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UNIFORM CONVERGENCE OF A COUPLED METHOD FOR

CONVECTION-DIFFUSION PROBLEMS IN 2-D SHISHKIN

MESH

ZIQING XIE, PENG ZHU∗, AND SHUZI ZHOU

Abstract. In this paper, we introduce a coupled approach of local discontinuous Galerkin (LDG)
and continuous finite element method (CFEM) for solving singularly perturbed convection-diffusion
problems. When the coupled continuous-discontinuous linear FEM is used under the Shishkin
mesh, a uniform convergence rate O(N−1 ln N) in an associated norm is established, where N is
the number of elements. Numerical experiments complement the theoretical results. Moreover, a
uniform convergence rate O(N−2) in L

2 norm, is observed numerically on the Shishkin mesh.

Key words. convection diffusion equation, local discontinuous Galerkin method, finite element
method, Shishkin mesh, uniform convergence

1. Introduction

In recent years, the numerical solutions of singularly perturbed boundary value
problems have been received much attention and already studied in many papers
and books, see for instance [6, 9, 11, 12]. One of the difficulties in numerically com-
puting the solution of singularly perturbed problems lays in the so-called boundary
layer behavior, i.e., the solution varies very rapidly in a very thin layer near the
boundary. Traditional methods such as finite element and finite difference method-
s, do not work well for these problems as they often produce oscillatory solutions
which are inaccurate if the perturbed parameter ǫ is small. When ǫ approaches ze-
ro, the problem changes from an elliptic equation to a hyperbolic one. Inspired by
the great success of the discontinuous Galerkin (DG) method in solving hyperbolic
equations, Cockburn and Shu [4], Celiker and Cockburn [3], Xie et al. [13, 14, 15]
and Zhang et al. [19] adopted the local discontinuous Galerkin (LDG) method to
solve convection-diffusion equations and analyzed the corresponding convergence
properties. On the other hand, nonsymmetric discontinuous Galerkin method with
interior penalty (the NIPG method), originally designed for elliptic equations, is
analyzed by Zarin and Roos [16] for convection-diffusion problems with parabolic
layers.

A disadvantage of DG method is that it produces more degrees of freedom than
the continuous finite element method (CFEM). With this motivation, our work is to
derive a coupled approach of LDG and CFEM and analyze the uniform convergence
in a DG-norm under Shishkin mesh for singularly perturbed convection diffusion
problems. The basic idea is to decompose the domain into coarse and fine part and
the latter is used to simulate the boundary layer. Then the CFEM using linear
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elements is adopted in the fine part where the mesh size is comparable with ǫ, and
LDG method is used in the coarse part for its stabilization.

A coupled LDG-CFEM approach has also been studied by Perugia and Schötzau
[8] for the modeling of elliptic problems arising in electromagnetics. Roos and Zarin
[10], Zarin [17] analyzed the NIPG-CFEM coupled method on Shishkin mesh for
convection-diffusion problems with exponentially layers or characteristic layers. In
this paper, the coupled LDGmethod is used for the singularly perturbed convection-
diffusion equation for the first time to our knowledge. Moreover, distinguished from
the general approaches for proving uniform convergence of numerical methods for
singularly perturbed problem on layer-adapted meshes, in which solution decom-
position is usually necessary, our analysis is based on the uniform error estimates
for the interpolation under the Shishkin mesh, which can be reduced by the priori
estimate of the solution, i.e.,

∣∣∣∣
∂i+ju(x, y)

∂ xi∂ yj
(x, y)

∣∣∣∣ ≤ C
(
1 + ǫ−ie−β1(1−x)/ǫ

)
×
(
1 + ǫ−je−β2(1−y)/ǫ

)
,

for i, j satisfying 0 ≤ i+ j ≤ 2. Our method can be generalized to all DG methods
belong to the unify framework in [1], including the NIPG method.

The paper is organized as follows. In Section 2, we introduce the coupled LDG
and CFEM for the singularly perturbed problems. Then stability and error analysis
of the coupled method on Shishkin mesh is given in Section 3. The implementation
of our coupled method on Shishkin mesh is presented in Section 4. It aims to
validate our theoretical results. Furthermore, the uniform convergence rateO(N−2)
in L2 norm is observed numerically. This phenomenon is not found in [10] and [17].

In the sequel, with C we shall denote a generic positive constant independent of
the perturbation parameter ǫ and mesh size.

2. Coupling the LDG and CFEM

Consider the following two-dimensional convection-diffusion problem

(2.1)

{
−ǫ∆u+ b · ∇u+ cu = f in Ω = (0, 1)2,

u = 0 on ∂Ω,

where 0 < ǫ ≪ 1 is a small positive parameter, b, c, and f are sufficiently smooth
functions with the following properties

b(x, y) = (b1(x, y), b2(x, y)) ≥ (β1, β2) > (0, 0), c(x, y) ≥ 0, ∀(x, y) ∈ Ω̄,

c20(x, y) ≡ (c− 1
2∇ · b)(x, y) ≥ γ0 > 0, ∀(x, y) ∈ Ω̄,(2.2)

f(0, 0) = f(1, 0) = f(0, 1) = f(1, 1) = 0,

for some constants β1, β2 and γ0. With the assumptions above, it is well-known that
there exists a solution u of (2.1) that in general exhibits an exponentially boundary
layer near x = 1 and y = 1.

The Shishkin Mesh. Define the transition parameter

τx = min

(
1

2
,
κ

β1
ǫ lnN

)
, τy = min

(
1

2
,
κ

β2
ǫ lnN

)
,

with κ ≥ 2 and divide Ω into four sub-domains

Ω0 = (0, 1− τx)× (0, 1− τy), Ωx = (1− τx, 1)× (0, 1− τy),

Ωy = (0, 1− τx)× (1− τy, 1), Ωxy = (1 − τx, 1)× (1− τy, 1).
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Each sub-domain is then decomposed intoN/2×N/2 uniform rectangles (see Figure
1). Therefore, there are (N+1)2 nodes (xi, yj), i, j = 0, 1, · · · , N , and N2 elements

Kij = (xi−1, xi)× (yj−1, yj), i, j = 1, 2, · · · , N.

Consequently,

xj =

{
2(1− τx)j/N, j = 0, 1, · · · , N/2,
1− 2τx(N − j)/N, j = N/2 + 1, · · · , N,

and

yj =

{
2(1− τy)j/N, j = 0, 1, · · · , N/2,
1− 2τy(N − j)/N, j = N/2 + 1, · · · , N.

Denote

Hx = 2(1− τx)/N, hx = 2τx/N,

Hy = 2(1− τy)/N, hy = 2τy/N.

Obviously

max{Hx, Hy} ≤ CN−1, max{hx, hy} ≤ CǫN−1 ln N.

Ω
0 Ω

x

Ω
y

Ω
xy

Figure 1. Shishkin Mesh with N = 8 and ǫ = 0.05.

Set Ω1 = Ω0 and Ω2 = Ωx ∪ Ωy ∪ Ωxy, and the interface Γ = ∂Ω1 ∩ ∂Ω2. Let
T 1
N = {Kij : 1 ≤ i, j ≤ N/2} and T 2

N = {Kij : i > N/2 or j > N/2}. Obviously
T 1
N and T 2

N are rectangular partitions of Ω1 and Ω2, respectively.
Weak formulation. Let ui = u|Ωi

,Γi
D = ∂Ω ∩ ∂Ωi, i = 1, 2. Denote by ni

the unit outward normal vector to Γ ∩ ∂Ωi, i = 1, 2, and by n the unit outward
normal vector to ∂Ω. As mentioned before, we discretize problem (2.1) by using the
LDG method in Ω1, and CFEM in Ω2. For this purpose, we introduce an auxiliary
variable q = ∇u1 in Ω1 and rewrite problem (2.1) as the following equivalent form,
i.e.,

(2.3)





q−∇u1 = 0 in Ω1,
−ǫ∇ · q+ b · ∇u1 + cu1 = f in Ω1,
−ǫ∆u2 + b · ∇u2 + cu2 = f in Ω2,
u1 = u2 on Γ,
q · n1 = −∇u2 · n2 on Γ,

with boundary conditions

(2.4) ui = 0 on Γi
D i = 1, 2.
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Multiplying the first three equations of (2.3) by test functionsw, v1, v2, respectively,
and integrating by parts, it is noted that the solution (q, u1, u2), of problems (2.3)
and (2.4) satisfies, for all K ∈ T 1

N ,

(2.5)

∫

K

q ·wdx+

∫

K

u1∇ ·wdx−

∫

∂ K

u1w · nKds = 0,

(2.6)∫

K

(ǫq−bu1) ·∇ v1dx+

∫

K

(c−∇·b)u1v1dx−

∫

∂ K

v1(ǫq−bu1) ·nKds =

∫

K

fv1dx,

for piecewise smooth functions w and v1, with nK the unit outward normal to ∂K,
and∫

Ω2

(ǫ∇u2−bu2)·∇ v2dx+

∫

Ω2

(c−∇·b)u2v2dx−

∫

Γ

v2(ǫ∇u2−bu2)·n2ds =

∫

Ω2

fv2dx,

for smooth function v2 with v2|Γ2

D

= 0. The above equations have to be coupled

through the transmission conditions, i.e., the last two equations of (2.3). Replacing
−(ǫ∇u2 − bu2) · n2 by (ǫq − bu1) · n1 using the transmission conditions in the
equation above, leads to
(2.7)∫

Ω2

(ǫ∇u2−bu2)·∇ v2dx+

∫

Ω2

(c−∇·b)u2v2dx+

∫

Γ

v2(ǫq−bu1)·n1ds =

∫

Ω2

fv2dx.

It is worthwhile to point out that the first transmission condition is also imposed at
the discrete level by choosing the numerical fluxes in the LDG method in a suitable
way in the following. It will be seen that the combination of (2.5), (2.6) and (2.7)
is the basis for the coupled continuous-discontinuous Galerkin approach.

Denote by Q1(K) the space of bilinear functions defined on K, and define the
finite element space QN , V 1

N and V 2
N as follows,

QN =
{
q ∈ L2(Ω1)

2 : q|K ∈ Q1(K)2, ∀K ∈ T 1
N

}
,

V 1
N =

{
u1 ∈ L2(Ω1) : u1|K ∈ Q1(K), ∀K ∈ T 1

N

}
,

V 2
N =

{
u2 ∈ H1(Ω2) : u2|Γ2

D

= 0, u2|K ∈ Q1(K), ∀K ∈ T 2
N

}
.

The space V 2
N is a standard conforming finite element space, whereas the functions

in V 1
N and QN are completely discontinuous across interelement boundaries.

We will search for approximate solutions (qN , u1,N , u2,N) of (2.3) and (2.4) in
the finite element space QN ×V 1

N ×V 2
N that satisfy (2.3) and (2.4) in a weak sense,

i.e., we will find (qN , u1,N , u2,N ) ∈ QN × V 1
N × V 2

N such that

(2.8)

∫

K

qN ·wdx+

∫

K

u1,N∇ ·wdx−

∫

∂ K

û1,Nw · nKds = 0,

(2.9)∫

K

(ǫqN−bu1,N )·∇ v1dx+

∫

K

(c−∇·b)u1,Nv1dx−

∫

∂ K

v1(ǫq̂N−bũ1,N )·nKds =

∫

K

fv1dx,

for any test function (w, v1) ∈ QN × V 1
N and K ∈ T 1

N , and
(2.10)∫

Ω2

(ǫ∇u2,N−bu2,N )·∇ v2dx+

∫

Ω2

(c−∇·b)u2,Nv2dx+

∫

Γ

v2(ǫq̂N−bũ1,N )·n1ds =

∫

Ω2

fv2dx,

for any test function v2 ∈ V 2
N , where û1,N , ũ1,N and q̂N are the numerical fluxes,

which approximate the traces of u1,N and qN on the boundary of the elements of
T 1
N . To complete the specification of the method, it only remains to define the

numerical fluxes.
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The numerical fluxes. In order to define the numerical fluxes, we need to
introduce some notations. An interior face of the triangulation T 1

N is defined to
be the (non-empty) interior of ∂ K+ ∩ ∂ K−, where K+ and K− are two adjacent
elements of T 1

N . Analogously, a boundary face in T 1
N is the interior of ∂ K ∩ ∂Ω

whereK is a boundary element in T 1
N . We assume the boundary faces are contained

in either Γ1
D or Γ. Let Eo be the union of all interior faces, and E the union of all

faces of T 1
N . Let now e ∈ Eo be an interior face shared by K+ and K−, n+ and n−

the unit normal vectors on e pointing exterior to K+ and K−, respectively. The
average and the jump of a scalar-valued function v on e ∈ Eo are given by

{v} :=
1

2
(v+ + v−), [v] := v+n+ + v−n−,

respectively. For a vector-valued function w, we define its corresponding average
and jump analogously, i.e.,

{w} :=
1

2
(w+ +w−), [w] := w+ · n+ +w− · n− on e ∈ Eo.

For e ⊂ ∂Ω1 \ Γ, each v and w has a uniquely defined restriction on e. We set

[v] := vne, {w} := w on e ⊂ ∂Ω1 \ Γ,

where ne is the unit outward normal of e. We do not require either of the quantities
{v} or [w] on the boundary faces, and leave them undefined. Now the numerical
fluxes û1,N and q̂1,N are defined by

(2.11) û1 =





{u1,N}+ β · [u1,N ] if e ∈ Eo,
u2,N if e ⊂ Γ,
0 if e ⊂ Γ1

D,

and

(2.12) q̂1,N =





{qN} − α[u1,N ]− β[qN ] if e ∈ Eo,
qN − α(u1,N − u2,N)n1 if e ⊂ Γ,
qN − αu1,Nn if e ⊂ Γ1

D.

On the other hand, the numerical flux associated with the convection term is the
classical upwinding one, which can be expressed as

(2.13) ũ1,N =





{u1,N}+ β0 · [u1,N ] if e ∈ Eo,
u1,N if e ⊂ Γ,
0 if e ⊂ Γ1

D.

Here the scalar function α = α(x), the vector functions β = β(x) and β0 = β0(x)
are auxiliary functions, which play a very important role in guaranteing the stability
and enhancing the accuracy of the LDG scheme (see [2] and [4]). In this paper we
take

α = α(x) = O(1/Hx, 1/Hy),

for x ∈ E , and β = β(x) and β0 = β0(x), such that

β · nK(x) = β0 · nK(x) =
1

2
sign(b(x) · nK(x)),

for x ∈ E0, where nK(x) is the unit outward normal of K at x.
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3. Stability and error analysis of the coupled method.

This section is devoted to the existence and uniqueness of the solution of the cou-
pled method (2.8)-(2.10) with numerical fluxes (2.11)-(2.13), and its corresponding
error analysis. If the stabilization parameter α is taken of order O(1/Hx, 1/Hy) as
we did in section 2, we can rewrite our method in a primal form by eliminating q

following Arnold et al. [1].

Primal formulation. A straightforward computation shows that
(3.1)∫

Ω1

∇·wvdx = −

∫

Ω1

w·∇ vdx+

∫

Eo

([w]{v}+{w}·[v])ds+

∫

Γ

vw·n1ds+

∫

Γ1

D

vw·nds,

for w ∈ H1(T 1
N )×H1(T 1

N ) and v ∈ H1(T 1
N ), where H1(T 1

N ) is the piecewise Sobolev
space defined by

H1(T 1
N ) :=

{
φ ∈ L2(Ω1) : φ|K ∈ H1(K) for all K ∈ T 1

N

}
.

Differential operators are understood to act on such a space piecewisely.
Summing up (2.8) for all K ∈ T 1

N , combined with (2.11) and (3.1), we obtain
∫

Ω1

(qN −∇u1,N ) ·wdx+

∫

Eo

({w} − β[w]) · [u1,N ]ds

+

∫

Γ

(u1,N − u2,N )w · n1ds+

∫

Γ1

D

u1,Nw · nds = 0.(3.2)

Denote V (N) =
[
H2(Ω) ∩H1

ΓD
(Ω)
]
+ VN , where VN :={ v = (v1, v2) : v1 ∈

V 1
N , v2 ∈ V 2

N }, H1
ΓD

(Ω) =
{
v = (v1, v2) ∈ H1(Ω) : v1|Γ1

D

= 0, v2|Γ2

D

= 0
}
. For

v ∈ V (N), we define L1(v) as the unique element in QN such that

(3.3)

∫

Ω1

L1(v) ·rdx =

∫

Eo

({r}−β[r]) · [v1]ds+

∫

Γ

(v1−v2)r ·n1ds+

∫

Γ1

D

v1r ·nds,

for all r ∈ QN . As a result, (3.2) can be rewritten as

(3.4) qN = ∇u1,N − L1(uN ).

Summing up (2.9) for all K ∈ T 1
N and then adding up (2.10), we get

∫

Ω1

(ǫqN − bu1,N ) · ∇ v1dx+

∫

Ω2

(ǫ∇u2,N − bu2,N ) · ∇ v2dx+

∫

Ω

(c−∇ · b)uNvdx

−

∫

E\Γ

(ǫq̂N − bũ1,N ) · [v1]ds−

∫

Γ

(ǫq̂N − bũ1,N ) · n1(v1 − v2)ds =

∫

Ω

fvdx.(3.5)

Inserting (2.12) and (2.13) into (3.5), and recalling the definition of L1(·), we
obtain∫

Ω1

ǫqN · (∇ v1 − L1(v))dx +

∫

Ω2

ǫ∇u2,N · ∇ v2dx−

∫

Ω

b · ∇ vuNdx

+

∫

Ω

(c−∇ · b)uNvdx+

∫

E\Γ

ǫα[u1,N ][v1]ds+

∫

Γ

ǫα(u1,N − u2,N)(v1 − v2)ds

+

∫

Eo

b · [v1]({u1,N}+ β0 · [u1,N ])ds+

∫

Γ

b · n1u1,N (v1 − v2)ds =

∫

Ω

f vdx.(3.6)

Similar to the definition of L1(·), for v ∈ V (N), we define L2(v) as the unique
element in QN such that

∫

Ω1

b · L2(v)udx =

∫

Eo

b · [v1]({u1}+ β0 · [u1])ds+

∫

Γ

b · n1u1(v1 − v2)ds,(3.7)
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for all u ∈ VN . As a consequence, (3.6) can be rewritten as

∫

Ω1

ǫqN · (∇ v1 − L1(v))dx +

∫

Ω2

ǫ∇u2,N · ∇ v2dx

−

∫

Ω

b · ∇ vuNdx+

∫

Ω

(c−∇ · b)uNvdx+

∫

E\Γ

ǫα[u1,N ][v1]ds(3.8)

+

∫

Γ

ǫα(u1,N − u2,N)(v1 − v2)ds+

∫

Ω1

b · L2(v)uNdx =

∫

Ω

f vdx.

Inserting (3.4) into (3.8), we obtain the so-called primal form of our coupled method
which reads: find uN ∈ VN such that

(3.9) AN (uN , v) := BN (uN , v) + CN (uN , v) + SN (uN , v) = FN (v) ∀v ∈ VN ,

with

BN (u, v) =

∫

Ω

ǫ(∇u− L1(u)) · (∇ v − L1(v))dx, FN (v) =

∫

Ω

fvdx,

CN (u, v) = −

∫

Ω

bu · (∇ v − L2(v))dx +

∫

Ω

(c−∇ · b)uvdx,

SN (u, v) =

∫

E\Γ

ǫα[u1][v1]ds+

∫

Γ

ǫα(u1 − u2)(v1 − v2)ds.

Here, L1(u) and L2(u) have been defined in L2(Ω) by a trivial extension.
From the following lemma, the primal formulation is consistent.

Lemma 3.1. Let u be the exact solution of (2.3) and (2.4), then we have the
Galerkin orthogonality property, i.e.,

(3.10) AN (u − uN , v) = 0, for all v ∈ VN .

Proof. Since u is the exact solution, we have [u1]e = 0, [∇u1] = 0 for all e ∈ Eo,
u1 = 0 on Γ1

D, and u1 = u2,∇u1 · n1 = −∇u2 · n2 on Γ. Consequently,

(3.11) L1(u) = 0, SN (u, v) = 0.

Then, for all v ∈ VN , we have

BN (u, v) =

∫

Ω

ǫ∇u · (∇ v − L1(v))dx

=

∫

Ω1

ǫ∇u1 · ∇ v1dx−

∫

Ω1

ǫL1(v) · ∇u1dx+

∫

Ω2

ǫ∇u2 · ∇ v2dx.(3.12)

Taking w = ǫ∇u1 and v = v1 in (3.1), we have
∫

Ω1

ǫ∇u1 · ∇ v1dx = −

∫

Ω1

ǫ∆u1v1dx+

∫

Eo

ǫ ([∇u1]{v1}+ {∇u1} · [v1]) ds

+

∫

Γ

ǫ v1∇u1 · n1ds+

∫

Γ1

D

ǫ v1∇u1 · nds.(3.13)

Inserting (3.13) into (3.12), and integrating by parts in the third term in the right
hand side of (3.12), in terms of the definition of L1(·), we have

BN(u, v) =

∫

Ω

−ǫ∆uvdx+

∫

Eo

ǫ[∇u1](β · [v1] + {v1})ds+

∫

Γ2

D

ǫ v2∇u2 · nds.
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By the definition of VN , we get v2 = 0 on Γ2
D. This, together with [∇u1] = 0,

yields

(3.14) BN (u, v) =

∫

Ω

−ǫ∆uvdx, for all v ∈ VN .

Now we consider the term CN (u, v). It can be rewritten as

(3.15) CN (u, v) = −

∫

Ω1

bu1·(∇ v1−L2(v))dx−

∫

Ω2

b·∇ v2u2dx+

∫

Ω

(c−∇·b)uvdx.

Taking w = −bu1 and v = v1 in (3.1), we have

−

∫

Ω1

bu1 · ∇ v1dx =

∫

Ω1

(b · ∇u1 +∇ · bu1)v1dx−

∫

Eo

b · ([u1]{v1}+ {u1}[v1])ds

−

∫

Γ

b · n1u1v1ds−

∫

Γ1

D

b · nu1v1ds.(3.16)

Inserting (3.16) into (3.15), and integrating by parts in the second term in the right
hand side of (3.15), in terms of the definition of L2(·), we obtain

CN(u, v) =

∫

Ω

(b · ∇u+ cu)vdx+

∫

Eo

(b · [v1]β0 · [u1]− b · [u1]{v1})ds

=

∫

Ω

(b · ∇u+ cu)vdx+

∫

Eo

b · [u1](β0 · [v1]− {v1})ds

=

∫

Ω

(b · ∇u+ cu)vdx,(3.17)

due to the fact [u1] = 0 on Eo. The combination of (3.9), (3.11), (3.14) and (3.17),
leads to

AN (u, v) =

∫

Ω

(−ǫ∆u+ b · ∇u+ cu)dx

=

∫

Ω

f vdx, ∀ v ∈ VN .

In view of (3.9), (3.10) obviously holds. �

Stability analysis. To consider the stability of the primal form AN , define the
following norms and seminorms for v ∈ V (N):

|||v|||2ǫ = ||v||20,Ω + ǫ|v|21,N + ǫ|v|2∗ + |v|2c ,(3.18)

|v|21,N = |v2|
2
1,Ω2

+
∑

K∈T 1

N

|v1|
2
1,K , |v|2∗ =

∫

E\Γ

α[v1]
2ds+

∫

Γ

α(v1 − v2)
2ds,

|v|2c =
1

2

∑

e∈Eo

∫

e

|b · ne| [v1]
2ds+

1

2

∫

Γ

|b · n1| (v1 − v2)
2ds+

1

2

∫

Γ1

D

|b · n| v2ds.

Lemma 3.2. There exists a constant C1 > 0, such that

AN (uN , uN ) ≥ C1|||uN |||2ǫ , ∀uN ∈ VN .

Proof. By direct computation, we obtain, for all uN ∈ VN ,

BN(uN , uN) =

∫

Ω

ǫ(∇uN − L1(uN ))2dx, SN (uN , uN ) = ǫ|uN |2∗,

CN(uN , uN) =

∫

Ω

(c−
1

2
∇ · b)u2

Ndx+ |uN |2c .
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By (3.9) and (2.2), we have

AN (uN , uN )

=

∫

Ω

ǫ(∇uN − L1(uN ))2dx+

∫

Ω

c20u
2
Ndx+ ǫ|uN |2∗ + |uN |2c

≥ ǫ |uN |21,N − 2ǫ

∫

Ω

L1(uN ) · ∇uNdx+ ǫ||L1(uN )||20,Ω + γ0||uN ||20,Ω + ǫ|uN |2∗ + |uN |2c .

Applying the arithmetic-geometric mean inequality, we have, for every θ > 0,

AN (uN , uN )

≥ ǫ
[
(1− θ)|uN |21,N + (1− 1/θ)||L1(uN)||20,Ω

]
+ γ0||uN ||20,Ω + ǫ|uN |2∗ + |uN |2c .(3.19)

According to [8] (p422), when the coefficient α = O(1/Hx, 1/Hy), there exists a
constant C > 0, such that

(3.20) ||L1(u)||0,Ω ≤ C|u|∗, ∀u ∈ V (N).

Inserting (3.20) into (3.19), for any θ satisfies C2

C2+1 < θ < 1, we easily get

AN (uN , uN) ≥ ǫ(1− θ)|uN |21,N + ǫ[C2(1− 1/θ) + 1]|uN |2∗ + γ0||uN ||20,Ω + |uN |2c

≥ γ1(ǫ|uN |21,N + ǫ|uN |2∗) + γ0||uN ||20,Ω + |uN |2c

≥ min{γ0, γ1}|||uN |||2ǫ ,

where γ1 = min{1 − θ, C2(1 − 1/θ) + 1}. Taking C1 = min{γ0, γ1}, the proof is
completed. �

From Lemma 3.2, we easily get

|||uN |||ǫ ≤ C||f ||0,Ω,

which implies the uniqueness of the solution to (3.9). Further, since (3.9) is a linear
problem over the finite-dimensional space VN , the existence of the solution follows
from its uniqueness. Consequently, by (3.4), we get the existence and uniqueness
of the solution to the problem (2.8)-(2.10) with numerical fluxes (2.11)-(2.13).

Remark 3.1. In fact, following [8] or [13], for any α ≥ 0, the existence and
uniqueness of the solution to the problem (2.8)-(2.10) with numerical flux (2.11)-
(2.13) can be proved. In this paper, we are only interested in the special case
α = O(1/Hx, 1/Hy).

Error analysis. We are now going to provide an ǫ-uniform estimate for the error
u− uN in the norm (3.18). First, we start with the error decomposition

(3.21) u− uN = (u− uI) + (uI − uN) ≡ η + ξ,

where uI be the standard bilinear interpolation of u.
The final estimate for |||u − uN |||ǫ will be derived by applying the triangle in-

equality to (3.21). For this purpose, we estimate |||η|||ǫ and |||ξ|||ǫ, respectively. To
bound η, we need some regularity results. Denote the operator Li, i = 0, 1, by

Liv =
∂v

∂y

∂i

∂xi

(b2
b1

)
+ v

∂i

∂xi

( c
b1

)
.(3.22)

Lemma 3.3. [7, 18] Let b and c be smooth, and let f ∈ C4,λ(Ω̄) for some λ ∈ (0, 1).
Further suppose that f satisfies the compatibility conditions

f(0, 0) = f(0, 1) = f(1, 0) = f(1, 1) = 0,
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and
( f

b1

)
y
(0, 0) =

( f

b2

)
x
(0, 0),

(( f

b1

)
x
− L0

( f

b1

))
y
(0, 0) =

( f

b2

)
xx
(0, 0),(3.23)

(( f

b1

)
xx

− L0

(( f

b1

)
x
− L0

( f

b1

))
− 2L1

( f

b1

))
y
(0, 0) =

( f

b2

)
xxx

(0, 0),(3.24)

(
b2

( f

b2

)
xx

)
(0, 0) =

(
b1

( f

b1

)
yy

)
(0, 0).(3.25)

Then the boundary value problem (2.1) has a classical solution u ∈ C3,λ(Ω̄), that
can be bounded by

∣∣∣∣
∂i+ju(x, y)

∂ xi∂ yj
(x, y)

∣∣∣∣ ≤ C
(
1 + ǫ−ie−β1(1−x)/ǫ

)
×
(
1 + ǫ−je−β2(1−y)/ǫ

)
(3.26)

for all (x, y) ∈ Ω̄ and 0 ≤ i+ j ≤ 2.

Remark 3.2. The following convection-diffusion problem

(3.27) −ǫ∆u− b · ∇u+ cu = f

is considered in [5], which exhibits an exponential layer near x = 0 and y = 0. Let

x̂ = 1 − x, ŷ = 1 − y, b̂(x̂, ŷ) = b(1 − x̂, 1 − ŷ), ĉ(x̂, ŷ) = c(1 − x̂, 1 − ŷ),f̂(x̂, ŷ) =
f(1− x̂, 1− ŷ) and û(x̂, ŷ) = u(1− x̂, 1− ŷ), then (2.1) can be rewritten as

−ǫ∆ û− b̂ · ∇ û+ ĉû = f̂ ,

which is the same as (3.27). So the formula (8) in [5] is also valid for (2.1) in
this paper, if we replace x and y by x̂ = 1− x and ŷ = 1 − y, respectively. That is
exactly (3.26).

Lemma 3.4. [5] Let u be a solution of (2.1) and uI the standard bilinear interpo-
lation of u on the Shishkin mesh defined before. Under the conditions of Lemma
3.3, the interpolation error η = u− uI satisfies

||η||L∞(Ω1) ≤ CN−2, ||η||L∞(Ω2) ≤ CN−2 ln2 N,

||η||L2(Ω1) ≤ CN−2, ||η||L2(Ω2) ≤ CN−2 ln2 N,

||∇η||L2(Ω) ≤ Cǫ−1/2N−1 ln N.

Remark 3.3. According to [7], under the assumption of Lemma 3.3, the solution
of (2.1) has the usual solution decomposition u = S+E1+E2+E12, which satisfies

∣∣∣ ∂i+jS

∂xi∂yj(x, y)

∣∣∣ ≤ C,

∣∣∣ ∂i+jE1

∂xi∂yj(x, y)

∣∣∣ ≤ Cǫ−ie−β1(1−x)/ǫ,

∣∣∣ ∂i+jE2

∂xi∂yj(x, y)

∣∣∣ ≤ Cǫ−je−β2(1−y)/ǫ,

∣∣∣ ∂i+jE12

∂xi∂yj(x, y)

∣∣∣ ≤ Cǫ−(i+j)e−(β1(1−x)+β2(1−y))/ǫ,

for 0 ≤ i + j ≤ 2, which is stronger than (3.26) to some extent. Actually the
estimates above imply (3.26). Based on the solution decomposition above, the con-
clusions of Lemma 3.4 can be found in [11], i.e., (3.127) of Page 384, (3.128b)
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and (3.128c) of Page 385 with the additional assumption ǫ1/2 ln2 N ≤ C. It is
worthwhile to point out that there is no lnN factor in (3.128b) there.

The following statement represents the direct consequence of Lemma 3.4.

Prosition 3.1. Under the conditions of Lemma 3.4, we have

(3.28) |||η|||ǫ ≤ CN−1 ln N.

Proof. Since u − uI is continuous in Ω, we have |η|∗ = 0, |η|c = 0. Then, |||η|||2ǫ =
||η||20,Ω + ǫ|η|21,N . By Lemma 3.4, we easily conclude (3.28). �

Now we turn to estimate |||ξ|||ǫ.

Prosition 3.2. Under the conditions of Lemma 3.4, assume α = O(1/Hx, 1/Hy)
and

(3.29) ln3/2 N ≤ CN,

then ξ = uI − uN satisfies

(3.30) |||ξ|||ǫ ≤ C N−1 ln N.

Proof. By Lemma 3.1 and Lemma 3.2, we first obtain

(3.31) C1|||ξ|||
2
ǫ ≤ AN (ξ, ξ) = −AN(η, ξ) = −BN(η, ξ)− CN (η, ξ)− SN (η, ξ).

By the definition of uI , we have [η]e = 0 for all e ∈ E . Consequently,

BN (η, ξ) =

∫

Ω

ǫ∇η · (∇ξ − L1(ξ))dx,

CN (η, ξ) = −

∫

Ω

b · ∇ξηdx +

∫

Ω1

b · L2(ξ)ηdx +

∫

Ω

(c−∇ · b)ηξdx

≡ I1 + I2 + I3,(3.32)

SN (η, ξ) = 0.

Then, by (3.20) and Lemma 3.4, we have
(3.33)

|BN (η, ξ)| ≤ Cǫ||∇η||L2(Ω)(|ξ|1,N + |ξ|∗) ≤ Cǫ1/2||∇η||L2(Ω)|||ξ|||ǫ ≤ CN−1 ln N |||ξ|||ǫ .

The first term in the right hand side of (3.32) can be estimated by,

|I1| ≤ C
(
||η||L2(Ω1)||∇ξ||L2(Ω1) + ||η||L∞(Ω2)||∇ξ||L1(Ω2)

)
.

On Ω1, the implementation of an inverse inequality leads to

||∇ξ||L2(Ω1) ≤ CN ||ξ||L2(Ω1) ≤ CN |||ξ|||ǫ.

On the other hand, on Ω2, the Cauchy-Schwarz inequality yields

||∇ξ||L1(Ω2) ≤ |Ω2|
1/2||∇ξ||L2(Ω2) ≤ Cτ1/2||∇ξ||L2(Ω2) ≤ C ln1/2 N |||ξ|||ǫ.

Consequently,

(3.34) |I1| ≤ C
(
N−1 +N−2 ln5/2 N

)
|||ξ|||ǫ ≤ C

(
N−1 +N−1 ln N

)
|||ξ|||ǫ,

where we have used the assumption (3.29) and Lemma 3.4.
Due to [η]e = 0 for all e ∈ E , the second term in the right hand side of (3.32)

can be rewritten as

I2 =

∫

Eo

b · [ξ1]{η1}ds+

∫

Γ

b · n1η1(ξ1 − ξ2)ds.
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By Cauchy-Schwarz inequality and Lemma 3.4, we have

|I2| ≤

(
∑

e∈Eo

∫

e

|b · ne| |{η}|
2ds

)1/2(∑

e∈Eo

∫

e

|b · ne||[ξ1]|
2ds

)1/2

+

(∫

Γ

|b · n1||η1|
2ds

)1/2 (∫

Γ

|b · n1||ξ1 − ξ2|
2ds

)1/2

≤ C||η||L2(E)|ξ|c ≤ C|E|1/2||η||L∞(Ω1)|ξ|c ≤ CN−3/2|||ξ|||ǫ,(3.35)

where | · |L2(E) means
(∑

e∈E | · |
2
L2(e)

)1/2
and |E| means the sum of the lengths of

all edges in E , which can be estimated with

|E| = [(1− τx) + (1− τy)](N/2 + 1) ≤ 2N.

The third term in the right hand side of (3.32) can be easily estimated with

|I3| ≤ C||η||0,Ω ||ξ||0,Ω ≤ C N−2 ln2 N |||ξ|||ǫ.

This, combined with (3.34) and (3.35), yields

(3.36) |CN(η, ξ)| ≤ C N−1 ln N |||ξ|||ǫ.

Collecting (3.31), (3.32), (3.33) and (3.36), we have (3.30). �

The combination of Proposition 3.1 and Proposition 3.2 leads to our main result,
i.e.,

Theorem 3.1. Let u and uN be the solutions of (2.1) and (3.9), respectively. Under

the conditions of Lemma 3.4, assume ln3/2 N ≤ CN and α = O(1/Hx, 1/Hy), then

(3.37) |||u − uN |||ǫ ≤ C N−1 ln N.

Corollary 3.1. Let (qN , uN) be the solution obtained by the coupled method (2.8)–
(2.10) with numerical fluxes (2.11)–(2.13). Under the assumptions of Theorem 3.1,
we have

(3.38) |(q − qN , u− uN )|AN
≤ C N−1 ln N,

where |(·, ·)|AN
is a problem-related norm , which is called A−norm in this paper,

defined by

(3.39) |(q, u)|2AN
= ||u||20,Ω + ǫ||q||20,Ω1

+ ǫ|u2|
2
1,Ω2

+ ǫ|u|2∗ + |u|2c .

Proof. From (3.4), we have q − qN = ∇(u1 − u1,N) + L1(uN ). Since L1(u) = 0,
we obtain q − qN = ∇(u1 − u1,N ) − L1(u − uN ). In terms of (3.20), we conclude
|(q − qN , u− uN )|AN

≤ C|||u− uN |||ǫ, which implies the conclusion. �

4. Numerical experiments.

In this section, we numerically verify the sharpness of our theoretical findings
and explore some situations not covered by them. Take α = 1/Hx, β = β0 =
1
2 sign(b ·nK)nK , in (2.11), (2.12) and (2.13), where nK is the unit outward normal
of the element K, and κ = 2 in the transition parameter for Shishkin mesh. By
our numerical experiment, there is no difference between the results computed by
taking α = 1/Hx and α = 1/Hy.
Example. Take b = (2, 3) and c = 1 in the model problem (2.1). f is chosen such
that

u(x, y) = 2 sin x (1 − e−2(1−x)/ǫ)y2(1− e−3(1−y)/ǫ)

is the exact solution.
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We display the history of convergence for our coupled method in Table 1. A
Shishkin mesh with N× N elements is called mesh N . Let err(N) denote the error
of the approximation computed on the mesh N . Then the convergence order, i.e.,
order(2N), is defined by

order(2N) :=





ln(err(N)/err(2N))
ln(2 ln(N)/ ln(2N)) , for the A-norm,

ln(err(N)/err(2N))
ln(2) , for the L2 norm.

Table 1. History of convergence for the coupled method, under
the A-norm, Shishkin mesh with κ = 2.

ǫ = 1.0e− 04 ǫ = 1.0e− 05 ǫ = 1.0e− 06
N error order error order error order

8 4.363098e-01 – 4.363004e-01 – 4.362995e-01 –
16 2.937673e-01 0.98 2.937531e-01 0.98 2.937517e-01 0.98
32 1.847859e-01 0.99 1.847726e-01 0.99 1.847713e-01 0.99
64 1.111902e-01 0.99 1.111795e-01 0.99 1.111785e-01 0.99
128 6.493348e-02 1.00 6.492494e-02 1.00 6.492421e-02 1.00

Table 2. History of convergence for the coupled method, under
the L2 norm , Shishkin mesh with κ = 2.

ǫ = 1.0e− 04 ǫ = 1.0e− 05 ǫ = 1.0e− 06
N error order error order error order

8 7.828466e-03 – 7.823300e-03 – 7.822785e-03 –
16 2.004742e-03 1.97 1.998638e-03 1.97 1.998030e-03 1.97
32 5.090079e-04 1.98 5.047762e-04 1.99 5.043584e-04 1.99
64 1.293231e-04 1.98 1.269031e-04 1.99 1.266759e-04 1.99
128 3.343957e-05 1.95 3.185281e-05 1.99 3.174415e-05 2.00

From Table 1 and Figure 2, it is observed that the numerical results for A-norm
(3.39) of the error agree with those predicted in Corollary 3.1. Further, from Table
2 and Figure 2, it is numerically predicted that

||u− uN ||0,Ω ≤ CN−2,

which is uniformly optimal. The reason behind it is worthwhile to investigate.

5. Conclusions.

In this paper, we introduce a coupled LDG-CFEM method for solving two-
dimensional singularly perturbed convection-diffusion problems, whose stability and
uniform convergence property on the Shishkin mesh is investiaged. For bilinear
element, a rate O(N−1 ln N) in an associated norm is established. Our numerical
experiments indicate the sharpness of this error estimate. Moreover, a uniform
convergence rate O(N−2) in L2 norm are numerically observed on the Shishkin
mesh.
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Figure 2. Convergence curve of u− uN , the Shishkin mesh, ǫ = 10−6.
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