

+

∫ ti+1

ti

∫ ti+1

ti

∫ s

ti

(

E
xi

ti [Htt(τ,∆
xi

ti Wτ )] + E
xi

ti [Htxx(τ,∆
xi

ti Wτ )

+
1

4
Hxxxx(τ,∆

xi

ti Wτ )]
)

dτdsdt.

(3.6)
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Then by (3.5) and (3.6) we deduce

E
xi

ti

[

∫ ti+1

ti

(

H(t,∆xi

ti Wt)−
H(ti, x

i) +H(ti+1,∆
xi

ti Wti+1
)

2

)

dt
]

=

∫ ti+1

ti

∫ t

ti

∫ s

ti

(

E
xi

ti [Htt(τ,∆
xi

ti Wτ )]

+E
xi

ti [Htxx(τ,∆
xi

ti Wτ ) +
1

4
Hxxxx(τ,∆

xi

ti Wτ )]

)

dτdsdt

− 1

2

∫ ti+1

ti

∫ ti+1

ti

∫ s

ti

(

E
xi

ti [Htt(τ,∆
xi

ti Wτ )]

+E
xi

ti [Htxx(τ,∆
xi

ti Wτ ) +
1

4
Hxxxx(τ,∆

xi

ti Wτ )]

)

dτdsdt.

(3.7)

According to the Taylor expansion it holds

Htt(τ,∆
xi

ti Wτ ) = Htt(τ, x
i) +Httx(τ, x

i + α1(Wτ −Wti))(Wτ −Wti)

= Htt(τ, x
i−1) +Httx(τ, x

i−1 + α2(Wti −Wti−1
))(Wti −Wti−1

)

+Httx(τ, x
i + α1(Wτ −Wti))(Wτ −Wti),

(3.8)

where α1 and α2 are some positive numbers in [0, 1]. Then from the fact

E
xi−1

ti−1
[∆WiHtt(τ, x

i−1)] = Htt(τ, x
i−1)Exi−1

ti−1
[∆Wi] = 0,

we can get

|Exi−1

ti−1
[∆WiHtt(τ,∆

xi

ti Wτ )]| ≤ C∆t.(3.9)

By using similar analysis and the facts

E
xi−1

ti−1
[∆WiHtxx(τ, x

i−1)] = 0, E
xi−1

ti−1
[∆WiHxxxx(τ, x

i−1)] = 0,

we also can obtain the following estimates:

|Exi−1

ti−1
[∆WiHtxx(τ,∆

xi

ti Wτ )]| ≤ C∆t,

|Exi−1

ti−1
[∆WiHxxxx(τ,∆

xi

ti Wτ )]| ≤ C∆t.
(3.10)

Combination of (3.7), (3.9) and (3.10) gives us the inequality (3.1). The proof is
completed. �

Lemma 3.2. If H ∈ C3,6
b , then when ∆t is sufficiently small it holds that for

0 ≤ i ≤ N − 3,
(3.11)
∣

∣

∣
E
xi

ti

[

E
xi+1

ti+1

[

∫ ti+2

ti+1

{H(t,∆xi+1

ti+1
Wt)−

H(ti+1, x
i+1) +H(ti+2,∆

xi+1

ti+1
Wti+2

)

2

}

dt
]]

− E
xi

ti

[

∫ ti+1

ti

{

H(t,∆xi

ti Wt)−
H(ti, x

i) +H(ti+1,∆
xi

ti Wti+1
)

2

}

dt
]
∣

∣

∣
≤ C(∆t)4,

where C > 0 is a generic constant depending only on upper bounds of derivatives
of the function H.
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Proof. Similar to (3.7), we can obtain the following two inequalities:

E
xi

ti

[

∫ ti+1

ti

(

H(t,∆xi

ti Wt)−
H(ti, x

i)−H(ti+1,∆
xi

ti Wti+1
)

2

)

dt
]

=

∫ ti+1

ti

∫ t

ti

∫ s

ti

(

E
xi

ti [Htt(τ,∆
xi

ti Wτ )]

+E
xi

ti [Htxx(τ,∆
xi

ti Wτ ) +
1

4
Hxxxx(τ,∆

xi

ti Wτ )]

)

dτdsdt

− 1

2

∫ ti+1

ti

∫ ti+1

ti

∫ s

ti

(

E
xi

ti [Htt(τ,∆
xi

ti Wτ )]

+E
xi

ti [Htxx(τ,∆
x
tiWτ ) +

1

4
Hxxxx(τ,∆

xi

ti Wτ )]

)

dτdsdt,

and

E
xi+1

ti+1

[

∫ ti+2

ti+1

(

H(t,∆xi+1

ti+1
Wt)−

H(ti+1,∆
xi+1

ti+1
Wti+1

) +H(ti+2,∆
xi+1

ti+1
Wti+2

)

2

)

dt
]

=

∫ ti+2

ti+1

∫ t

ti+1

∫ s

ti+1

(

E
xi+1

ti+1
[Htt(τ,∆

xi+1

ti+1
Wτ )]

+E
xi+1

ti+1
[Htxx(τ,∆

xi+1

ti+1
Wτ ) +

1

4
Hxxxx(τ,∆

xi+1

ti+1
Wτ )]

)

dτdsdt

− 1

2

∫ ti+2

ti+1

∫ ti+2

ti+1

∫ s

ti+1

(

E
xi+1

ti+1
[H ′′

tt(τ,∆
xi+1

ti+1
Wτ )]

+E
xi+1

ti+1
[Htxx(τ,∆

xi+1

ti+1
Wτ ) +

1

4
Hxxxx(τ,∆

xi+1

ti+1
Wτ )]

)

dτdsdt.

Since xi+1 = xi +Wti+1
−Wti , we have

∆xi+1

ti+1
Wτ = xi+1 +Wτ −Wti+1

= xi +Wti+1
−Wti +Wτ −Wti+1

= xi +Wτ −Wti

= ∆xi

ti Wτ .

Then for ti ≤ τ ≤ ti+2, by the Taylor expansion we have

Htt(τ,∆
xi

ti Wτ )

= Htt(ti, x
i) +Httt(ti + α1(τ − ti), x

i + α1(Wτ −Wti))(τ − ti)

+Httx(ti + α1(τ − ti), x
i)(Wτ −Wti)

+Httxx(ti + α1(τ − ti), x
i + α2(Wτ −Wti))α1(Wτ −Wti)

2,

(3.12)

Htxx(τ,∆
xi

ti Wτ )

= Htxx(ti, x
i) +Httxx(ti + α3(τ − ti), x

i + α3(Wτ −Wti))(τ − ti)

+Htxxx(ti + α3(τ − ti), x
i)(Wτ −Wti)

+Htxxx(ti + α3(τ − ti), x
i + α4(Wτ −Wti))α3(Wτ −Wti)

2,

(3.13)
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Hxxxx(τ,∆
xi

ti Wτ )

= Hxxxx(ti, x
i) +Htxxxx(ti + α5(τ − ti), x

i + α5(Wτ −Wti))(τ − ti)

+Hxxxxx(ti + α5(τ − ti), x
i)(Wτ −Wti)

+Hxxxxxx(ti + α5(τ − ti), x
i + α6(Wτ −Wti))α5(Wτ −Wti)

2,

(3.14)

where αi(i = 1, 2, · · · , 6) are some positive numbers in [0, 1].
Notice that Httx(ti+α1(τ− ti), xi), Htxxx(ti+α3(τ − ti), xi), Hxxxxx(ti+α5(τ−

ti), x
i) are all Fti -measurable, thus we have

E
xi

ti [Httx(ti + α1(τ − ti), x
i)(Wτ −Wti)] = 0,

E
xi

ti [Htxxx(ti + α3(τ − ti), x
i)(Wτ −Wti)] = 0,

E
xi

ti [Hxxxxx(ti + α5(τ − ti), x
i)(Wτ −Wti)] = 0.

Now under the conditions of the lemma and by the equations (3.12), (3.13) and
(3.14), we deduce

∣

∣

∣
E
xi

ti

[

E
xi+1

ti+1

[

∫ ti+2

ti+1

{

H(t,∆xi

ti Wt)−
H(ti+1,∆

xi

ti Wti+1
) +H(ti+2,∆

xi

ti Wti+2
)

2

}

dt
]]

− E
xi

ti

[

∫ ti+1

ti

{

H(t,∆xi

ti Wt)−
H(ti, x

i) +H(ti+1,∆
xi

ti Wti+1
)

2

}

dt
]
∣

∣

∣

≤
∣

∣

∣

∫ ti+1

ti

∫ t

ti

∫ s

ti

(

Htt(ti, x
i) +Htxx(ti, x

i) +
1

4
Hxxxx(ti, x

i)

)

dτdsdt

− 1

2

∫ ti+1

ti

∫ ti+1

ti

∫ s

ti

(

Htt(ti, x
i) +Htxx(ti, x

i) +
1

4
Hxxxx(ti, x

i)

)

dτdsdt

−
∫ ti+2

ti+1

∫ t

ti+1

∫ s

ti+1

(

Htt(ti, x
i) +Htxx(ti, x

i) +
1

4
Hxxxx(ti, x

i)

)

dτdsdt

+
1

2

∫ ti+2

ti+1

∫ ti+2

ti+1

∫ s

ti+1

(

Htt(ti, x
i) +Htxx(ti, x

i) +
1

4
Hxxxx(ti, x

i)

)

dτdsdt
∣

∣

∣

+ C(∆t)4

= (
1

6
− 1

4
− 1

6
+

1

4
)(∆t)3

(

Htt(ti, x
i) +Htxx(ti, x

i) +
1

4
Hxxxx(ti, x

i)

)

+ C(∆t)4

≤ C(∆t)4,

where C is a constant which depends only on upper bound of the derivatives of the
function H . �

Upper bounds of Rn
y and Rn

z defined in (2.4) and (2.6) are presented in the
following.

Lemma 3.3. Let (yt, zt) be the solution of (1.2), and let Rn
y and Rn

z be the trunca-
tion errors defined in (2.4) and (2.6) for the θ-scheme. Suppose ∆t is sufficiently
small.

(1) If the terminal function ϕ ∈ C2
b and the generator function f ∈ C1,2,2

b , then
it holds that for 0 ≤ n < N − 1

(3.15) |Rn
y | ≤ C(∆tn)

2, |Rn
z | ≤ C(∆tn)

2.
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(2) In particular, for the Crank-Nicolson scheme (θi = 1/2, i = 1, 2, 3), if

ϕ ∈ C3
b and f ∈ C2,4,4

b , then it holds that for 0 ≤ n < N − 1

(3.16) |Rn
y | ≤ C(∆tn)

3, |Rn
z | ≤ C(∆tn)

3.

Note here C > 0 is a positive constant depending only on T , the upper bounds of
the derivatives of the functions ϕ and f .

Under the conditions of f and ϕ in Lemma 3.3, using the Taylor expansion
and the properties of the Brownian motion Wt, it is easy to prove Lemma 3.3, see
[22, 26] for details.

Lemma 3.4. Let (yt, zt) be the solution of (1.2), and Ri
y and Ri

z be the truncation
errors defined in (2.4) and (2.6) for the Crank-Nicolson scheme (θi = 1/2, i =
1, 2, 3), i.e.,

(3.17) Ri
z =

∫ ti+1

ti

{Exi

ti [zs]−
1

2
E
xi

ti [zti+1
]− 1

2
zti} ds,

(3.18)

Ri
y =

∫ ti+1

ti

{Exi

ti [f(s, ys, zs)]−
1

2
E
xi

ti [f(ti+1, yti+1
, zti+1

)]− 1

2
f(ti, yti , zti)} ds,

for 0 ≤ i ≤ N − 1. If ϕ ∈ C3
b and f(t, y, z) ∈ C3,6,6

b , then when ∆t is sufficiently
small it holds that for 0 ≤ i ≤ N − 3,

(3.19) |Exi

ti [R
i+1
y ∆Wi+1]| ≤ C(∆t)4,

and

(3.20) |Ri
z − E

xi

ti [R
i+1
z ]| ≤ C(∆t)4,

where C is a positive constant depending only on T , the upper bounds of derivatives
of functions ϕ and f .

Proof. Under the conditions of the lemma, the solution (yt, zt) of the BSDE (1.2)
can be represented as

yt = u(t,Wt), zt = ∇xu(t,Wt), ∀ t ∈ [0, T ),(3.21)

where u(t, x) satisfies the parabolic PDE (1.3).
Let H(t,Wt) = zt, then H(t,Wt) = ∇xu(t,Wt) according to (1.3). By the theory

of partial differential equations [6], it is easy to check that the functions H satisfy
the conditions in Lemma 3.1, thus we can easily get the estimates (3.19) using
Lemma 3.1.

Similarly, by letting H(t,Wt) = f(t, yt, zt) = f(t, u(t,Wt),∇xu(t,Wt)) and using
Lemma 3.2, we can get (3.20). The proof is completed. �

3.2. Error estimates. Let (yt, zt) be the solution of the BSDE (1.2) with the
terminal condition yT = ϕ(WT ), and (yn, zn) be its approximate solution produced
by using the Crank-Nicolson scheme. For 0 ≤ n ≤ N , let

eny = ytn − yn, enz = ztn − zn, enf = f(tn, ytn , ztn)− f(tn, y
n, zn).

By the equations (2.4), (2.6), (2.9) and (2.10), we get that for n = N − 1,

(3.22) eN−1
y = E

xN−1

tN−1
[eNy ] + ∆tN−1e

N−1
f +RN−1

y ,

and

(3.23) ∆tN−1e
N−1
z = E

xN−1

tN−1
[eNy ∆WN ] +RN−1

z .
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Then using (2.4), (2.6), (2.11) and (2.12), we have that for 0 ≤ n ≤ N − 2,

(3.24) eny = E
xn

tn [en+1
y ] +

1

2
∆tnE

xn

tn [en+1
f ] +

1

2
∆tne

n
f +Rn

y ,

and
(3.25)
1

2
∆tne

n
z = −1

2
∆tnE

xn

tn [e
n+1
z ] + E

xn

tn [en+1
y ∆Wn+1] +

1

2
∆tnE

xn

tn [en+1
f ∆Wn+1] +Rn

z .

We also note that ∆tN−1 = (∆t)2 and ∆tn = ∆t for 0 ≤ n ≤ N − 2 according
to Assumption 1.

Lemma 3.5. Suppose that ϕ ∈ C3
b , f ∈ C3,6,6

b , and the initial error satisfies

(3.26) E
xN−1

tN−1
[|ytN − yN |2] ≤ C(∆tN−1)

3

for some constant C > 0. Then when ∆t is sufficiently small, it holds that for
N − 3 ≤ n ≤ N − 1,

(3.27) |eny | ≤ C(∆t)3, |enz | ≤ C(∆t)2,

where C > 0 is a generic constant depending only on T , upper bounds of derivatives
of ϕ and f .

Proof. According to Lemma 3.3, we know that

(3.28) |RN−1
y | ≤ C(∆tN−1)

2, |RN−1
z | ≤ C(∆tN−1)

2.

Let L be the Lipschitz constant of f with respect to y and z. Recall that ∆tN−1 =
(∆t)2. By the inequality (3.28) and Hölder’s inequality, we deduce

(3.29)

|eN−1
z | ≤ 1

∆tN−1

(

|ExN−1

tN−1
[eNy ∆WN ]|+ |RN−1

z |
)

≤ 1

∆tN−1
E
xN−1

tN−1
[|eNy |2] 12ExN−1

tN−1
[|∆WN |2] 12 +

|RN−1
z |

∆tN−1

≤ 1

∆tN−1
C1/2(∆tN−1)

3/2(∆tN−1)
1/2 + C∆tN−1

≤ C∆tN−1 = C(∆t)2,

and

|eN−1
y | ≤ E

xN−1

tN−1
[|eNy |] + L∆tN−1(|eN−1

y |+ |eN−1
z |) + |RN−1

y |

≤ E
xN−1

tN−1
[|eNy |2] 12 + L∆tN−1|eN−1

y |+ LC(∆tN−1)
2 + C(∆tN−1)

2

≤ C1/2(∆tN−1)
3/2 + L∆tN−1|eN−1

y |+ (L+ 1)C(∆tN−1)
2

≤ L∆tN−1|eN−1
y |+ C(∆tN−1)

3/2.

Then we get

(3.30) |eN−1
y | ≤ C(∆tN−1)

3/2

1− L∆tN−1
≤ C(∆tN−1)

3
2 = C(∆t)3.

Recall that ∆tn = ∆t for 0 ≤ n ≤ N − 2. By Lemma 3.3, we have that for
0 ≤ n ≤ N − 2,

(3.31) |Rn
y | ≤ C(∆t)3, |Rn

z | ≤ C(∆t)3.
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Now we estimate eny and enz for n = N − 2, N − 3. From the equation (3.25), the
inequalities (3.29), (3.30) and (3.31), we deduce by the Hölder inequality that

(3.32)

|eN−2
z | ≤ E

xN−2

tN−2
[|eN−1

z |] + 2

∆t
E
xN−2

tN−2
[|eN−1

y |2] 12ExN−2

tN−2
[|∆WN−1|2]

1
2

+ E
xN−2

tN−2
[|eN−1

f |2] 12ExN−2

tN−2
[|∆WN−1|2]

1
2 +

2

∆t
|RN−2

z |

≤ C(∆t)2 + 2C(∆t)5/2

+ 2LExN−2

tN−2
[|eN−1

y |2 + |eN−1
z |2] 12ExN−2

tN−2
[|∆WN−1|2]

1
2 + 2C(∆t)2

≤ C(∆t)2 + 2LC(∆t)5/2

≤ C(∆t)2,

and

|eN−2
y | ≤ E

xN−2

tN−2
[|eN−1

y |] + 1

2
∆tExN−2

tN−2
[|eN−1

f |] + 1

2
∆t|eN−2

f |+ |RN−2
y |

≤ C(∆t)3 +
L

2
∆tExN−2

tN−2
[|eN−1

y |+ |eN−1
z |]

+
L

2
∆tExN−2

tN−2
[|eN−2

y |+ |eN−2
z |] + C(∆t)3

≤ LC(∆t)3 +
L

2
∆t|eN−2

y |+ C(∆t)3

≤ L

2
∆t|eN−2

y |+ C(∆t)3,

which implies

(3.33) |eN−2
y | ≤ C(∆t)3

1− L∆t/2
≤ C(∆t)3.

Similarly we can obtain the estimates

(3.34) |eN−3
z | ≤ C(∆t)2, |eN−3

y | ≤ C(∆t)3.

Thus the proof is completed. �

Lemma 3.6. Suppose that ϕ ∈ C3
b , f ∈ C3,6,6

b . Then when ∆t is sufficiently small,
it holds that for 0 ≤ n ≤ N − 3, if |en+1

z |2 ≤ ∆t and |en+1
y |2 ≤ ∆t, then

(3.35)
|eny |2 + |enz |2

≤ (1 + C∆t)
(1

2
|Exn

tn [en+1
y ]|2 + 1

2
E
xn

tn [|en+1
y |2] + |Exn

tn [en+2
z ]|2 + 1

2
E
xn

tn [|en+1
z |2]

)

+ C∆t(|eny |2 + |enz |2)

+ C
|Rn

y |2
∆t

+ C
|Exn

tn [R
n+1
y ∆Wn+1]|2 + |Rn

z − E
xn

tn [R
n+1
z ]|2

(∆t)3
,

where C > 0 is a generic constant depending only on T , upper bounds of derivatives
of ϕ and f .

Proof. For stochastic processes X and Y , let us define

V arn(X) = E
xn

tn [|X |2]− |Exn

tn [X ]|2, Covn(X,Y ) = E
xn

tn [XY ]− E
xn

tn [X ]Exn

tn [Y ],

for 0 ≤ n ≤ N − 1.
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By the equations (3.24) and (3.25), for 0 ≤ n ≤ N − 3, it holds that

(3.36)

enz = E
xn

tn [en+2
z ]− 2

∆t
E
xn

tn [en+2
y ∆Wn+2]

− E
xn

tn [en+2
f ∆Wn+2] +

2

∆t
E
xn

tn [en+2
y ∆Wn+1]

+ E
xn

tn [en+2
f ∆Wn+1] + E

xn

tn [en+1
f ∆Wn+1] + E

xn

tn [en+1
f ∆Wn+1]

+
2

∆t
E
xn

tn [Rn+1
y ∆Wn+1] + 2

Rn
z − E

xn

tn [Rn+1
z ]

∆t

= E
xn

tn [en+2
z ]− 2

∆t
E
xn

tn [en+2
y ∆Wn+2] +

2

∆t
E
xn

tn [en+2
y ∆Wn+1]

+ E
xn

tn [en+2
f ∆Wn+1]− E

xn

tn [en+2
f ∆Wn+2]

+ 2Exn

tn [e
n+1
f ∆Wn+1] +

2

∆t
E
xn

tn [R
n+1
y ∆Wn+1] + 2

Rn
z − E

xn

tn [Rn+1
z ]

∆t
.

From the definition of the conditional mathematical expectation E
xn

tn [·], we have
(3.37)

E
xn

tn [ytn+2
∆Wn+1]

= E
xn

tn [u(tn+2, x
n +Wtn+2

−Wtn)∆Wn+1]

= E
xn

tn [E
xn+Wtn+1

−Wtn

tn+1
[u(tn+2, x

n +Wtn+2
−Wtn+1

+Wtn+1
−Wtn)]∆Wn+1]

= ∆tExn

tn [E
xn+Wtn+1

−Wtn

tn+1
[∇xu(tn+2, x

n +Wtn+2
−Wtn+1

+Wtn+1
−Wtn)]]

= ∆tExn

tn [∇ytn+2],

and
(3.38)

E
xn

tn [ytn+2
(Wtn+2

−Wtn)] =
1√
4π∆t

∫ ∞

−∞

u(tn+2, x
n + v)v exp(− v2

4∆t
) dv

=
2∆t√
4π∆t

∫ ∞

−∞

∇xu(tn+2, x
n + v) exp(− v2

4∆t
) dv

= 2∆tExn

tn [∇ytn+2
].

Thus we get

(3.39)

E
xn

tn [ytn+2
∆Wn+2] = E

xn

tn [ytn+2
(Wtn+2

−Wtn +Wtn −Wtn+1
)]

= E
xn

tn [ytn+2
(Wtn+2

−Wtn)]− E
xn

tn [ytn+2
(Wtn+1

−Wtn)]

= 2∆tExn

tn [∇ytn+2
]−∆tExn

tn [∇ytn+2
]

= ∆tExn

tn [∇ytn+2
].

Using (3.37) and (3.39), we obtain the identity

(3.40) E
xn

tn [ytn+2
∆Wn+1] = E

xn

tn [ytn+2
∆Wn+2].

If the Brownian motion starts from the time-space point (tn, x
n), then yn+k is a

function of xn +Wtn+k
−Wtn , that is, yn+k is a function of xn +Wtn+k

−Wtn .
Then similar to the way to obtain (3.40), it holds

(3.41) E
xn

tn [yn+2∆Wn+1] = E
xn

tn [yn+2∆Wn+2].

for the approximate solution of the C-N scheme. Thus (3.40) and (3.41) give us the
following identity

(3.42) E
xn

tn [en+2
y ∆Wn+1] = E

xn

tn [en+2
y ∆Wn+2].
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Similarly we can get

(3.43) E
xn

tn [en+2
f ∆Wn+1] = E

xn

tn [en+2
f ∆Wn+2].

Combining the equations (3.36), (3.42) and (3.43) we obtain
(3.44)

enz = E
xn

tn [e
n+2
z ] + 2Exn

tn [e
n+1
f ∆Wn+1] +

2

∆t
E
xn

tn [Rn+1
y ∆Wn+1] + 2

Rn
z − E

xn

tn [Rn+1
z ]

∆t
.

Using the Taylor expansion it is easy to obtain that for i = N − 1, N − 2, · · · , 0,
(3.45) eif = f(ti, yti , zti)− f(ti, y

i, zi) = ξieiy + γieiz

where

(3.46) ξi = fy(ti, yti − βieiy, zti − βieiz),

(3.47) γi = fz(ti, yti − βieiy, zti − βieiz)

with some βi ∈ [0, 1]. Then by (3.44) and (3.45) we deduce

(3.48)

enz = E
xn

tn [e
n+2
z ] + 2Exn

tn [(ξ
n+1en+1

y + γn+1en+1
z )∆Wn+1]

+
2Exn

tn [Rn+1
y ∆Wn+1]

∆t
+ 2

Rn
z − E

xn

tn [Rn+1
z ]

∆t
.

From the facts that

E
xn

tn [fy(tn, ytn , ztn)∆Wn+1] = fy(tn, ytn , ztn)E
xn

tn [∆Wn+1] = 0,

E
xn

tn [fz(tn, ytn , ztn)∆Wn+1] = fz(tn, ytn , ztn)E
xn

tn [∆Wn+1] = 0,

and the definition of Covn(·), we have

(3.49)

E
xn

tn [ξn+1en+1
y ∆Wn+1]

= E
xn

tn [en+1
y ]Exn

tn [ξn+1∆Wn+1] + Covn(en+1
y , ξn+1∆Wn+1)

= E
xn

tn [en+1
y ]Exn

tn [(ξn+1 − fy(tn, ytn , ztn))∆Wn+1]

+ Covn(en+1
y , ξn+1∆Wn+1),

and

(3.50)

E
xn

tn [γn+1en+1
z ∆Wn+1]

= E
xn

tn [en+1
z ]Exn

tn [(γn+1 − fz(tn, ytn , ztn))∆Wn+1]

+ Covn(en+1
z , γn+1∆Wn+1).

By (3.46), (3.47) and using the Taylor expansion again, we obtain

(3.51)

ξn+1 − fy(tn, ytn , ztn)

= fy(tn+1, ytn+1
, ztn+1

)− fy(tn, ytn , ztn)

− fyy(tn+1, ytn+1
− αn+1

1 en+1
y , ztn+1

− αn+1
1 en+1

z )βn+1
1 en+1

y

− fyz(tn+1, ytn+1
− αn+1

2 en+1
y , ztn+1

− αn+1
2 en+1

z )βn+1
1 en+1

z ,

and

(3.52)

γn+1 − fz(tn, ytn , ztn)

= fz(tn+1, ytn+1
, ztn+1

)− fz(tn, ytn , ztn)

− fzy(tn+1, ytn+1
− αn+1

3 en+1
y , ztn+1

− αn+1
3 en+1

z )βn+1
2 en+1

y

− fzz(tn+1, ytn+1
− αn+1

4 en+1
y , ztn+1

− αn+1
4 en+1

z )βn+1
2 en+1

z ,
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where αn+1
i ∈ [0, 1] (i = 1, 2, 3, 4) and βn+1

i ∈ [0, 1] (i = 1, 2). Using the equations
(3.51) and (3.52), the Hölder inequality, and the assumption that |en+1

z |2 ≤ ∆t and
|en+1

y |2 ≤ ∆t, we obtain
(3.53)

|Exn

tn [(ξn+1 − fy(tn, ytn , ztn))∆Wn+1]|
= |Exn

tn [(fy(tn+1, yn+1, ztn+1
)− fy(tn, ytn , ztn))∆Wn+1]

− E
xn

tn [fyy(tn+1, ytn+1
− αn+1

1 en+1
y , ztn+1

− αn+1
1 en+1

z )βn+1
1 en+1

y ∆Wn+1]

− E
xn

tn [fyz(tn+1, ytn+1
− αn+1

2 en+1
y , ztn+1

− αn+1
2 en+1

z )βn+1
1 en+1

z ∆Wn+1]|
≤ E

xn

tn [(fy(tn+1, ytn+1
, ztn+1

)− fy(tn, ytn , ztn))
2]

1
2E

xn

tn [(∆Wn+1)
2]

1
2

+ CExn

tn [|en+1
y |2] 12Exn

tn [|∆Wn+1|2]
1
2 + CExn

tn [|en+1
z |2] 12Exn

tn [|∆Wn+1|2]
1
2

≤ C∆t+ C
√
∆tExn

tn [|en+1
y |2] 12 + C

√
∆tExn

tn [|en+1
z |2] 12

≤ C∆t.

Similarly we can get

(3.54) |Exn

tn [(γ
n+1 − fz(tn, ytn , ztn))∆Wn+1]| ≤ C∆t.

Using the Cauchy-Schwarz inequality it gives us that

(3.55)

|Covn(en+1
y , ξn+1∆Wn+1)|

≤ {V arn(en+1
y )V arn(ξn+1∆Wn+1)}

1
2

≤ E
xn

tn [(ξn+1∆Wn+1)
2]

1
2 {V arn(en+1

y )} 1
2 ≤ C

√
∆t{V arn(en+1

y )} 1
2 ,

and

(3.56) |Covn(en+1
z , γn+1∆Wn+1)| ≤ C

√
∆t{V arn(en+1

z )} 1
2 .

By the inequalities (3.49), (3.50), (3.53), (3.54), (3.55) and (3.56) we easily obtain

(3.57)
|Exn

tn [ξn+1en+1
y ∆Wn+1]| ≤ C∆tExn

tn [|en+1
y |] + C

√
∆t{V arn(en+1

y )} 1
2 ,

|Exn

tn [γn+1en+1
z ∆Wn+1]| ≤ C∆tExn

tn [|en+1
z |] + C

√
∆t{V arn(en+1

z )} 1
2 .

It follows from (3.48) and (3.57) that

(3.58)

|enz | ≤ |Exn

tn [e
n+2
z ]|+ C∆tExn

tn [|en+1
y |+ |en+1

z |]
+ C

√
∆t{(V arn(en+1

y ))
1
2 + (V arn(en+1

z ))
1
2 }

+
2|Exn

tn [Rn+1
y ∆Wn+1]|
∆t

+
2|Rn

z − E
xn

tn [Rn+1
z ]|

∆t
.

Then by the inequality 2ab ≤ η∆ta2 +
1

η∆t
b2 (for any η > 0) and taking square on

both sides of the inequality (3.58), we obtain

(3.59)

|enz |2 ≤(1 + η∆t)|Exn

tn [en+2
z ]|2 + C̃(1 +

1

η∆t
)
(

(∆t)2Exn

tn [|e
n+1
y |2 + |en+1

z |2]

+ ∆tV arn(en+1
y ) + ∆tV arn(en+1

z )

+
|Exn

tn [Rn+1
y ∆Wn+1]|2 + |Rn

z − E
xn

tn [Rn+1
z ]|2

(∆t)2

)

,
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for some generic constant C̃ > 0. By choosing η = 2C̃ in the inequality (3.59) it
yields that
(3.60)

|enz |2 ≤ (1 + C∆t)|Exn

tn [en+2
z ]|2

+
1

2
(1 + C∆t)

(

∆tExn

tn [|en+1
y |2 + |en+1

z |2] + V arn(en+1
y ) + V arn(en+1

z )
)

+
1

2
(1 + C∆t)

|Exn

tn [Rn+1
y ∆Wn+1]|2 + |Rn

z − E
xn

tn [Rn+1
z ]|2

(∆t)3
.

By (3.24) we know

(3.61) |eny | ≤|Exn

tn [en+1
y ]|+ L

2
∆t
(

|eny |+ |enz |+ E
xn

tn [|en+1
y |+ |en+1

z |]
)

+ |Rn
y |.

Taking square of the inequality (3.61) yields

(3.62)

|eny |2 ≤ (1 + C∆t)|Exn

tn [en+1
y ]|2 + C∆tExn

tn [|en+1
y |2 + |en+1

z |2]

+ C∆t(|eny |2 + |enz |2) +
C|Rn

y |2
∆t

.

From (3.60) and (3.62), we easily deduce
(3.63)
|eny |2 + |enz |2

≤ (1 + C∆t)
(

|Exn

tn [en+1
y ]|2 + |Exn

tn [en+2
z ]|2 + 1

2
V arn(en+1

y ) +
1

2
V arn(en+1

z )
)

+ C∆tExn

tn [|en+1
y |2 + |en+1

z |2] + C∆t(|eny |2 + |enz |2)

+ C
|Rn

y |2
∆t

+ C
|Exn

tn [R
n+1
y ∆Wn+1]|2 + |Rn

z − E
xn

tn [R
n+1
z ]|2

(∆t)3
.

Notice that

(3.64) |Exn

tn [en+1
y ]|2 + 1

2
V arn(en+1

y ) =
1

2
|Exn

tn [en+1
y ]|2 + 1

2
E
xn

tn [|en+1
y |2],

(3.65) V arn(en+1
z ) ≤ E

xn

tn [|en+1
z |2],

then we immediate obtain the result (3.35) by putting (3.64) and (3.65) into (3.63).
The proof is completed. �

The following lemma gives us a very useful recursive relation on the growing
speed of the errors.

Lemma 3.7. Suppose that ϕ ∈ C3
b , f ∈ C3,6,6

b . Then when ∆t is sufficiently small,
it holds that for 0 ≤ n ≤ N−5, if |ekz |2 ≤ ∆t and |eky|2 ≤ ∆t for k = n+1, n+2, n+3,
then

(3.66)

|Exn

tn [en+2
z ]|2 + 1

2
E
xn

tn [|en+1
z |2] + 1

2
|Exn

tn [en+1
y ]|2 + 1

2
E
xn

tn [|e
n+1
y |2]

≤ (1 + C∆t)
(

E
xn

tn [|Exn+2

tn+2
[en+4

z ]|2] + 1

2
E
xn

tn [|en+3
z |2]

+
1

2
E
xn

tn [|Exn+2

tn+2
[en+3

y ]|2] + 1

2
E
xn

tn [Exn+2

tn+2
[|en+3

y |2]]
)

+ C(∆t)5,

where C > 0 is a generic constant depending only on T , upper bounds of derivatives
of ϕ and f .
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Proof. Replacing n by n+ 1 in the inequality (3.60) gives us
(3.67)

E
xn

tn [|en+1
z |2] ≤ (1 + C∆t)Exn

tn [|Exn+1

tn+1
[en+3

z ]|2]

+
1 + C∆t

2
∆tExn

tn [|en+2
y |2 + |en+2

z |2]

+
1 + C∆t

2
E
xn

tn [V arn+1(en+2
y ) + V arn+1(en+2

z )]

+ C
E
xn

tn [|Exn+1

tn+1
[Rn+2

y ∆Wn+2]|2 + |Rn+1
z − E

xn+1

tn+1
[Rn+2

z ]|2]
(∆t)3

,

then we have

(3.68)

|Exn

tn [en+2
z ]|2 + 1

2
E
xn

tn [|en+1
z |2] + 1

2
|Exn

tn [en+1
y ]|2 + 1

2
E
xn

tn [|en+1
y |2]

≤ (1 + C∆t)

(

|Exn

tn [en+2
z ]|2 + 1

2
E
xn

tn [|Exn+1

tn+1
[en+3

z ]|2] + 1

2
|Exn

tn [en+1
y ]|2

+
1

2
E
xn

tn [|en+1
y |2] + 1

4
E
xn

tn [V arn+1(en+2
y ) + V arn+1(en+2

z )]

)

+
1 + C∆t

4
∆tExn

tn [|en+2
y |2 + |en+2

z |2]

+ C
E
xn

tn [|Exn+1

tn+1
[Rn+2

y ∆Wn+2]|2 + |Rn+1
z − E

xn+1

tn+1
[Rn+2

z ]|2]
(∆t)3

.

By (3.24) and Jensen’s inequality, we deduce
(3.69)

E
xn

tn [|en+1
y |2] ≤ E

xn

tn [|Exn+1

tn+1
[en+2

y ]|2] + C∆tExn

tn [Exn+1

tn+1
[|en+2

y |2 + |en+2
z |2]]

+ C∆tExn

tn [Exn+1

tn+1
[|en+1

y |2 + |en+1
z |2]] + C

E
xn

tn [Exn+1

tn+1
[|Rn+1

y |2]]
∆t

≤ E
xn

tn [|en+2
y |2] + C∆tExn

tn [|en+2
y |2 + |en+2

z |2]

+ C∆tExn

tn [|en+1
y |2 + |en+1

z |2] + C
E
xn

tn [|Rn+1
y |2]

∆t
,

which implies

(3.70)

E
xn

tn [|en+1
y |2] ≤ (1 + C∆t)Exn

tn [|en+2
y |2]

+ C∆tExn

tn [|en+1
z |2 + |en+2

z |2] +
CExn

tn [|Rn+1
y |2]

∆t
.

By (3.24) we easily get

(3.71)

|Exn

tn [en+1
y ]|2 ≤ (1 + C∆t)|Exn

tn [en+2
y ]|2 + C∆tExn

tn [|en+2
y |2 + |en+2

z |2]

+ C∆tExn

tn [|en+1
y |2 + |en+1

z |2] + C
|Exn

tn [Rn+1
y ]|2

∆t
.
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Combining the inequalities (3.70) and (3.71), we then obtain
(3.72)

1

2
|Exn

tn [en+1
y ]|2 + 1

2
E
xn

tn [|e
n+1
y |2] + 1

4
E
xn

tn [V arn+1(en+2
y )]

≤ (1 + C∆t)

(

1

2
|Exn

tn [|Exn+1

tn+1
[en+2

y ]|2] + 1

2
E
xn

tn [|en+2
y |2]

)

+ C∆tExn

tn [|en+1
z |2 + |en+2

z |2] + C
E
xn

tn [|Rn+1
y |2]

∆t

+
1

4
E
xn

tn [Exn+1

tn+1
[|en+2

y |2]− |Exn+1

tn+1
[en+2

y ]|2]

≤ (1 + C∆t)Exn

tn [|en+2
y |2] + C∆tExn

tn [|en+1
z |2 + |en+2

z |2] + C
E
xn

tn [|Rn+1
y |2]

∆t
.

Notice that

(3.73)

|Exn

tn [en+2
z ]|2 + 1

4
E
xn

tn [V arn+1(en+2
z )]

= |Exn

tn [en+2
z ]|2 + 1

4
E
xn

tn [E
xn+1

tn+1
[|en+2

z |2]− |Exn+1

tn+1
[en+2

z ]|2]

≤ E
xn

tn [|en+2
z |2].

Using (3.68), (3.72) and (3.73) we then deduce

(3.74)

|Exn

tn [en+2
z ]|2 + 1

2
E
xn

tn [|en+1
z |2] + 1

2
|Exn

tn [en+1
y ]|2 + 1

2
E
xn

tn [|e
n+1
y |2]

≤ (1 + C∆t)

(

E
xn

tn [|en+2
y |2 + |en+2

z |2] + 1

2
E
xn

tn [|Exn+1

tn+1
[en+3

z ]|2]
)

+ C
E
xn

tn [|Exn+1

tn+1
[Rn+2

y ∆Wn+2]|2 + |Rn+1
z − E

xn+1

tn+1
[Rn+2

z ]|2]
(∆t)3

+ C
E
xn

tn [|Rn+1
y |2]

∆t
.

Replacing n by n+ 2 in (3.59) and (3.62) gives us

(3.75)

E
xn

tn [|en+2
y |2] ≤ (1 + C∆t)Exn

tn [|Exn+2

tn+2
[en+3

y ]|2] + C∆tExn

tn [|en+3
y |2 + |en+3

z |2]

+ C∆tExn

tn [|en+2
z |2] +

CExn

tn [|Rn+2
y |2]

∆t
,

and
(3.76)

E
xn

tn [|en+2
z |2] ≤ (1 + C∆t)Exn

tn [|Exn+2

tn+2
[en+4

z ]|2] + 1 + C∆t

2
∆tExn

tn [|en+3
y |2 + |en+3

z |2]

+
1 + C∆t

2
E
xn

tn [V arn+2(en+3
y ) + V arn+2(en+3

z )]

+ C
E
xn

tn [|Exn+2

tn+2
[Rn+3

y ∆Wn+3]|2 + |Rn+2
z − E

xn+2

tn+2
[Rn+3

z ]|2]
(∆t)3

.

Lemma 3.4 tells us that

(3.77) |Exi

ti [R
i+1
y ∆Wi+1]| ≤ C(∆t)4, |Ri

z − E
xi

ti [R
i+1
z ]| ≤ C(∆t)4

for 0 ≤ i ≤ N − 1. Also notice that

1

2
E
xn

tn [|Exn+1

tn+1
[en+3

z ]|2] + 1

2
E
xn

tn [V arn+2(en+3
z )] ≤ 1

2
E
xn

tn [|en+3
z |2]
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and

E
xn

tn [|Exn+2

tn+2
[en+3

y ]|2] + 1

2
E
xn

tn [V arn+2(en+3
y )]

=
1

2
E
xn

tn [|Exn+2

tn+2
[en+3

y ]|2] + 1

2
E
xn

tn [Exn+2

tn+2
[|en+3

y |2]].

Then by using (3.31), (3.74), (3.75), (3.76), Lemma 3.4 and above identities, we
have
(3.78)

|Exn

tn [en+2
z ]|2 + 1

2
E
xn

tn [|en+1
z |2] + 1

2
|Exn

tn [en+1
y ]|2 + 1

2
E
xn

tn [|e
n+1
y |2]

≤ (1 + C∆t)
(

E
xn

tn [|Exn+2

tn+2
[en+3

y ]|2] + E
xn

tn [|Exn+2

tn+2
[en+4

z ]|2]

+
1

2
E
xn

tn [V arn+2(en+3
y ) + V arn+2(en+3

z )] +
1

2
E
xn

tn [|Exn+1

tn+1
[en+3

z ]|2]
)

+ C∆tExn

tn [|en+3
y |2 + |en+3

z |2]

+ C
E
xn

tn [|Exn+1

tn+1
[Rn+2

y ∆Wn+2]|2 + |Rn+1
z − E

xn+1

tn+1
[Rn+2

z ]|2]
(∆t)3

+ C
E
xn

tn [|Rn+1
y |2 + |Rn+2

y |2]
∆t

+ C
E
xn

tn [|Exn+2

tn+2
[Rn+3

y ∆Wn+3]|2 + |Rn+2
z − E

xn+2

tn+2
[Rn+3

z ]|2]
(∆t)3

≤ (1 + C∆t)
(

E
xn

tn [|Exn+2

tn+2
[en+4

z ]|2] + 1

2
E
xn

tn [|en+3
z |2]

+
1

2
E
xn

tn [|Exn+2

tn+2
[en+3

y ]|2] + 1

2
E
xn

tn [Exn+2

tn+2
[|en+3

y |2]]
)

+ C(∆t)5.

The proof is then completed. �

Now let us present the main result on convergence of the Crank-Nicolson scheme
for solving general BSDEs.

Theorem 3.8. Let (yt, zt) be the solution of the BSDE (1.2) with the terminal
condition yT = ϕ(WT ), and (yn, zn) be its approximate solution produced by using

the Crank-Nicolson scheme. Suppose that ϕ ∈ C3
b , f ∈ C3,6,6

b , and the initial error
satisfies

E
xN−1

tN−1
[|ytN − yN |2] ≤ C(∆tN−1)

3

for some constant C > 0. Then we have the following L2 error estimate: when ∆t
is sufficiently small, it holds that for 0 ≤ n ≤ N − 1,

(3.79) max
0≤l≤n≤N−1

E
xl

tl [|ytn − yn|2 + |ztn − zn|2] ≤ CT,φ,f (∆t)
4,

where CT,φ,f > 0 is a generic constant depending only on T , upper bounds of
derivatives of ϕ and f .

Proof. Let us first choose constants C∗ > 0 and 1 > δ∗ > 0 such that Lemmas
3.4-3.7 hold for this C∗ when the time step size ∆t ≤ δ∗. Set Cs = C∗e

C∗T (3 + T ).
Then we define some constants in the below:

CT,φ,f = 3Cs + 2C2
∗ + 4C3

∗ ,

δ = min{δ∗,
1

2C∗

,
1

CT,φ,f
}.
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In the following, we will show by induction that that for any k with 0 ≤ k ≤ N−1,
it holds that

(3.80) |eky|2 + |ekz |2 ≤ CT,φ,f (∆t)
4,

when the time step size ∆t < δ. We would like to point out that (3.80) also implies

(3.81) |eky |2 ≤ ∆t, |ekz |2 ≤ ∆t,

since CT,φ,f (∆t)
4 ≤ CT,φ,f (1/CT,φ,f )(∆t)

3 ≤ (∆t)3 ≤ ∆t.
First by Lemma 3.5, we know (3.80) clearly holds for k = N − 1, N − 2, N − 3

since CT,φ,f ≥ C∗ and δ ≤ δ∗.
Now we assume that (3.80) holds for all n + 1 ≤ k ≤ N − 1. Note that it also

means (3.81) holds for all n + 1 ≤ k ≤ N − 1. We will show that (3.80) also hold
for k = n under such assumption.

Using Lemma 3.7 we get

(3.82)

|Exn

tn [en+2
z ]|2 + 1

2
E
xn

tn [|en+1
z |2] + 1

2
|Exn

tn [en+1
y ]|2 + 1

2
E
xn

tn [|e
n+1
y |2]

≤ (1 + C∗∆t)
(

E
xn

tn [|Exn+2

tn+2
[en+4

z ]|2] + 1

2
E
xn

tn [|en+3
z |2]

+
1

2
E
xn

tn [|Exn+2

tn+2
[en+3

y ]|2] + 1

2
E
xn

tn [Exn+2

tn+2
[|en+3

y |2]]
)

+ C∗(∆t)
5

≤ (1 + C∗∆t)
2
(

E
xn+2

tn+2
[|Exn+4

tn+4
[en+6

z ]|2] + 1

2
E
xn+2

tn+2
[|en+5

z |2]

+
1

2
E
xn+2

tn+2
[|Exn+4

tn+4
[en+5

y ]|2] + 1

2
E
xn+2

tn+2
[Exn+4

tn+4
[|en+5

y |2]]
)

+ [C∗ + (1 + C∗∆t)C∗](∆t)
5.

If N − n− 3 is even, by repeating the above process we get

(3.83)

|Exn

tn [en+2
z ]|2 + 1

2
E
xn

tn [|en+1
z |2] + 1

2
|Exn

tn [en+1
y ]|2 + 1

2
E
xn

tn [|en+1
y |2]

≤ (1 + C∗∆t)
N−n−3

2

(

E
xn

tn [|ExN−3

tN−3
[eN−1

z ]|2] + 1

2
E
xn

tn [|eN−2
z |2]

+
1

2
E
xn

tn [|ExN−3

tN−3
[eN−2

y ]|2] + 1

2
E
xn

tn [ExN−3

tN−3
[|eN−2

y |2]]
)

+ C∗(∆t)
5

N−n−3

2
∑

i=1

(1 + C∗∆t)
i−1

≤ eC∗(N−3)∆t/2
(

E
xn

tn [|eN−1
z |2] + 1

2
E
xn

tn [|eN−2
z |2] + E

xn

tn [|eN−2
y |2]

)

+ C∗(∆t)
4((N − 3)∆t)eC∗(N−3)∆t/2

≤ 3C∗e
C∗T (∆t)4 + C∗Te

C∗T (∆t)4

= Cs(∆t)
4.
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Similarly, if N − n− 3 is odd, then we obtain

(3.84)

|Exn

tn [en+2
z ]|2 + 1

2
E
xn

tn [|en+1
z |2] + 1

2
|Exn

tn [en+1
y ]|2 + 1

2
E
xn

tn [|en+1
y |2]

≤ eC∗(N−4)∆t/2
(

E
xn

tn [|eN−2
z |2] + 1

2
E
xn

tn [|eN−3
z |2] + E

xn

tn [|eN−3
y |2]

)

+ C∗(∆t)
4((N − 4)∆t/2)eC∗(N−3)∆t/2

≤ 3C∗e
C∗T (∆t)4 + C∗Te

C∗T (∆t)4

= Cs(∆t)
4.

Now by the above results and Lemmas 3.6 and 3.3, we have

(3.85)

|eny |2 + |enz |2 ≤ 1 + C∗∆t

1− C∗∆t

(1

2
|Exn

tn [en+1
y ]|2 + 1

2
E
xn

tn [|en+1
y |2] + |Exn

tn [en+2
z ]|2

+
1

2
E
xn

tn [|en+1
z |2]

)

+
C∗

1− C∗∆t

|Rn
y |2
∆t

+
C∗

1− C∗∆t

|Exn

tn [Rn+1
y ∆Wn+1]|2 + |Rn

z − E
xn

tn [Rn+1
z ]|2

(∆t)3

≤ 3Cs(∆t)
4 + 2C2

∗(∆t)
5 + 4C3

∗(∆t)
5

≤ CT,φ,f (∆t)
4.

Thus we prove (3.80) by induction.
For any integer l with 0 ≤ l ≤ n, taking the conditional mathematical expecta-

tion E
xl

tl [·] on both sides of (3.80), we immediately obtain

(3.86) max
0≤l≤n≤N−1

E
xl

tl [|e
n
y |2 + |enz |2] ≤CT,φ,f (∆t)

4,

for n = N − 1, · · · , 0. The proof is completed. �

Theorem 3.9. Under the conditions of Theorem 3.8, we have the following Lp

(p ≥ 1) error estimate: when ∆t is sufficiently small, it holds that for 0 ≤ n ≤ N−1,

(3.87) max
0≤l≤n≤N−1

E
xl

tl [|ytn − yn|p + |ztn − zn|p] ≤ Cp,T,φ,f (∆t)
2p,

where Cp,T,φ,f > 0 is a generic constant depending only on p, T , upper bounds of
derivatives of ϕ and f .

Proof. There are two cases to discuss.

Case I: p ≥ 2. For any 0 ≤ n ≤ N − 1, taking the power of
p

2
on both sides of

the inequality (3.80) of Theorem 3.8 gives us

(3.88) |eny |p + |enz |p ≤ (|eny |2 + |enz |2)
p

2 ≤ Cp,T,φ,f (∆t)
2p,

where Cp,T,φ,f = (CT,φ,f )
p

2 . Thus we obtain

(3.89) max
0≤l≤n≤N−1

E
xl

tl [|e
n
y |p + |enz |p] ≤Cp,T,φ,f (∆t)

2p.

Case II: 1 ≤ p < 2. By the Jensen inequality and the inequality (3.86) of
Theorem 3.8 we have

max
0≤l≤n≤N−1

E
xl

tl [|e
n
y |p]

2
p ≤ max

0≤l≤n≤N−1
E
xl

tl [|e
n
y |p

2
p ] = max

0≤l≤n≤N−1
E
xl

tl [|e
n
y |2] ≤ CT,φ,f (∆t)

4,

which implies

(3.90) max
0≤l≤n≤N−1

E
xl

tl
[|eny |p] ≤(CT,φ,f )

p

2 (∆t)2p.
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Similarly we get

(3.91) max
0≤l≤n≤N−1

E
xl

tl
[|enz |p] ≤(CT,φ,f )

p

2 (∆t)2p.

Combination of the inequalities (3.90) and (3.91) leads to

(3.92) max
0≤l≤n≤N−1

E
xl

tl
[|eny |p + |enz |p] ≤Cp,T,φ,f (∆t)

2p,

where Cp,T,φ,f = 2(CT,φ,f )
p

2 . �

Remark 3. We would like to remark that Assumption 1 can be slightly relaxed
and Theorems 3.8 and 3.9 still hold. For example, one just need assume that
∆tN−1 = O((∆t)2), ∆tn = O(∆t) for 0 ≤ n ≤ N−2, and |∆tn−∆tn+1| = O((∆t)2)
for 0 ≤ n ≤ N − 3. It basically means that the time steps must be asymptotically
uniform in local in order for the C-N scheme to obtain second-order accuracy in
solving BSDEs, but they could be non-uniform in global.

4. Conclusions

In this paper, we study error estimates of a special θ-scheme – the Crank-Nicolson
scheme for solving backward stochastic differential equations. We rigorously prove
that under some reasonable regularity conditions on ϕ and f , this scheme is second-
order accurate for solving both yt and zt if the errors are measured in the Lp (p ≥ 1)
norm. A key idea in the proof is to use cancelation of local errors in neighbor time
steps. Some of future work includes application of the techniques developed in this
paper to error analysis of some other accurate schemes for solving BSDEs such as
the multi-step scheme proposed in [27] and design of high-order schemes for solving
FBSDEs.
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