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AN EFFICIENT COLLOCATION METHOD FOR A NON-LOCAL

DIFFUSION MODEL

HAO TIAN1, HONG WANG2, AND WENQIA WANG1

Abstract. The non-local diffusion model provides an appropriate description of the deformation
of a continuous body involving discontinuities or other singularities, which cannot be described
properly by classical theory of solid mechanics. However, because the non-local nature of the
non-local diffusion operator, the numerical methods for non-local diffusion model generate dense
or even full stiffness matrices. A direct solver typically requires O(N3) of operations and O(N2)
of memory where N is the number of unknowns. We develop a fast collocation method for the
non-local diffusion model which has the following features: (i) It reduces the computational cost
from O(N3) to O(N log2 N) and memory requirement from O(N2) to O(N). (ii) It requires only

one-fold integration in the evaluation of the stiffness matrix. Numerical experiments show the
utility of the method.
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1. Introduction

The classical theory of solid mechanics assumes that all internal forces act
through zeros distance. The corresponding mathematical models are described by
partial differential equations, which do not provide a proper description of problems
with spontaneous formation of discontinuities or other singularities. The non-local
diffusion model was proposed as a reformation of solid mechanics [8], which does
not explicitly involve the notion of deformation gradients.

Galerkin finite element methods were previously developed and analyzed for the
non-local diffusion model [3, 5, 7, 10]. However, these methods face two challenges:

(1) Because of the non-local nature of the non-local diffusion operator, Galerkin
finite element methods generate dense or even full matrices. The direct
solvers used in solving the resulting discrete systems often require O(N3) of
computational work andO(N2) of memory whereN is the number of degree
of freedoms, which are significantly more expensive than the Galerkin finite
element methods for the classical models described by differential equations.

(2) Each entry in the stiffness matrix involves two-folds of integration, which
makes the evaluation of the stiffness matrix more expensive. Further, a fast
solution method can be developed only for a uniform mesh.

In this paper we develop a fast collocation method for the non-local diffusion
model. The method has the following features:

(1) The fast method can be developed on both a uniform mesh and a geomet-
rically decreasing mesh. In particular, the latter is particularly suited for
problems with singularities. For both meshes, the fast collocation method
reduces the computational cost from O(N3) to O(N log2 N) and memory
requirement from O(N2) to O(N).
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(2) Only one-fold of integration is needed in the evaluation of the stiffness
matrix, which further reduces the computational cost.

The rest of the paper is organized as follows. In §2 we present a non-local diffu-
sion model and review its Galerkin finite element approximations. In §3 we develop
a collocation method for the non-local diffusion model. In §4 we develop a fast
collocation method on a uniform mesh. In §5 we develop a fast collocation method
on a geometrically decreasing mesh. In §6 we conduct numerical experiments to
investigate the computational benefits of the fast methods.

2. A non-local diffusion model and its Galerkin finite element approxi-

mation

In this section we briefly discuss the non-local diffusion model and its Galerkin
finite element approximation.

2.1. A non-local diffusion model. A linear steady-state non-local diffusion
model for microelastic materials on a finite bar is given by the following pseudo-
differential equation [7, 8]

(1)

∫ β

α

u(x)− u(y)

|x− y|r
dy = b(x), x ∈ (α, β).

Here b(x) represents the prescribed forcing term and u(x) presents the displacement
of the material. r ≥ 0 is a parameter that characterizes the influence or decaying
property of the kernel function.

By the symmetry of x and y the bilinear form a(u, v) defined by

(2) a(u, v) :=

∫ β

α

v(x)

∫ β

α

u(x)− u(y)

|x− y|r
dydx

can be rewritten as

(3)

a(u, v) =

∫ β

α

∫ β

α

v(x)(u(x) − u(y))

|x− y|r
dydx

=

∫ β

α

∫ β

α

v(y)(u(y)− u(x))

|x− y|r
dydx.

which concludes that

(4)

∫ β

α

∫ β

α

(

v(x)
(

u(x)− u(y)
)

− v(y)
(

u(y)− u(x)
)

|x− y|r

)

dydx = 0.

The numerator of the integrand in (4) can be decomposed as

(5)

v(x)
(

u(x)− u(y)
)

− v(y)
(

u(y)− u(x)
)

= v(x)
[(

u(x)− u(y)
)

−
(

u(y)− u(x)
)]

−
(

v(y)− v(x)
)(

u(y)− u(x)
)

= 2v(x)
(

u(x)− u(y)
)

−
(

v(y)− v(x)
)(

u(y)− u(x)
)

.

We incorporate (5) into (4) to derive an alternative expression for a(u, v)

(6) a(u, v) =

∫ β

α

∫ β

α

(u(x)− u(y))(v(x) − v(y))

2|x− y|r
dydx.

The following theoretical results were proved previously [7, 10]: If r < 1, i.e., the
kernel is integrable, then a(u, v) is a (semi-) positive-definite and bounded bilinear
form on L2(α, β) × L2(α, β). If r = 1 + 2s with s > 0, then a(u, v) is a (semi-)
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positive-definite and bounded bilinear form on Hs(α, β) ×Hs(α, β). For s > 1/2,
i.e., r > 2, then a standard boundary condition of the form

(7) u(α) = uα u(β) = uβ

can be specified to close the model (1). However, for r < 1 or r = 1 + 2s with
s < 1/2, a trace-type of boundary condition of the form (7) cannot be specified.
Instead, a domain-type of boundary condition of the form

(8) u(x) = uα(x), x ∈ (α − δ, α), u(x) = uβ(x), x ∈ (β, β + δ)

is imposed for some δ > 0. The border case r = 1 has also been used in the non-local
diffusion model [3]. In this paper we consider problem (1) with r = 1, imposed with
the boundary condition (7). The boundary condition (8) can be treated similarly.

2.2. Galerkin finite element methods for the non-local diffusion model.

Previously continuous and discontinuous Galerkin finite element methods were de-
veloped to solve the non-local diffusion model [3]. We take the continuous linear
Galerkin finite element method as an example to discuss. The following error esti-
mate was proved in [10] for the linear finite element method under the assumption
that the true solution u ∈ H2(α, β). For any 0 < ε << 1, there exists a positive
constant C = C(ε) which is independent of h such that

(9) ‖u− uh‖L2(α,β) ≤ Ch2−ε‖u‖H2(α,β).

The estimate (9) shows that the finite element method to the non-local diffusion
model (1) reaches a quasi-optimal order convergence rate of O(h2−ε). But the
coefficient matrix of the finite element method of the non-local diffusion model is
dense or full. Thus, the computational cost of inverting the stiffness matrix of the
finite element method is O(N3) while the memory requirement of the finite element
method is of O(N2). This represents a significant increase of computational cost
and memory requirement of the finite element method compared to its analogue
for the classical differential equation models.

A simplified non-local diffusion model was proposed to reduce its computational
cost, by introducing a parameter δ that describes the horizon of the material and
further assuming δ = Mh with M being a fixed positive integer [3]. The benefit of
this assumption is that it significantly reduces the computational cost of the finite
element method to O(M2N) and the memory requirement to (MN). However,
this simplification does not seem to be physically reasonable, as the horizon of the
material is a physical property of the material of the finite bar which should be
independent of the computational mesh size h. This inconsistency is also reflected
in the error estimate of the corresponding finite element method, which now reduced
to the following sub-optimal order error estimate

(10) ‖u− uh‖L2(α,β) ≤ Ch‖u‖H2(α,β).

3. A linear collocation method for the non-local diffusion model

In this section we develop a linear collocation method for the non-local diffu-
sion model (1). The motivation is to replace all the double layer integrals in the
continuous and discontinuous Galerkin finite element methods by the single layer
integrals in the collocation method.

Let N be a positive integer. Then introduce a spatial partition on [α, β]

(11) α =: x0 < x1 < . . . < xi < . . . < xN := β.
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Let {φj}
N
j=0 be the standard “hat” basis functions associated with the node xj .

Then the approximation uh to the true solution of the non-local diffusion model
can be expressed as

(12) u(x) =

N
∑

j=0

ujφj(x)

with u0 := uα and uN := uβ. If we choose xi (i = 1, . . . , N−1) to be the collocation
points, then a collocation method can be formulated as follows

(13)

∫ β

α

ui − u(y)

|xi − y|
dy = b(xi), 1 ≤ i ≤ N − 1.

Let u := [u1, u2, . . . , uN−1]
T , f := [f1, f2, . . . , fN−1]

T , and A := [Ai,j ]
N−1
i,j=1. Then

the collocation method (13) can be expressed in a matrix form

(14) Au = f

with fi = b(xi) and Ai,j being defined by

(15) Ai,j =

∫ β

α

−φj

|xi − y|
dy, i 6= j, Ai,i =

∫ β

α

1− φi

|xi − y|
dy, 1 ≤ i ≤ N − 1.

Motivated by the fact that the coefficient matrix of the finite element method
for the non-local diffusion model is weakly ill-conditioned, we expect that a Krylov
subspace type of iterative method should perform more efficiently than a direct
solver. We look at the conjugate gradient method for (14) which is as follows [1]:
Let u0 be an initial guess, then compute r0 := f−Au0 and d1 := r0

for k = 2, 3, . . .

γk := rTk−1rk−1/r
T
k−2rk−2

dk := rk−1 + γkdk−1

ωk := rTk−1rk−1/d
T
kAdk

uk := uk−1 + ωkdk

rk := rk−1 − ωkAdk

Check for convergence; continue if necessary

end

u := uk

In the CG formulation, the evaluation of the matrix-vector multiplication Adk

requires O(N2) of computational work. Furthermore, the storage of the coefficient
matrix A also requires O(N2) of memory requirement. All other computations
in the CG formulation require only O(N) of computational work and memory.
Therefore, we need only to accelerate the matrix-vector multiplication Ad for any
vector d and to store A efficiently. This of course depends on the structure of the
matrix A, which in turn relies on the underlying partition (11). The rest of the
paper is devoted to develop such methods.

4. A fast collocation method on a uniform partition

In this section we develop a fast collocation method on a uniform partition. In
this case, the partition (11) reduces to

(16) xi = α+ ih, i = 0, 1, . . . , N h := (β − α)/N.
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We go through algebraic manipulations to find out that the stiffness matrix A

is symmetric and its upper triangular part is of the form

(17)

Ai,i = ln(i) + ln(N − i) + 2 1 ≤ i ≤ N − 1,

Ai,i+1 = −2 ln 2,

Ai,i+m = (m− 1) ln

(

m

m− 1

)

+ (m+ 1) ln

(

m

m+ 1

)

.

Theorem 1 The N − 1-by-N − 1 stiffness matrix A can be stored in 2N − 3 of

memory. Ad can be evaluated in O(N logN) of operations for any vector d ∈ R
N−1.

Proof. We split the matrix A as the sum of a diagonal matrix and a Toeplitz
matrix with zero diagonal entries

(18) A = diag(Ai,i)
N−1
i=1 +Ao.

Thus, instead of storing N(N − 1)/2 entries, we need only to store 2N − 3 nonzero
entries of the matrix A.

The Toeplitz matrix Ao can then be embedded into a 2(N − 1) × 2(N − 1)
circulant matrix C as follows [2, 6]

(19) C :=

(

Ao B

B Ao

)

B :=

















0 qN−2 . . . q2 q1
qN−2 0 qN−2 . . . q2
... qN−2 0

. . .
...

q2
...

. . .
. . . qN−2

q1 q2 . . . qN−2 0

















.

The circulant matrix C can be diagonalized by the discrete Fourier transformmatrix
as follows [4, 6]

(20) C = F−1 diag(Fc) F

where c is the first column vector of C and F is the 2(N − 1) × 2(N − 1) discrete
Fourier transform matrix. It is well known that the matrix-vector multiplication Fw

for w ∈ R
2(N−1) can be carried out in O(N logN) operations via the fast Fourier

transform (FFT). (20) shows that Cw can be evaluated in O(N logN) operations.
So Eq. (19) implies that Ad and so the conjugate gradient method can be evaluated
in O(N logN) operations per iteration! �

Remark 1 The numerical experiments in §5 indicate that the number of iter-

ations is O(logN), which suggests that the overall computational cost of the fast

conjugate gradient method is O(N log2 N).

5. A fast collocation method on a geometrically decreasing mesh

Peridynamics model intends to handle deformation of a continuous body involv-
ing discontinuity or other singularity. In this case a geometrically decreasing mesh
is often used. We hence develop a fast collocation method on such a mesh. We
consider the case that the displacement has a singularity at the right-end point β.
In this case, the grids are defined by

(21) x0 := α, xi := α+

i
∑

k=1

β − α

2k
, 1 ≤ i ≤ N − 1, xN := β.

The coefficient matrix A in the matrix equation (14) has a more complex structure.
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5.1. Structure of the coefficient matrix. Because the right-most cell has the
same size as its left neighbor and so violates the geometrically decreasing pattern,
the stiffness matrix A is naturally divided into two parts: the first N − 2 columns
and the (N − 1)th column.

In the first part the entries of the main diagonal are

(22) Ai,i = ln
(

2i−1 − 1
)

+ ln 2 + 2, 1 ≤ i ≤ N − 2

The entries on the superdiagonal and subdiagonal are

(23)
Ai,i+1 = −3 ln

(

3

2

)

, 1 ≤ i ≤ N − 3

Ai+1,i = −
3

2
ln 3. 1 ≤ i ≤ N − 2

For m ≥ 2, the entries on each diagonal are given by

(24)

Ai,i+m =
(

2m+1 − 1
)

ln

(

2(2m − 1)

2m+1 − 1

)

+ 2
(

2m−1 − 1
)

ln

(

2m − 1

2(2m−1 − 1)

)

Ai+m,i =
(

2−
1

2m

)

ln
( 2m − 1

2m+1 − 1

)

+
(

1−
1

2m−1

)

ln
( 2m − 1

2m−1 − 1

)

,

1 ≤ i ≤ N − 1−m.

The second part is A(i, N − 1), for 1 ≤ i ≤ N − 1,

(25)

Ai,N−1 = 2N−i−1 ln
(2N−i−1 − 1

2N−i−1

)

+
(

2N−i−1 − 2
)

ln
(2N−i−1 − 1

2N−i−1 − 2

)

AN−2,N−1 = −2 ln 2;

AN−1,N−1 = ln(2N−1 − 1) + 2.

5.2. Efficient storage and fast matrix-vector multiplication. In this sub-
section we prove the following theorem

Theorem 2 The N − 1-by-N − 1 stiffness matrix A can be stored in 2N − 3 of

memory. Ad can be evaluated in O(N logN) of operations for any vector d ∈ R
N−1.

Proof. A careful examination of these entries reveals that except for the main
diagonal and the last column the stiffness matrix A has a Toeplitz structure

(26) Ai,j = aj−i |j − i| ≥ 1, j 6= N − 1.

Here ak can be defined by the entries of A in first row (except for the last one in
the column) or in first column, namely

(27)
ak := A1,1+k, 1 ≤ k ≤ N − 3,

a−k := A1+k,1, 1 ≤ k ≤ N − 2.

We accordingly define a Toeplitz matrix T as follows

(28)
Ti,i := 0, 1 ≤ i ≤ N − 1, Ti,j := aj−i, j < i ≤ N − 1,

Ti,j := aj−i, i < j ≤ N − 2, T1,N−1 := 0.
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Then it is clear that S := A−T is a sparse matrix. As a matter of fact, we conclude
from the definition of T that

(29)
S1,N−1 = A1,N−1, Si,N−1 = Ai,N−1 −A1,N−i, 2 ≤ i ≤ N − 2,

Si,i = Ai,i, 1 ≤ i ≤ N − 1, Si,j = 0, otherwise.

In summary, the stiffness matrix A can be decomposed as the sum of a Toeplitz
matrix T and a sparse matrix S. We conclude from (28) that only the 2N − 5
nonzero entries of the N − 1-by-N − 1 Toeplitz matrix T needs to be stored. As for
the sparse matrix S, only the entries on the main diagonal or the (N − 1)th column
are nonzero and thus have to be stored. These are 2N − 3 entries. Therefore, to
store A we need to store totally 4N − 8 entries.

For any vector d ∈ R
N−1,

(30) Ad = Sd+ Td.

Td can be evaluated in O(N logN) operations, while Sd can be evaluated in O(N)
operations. Thus, we prove the theorem. �

We note that the matrix A is non-symmetric, so a nonsymmetric conjugate gra-
dient type of method should be used. In this paper we use a generalized minimum
residual (GMRES) method to solve the problem (14), in which the matrix is stored
and the matrix-vector multiplication is evaluated in the manner proved in Theorem
2.

Let u0 be an initial guess, then compute r0 := f−Au0 and h10 := ‖r0‖2

while (hk+1,k > 0)

qk := rk/hk+1,k

k := k+ 1

rk := Aqk

for i = 1:k

hik := qTi rk

rk := rk − hikqi

end

hk+1,k = ‖rrk‖2

uk = u0 +Qkyk where ‖h10e1 − H̃kyk‖2 = min
end
u := uk
Here,

(31) H̃k :=





















h11 h12 . . . . . . h1k
h21 h22 . . . . . . h2k

0
...

...
. . .

. . .
...

...
. . .

0 . . . . . . hk,k−1 hk,k

0 0 . . . . . . hk+1,k





















.

is an upper Hessenberg matrix.
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6. Numerical Experiments

In this section we carry out numerical experiments to observe the performance
of the fast collocation method developed in this paper. All the numerical methods
were implemented using Matlab.

6.1. Numerical experiments with a uniform mesh. In this example, the
spatial domain (α, β) = (0, 1). The true solution is chosen to be u(x) = x2(1−x)2,
which corresponds to

(32) b(x) =
25

6
x4 −

25

3
x3 +

9

2
x2 −

1

3
x−

1

12
.

We use Gaussian elimination, conjugate gradient (CG) method, and the fast conju-
gate gradient (FCG) method to solve the system (14) to investigate the performance
of these methods. In Table 1 we present the L2 and L∞ errors of the numerical solu-
tions solved by these methods with gradually decreasing mesh size h from h = 2−6

to h = 2−14. These results show that the three methods generate numerical so-
lutions with the same accuracy. A linear regression is used to fit the convergence
rates and the associated constants

(33) ‖uh − u‖Lp(α,β) ≤ Mγh
γ , p = 2,∞,

which shows the convergence rate of the collocation method seems to be close to 1.5
that is half order less accurate than that of the correponding Galerkin finite element
method [3, 10]. Further, the results in Table 1 show that the condition number of
the stiff matrix get doubled each time the mesh size is reduced by half. This seems
to indicate that the condition number of the stiffness matrix depends inversely on
the grid mesh size. These results seems also indicate that the number of iterations
in the conjugate gradient method and the fast conjugate gradient method increases
logarithmically with respect to the number of unknowns. Finally, these numerical
results show that the conjugate gradient method performs better than the Gauss
elimination, while the fast conjugate gradient method performs the most efficiently.
For example, at the finest mesh size h = 2−14, the CG method is about 150 times
more efficient than Gauss elimination, while the fast CG method is about 240 times
more efficient than the CG method.

6.2. Numerical experiments with a geometrically decreasing mesh. Since
the one-dimensional non-local diffusion model describes the deformation of a finite
bar involving singularity, it is natural to look at a problem with a singularity at
one of the end points. For such a problem, a geometrically decreasing mesh is more
efficient than a uniform mesh. Hence, in this example, we look at the performance
of the fast collocation method on a geometrically decreasing mesh. In the example
run, the spatial domain (α, β) = (0, 1). The true solution u(x) and corresponding
RHS function b(x) are:

(34)

u(x) =
1

1000(1.001− x)

b(x) =
ln(1.001) + ln(0.001)− 2 ln(1.001− x)

1.001− x
.

In this example, the true solution has a boundary layer near the right end point.
We compare the performance of the fast collocation method with a geometrically
decreasing mesh and that of the fast collocation method with a uniform mesh. We
present the results in Table 2, which show that the fast collocation method with a
geometrically decreasing mesh is more efficient as anticipated.
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Table 1. Performance of the Gaussian elimination, the conjugate
gradient (CG) method, and the fast conjugate gradient (FCG)
method.

h L2 L∞ Iteration Cond cpuT
2−6 2.4779× 10−4 3.0678× 10−4 - 124.7 0.0469s
2−7 9.6034× 10−5 1.1345× 10−4 - 251.7 0.0781s
2−8 3.8711× 10−5 4.3739× 10−5 - 505.0 0.3281s
2−9 1.6231× 10−5 1.7655× 10−5 - 1010 3.6250s

Gauss 2−10 7.0375× 10−6 7.4347× 10−6 - 2020 26.609s
2−11 3.1318× 10−6 3.2411× 10−6 - 4029 4min6s
2−12 1.4028× 10−6 1.4506× 10−6 - 8050 20min4s
2−13 6.5249× 10−7 6.6054× 10−7 - 16100 3h17min
2−14 3.0381× 10−7 3.0597× 10−7 - 32200 1day2h
2−6 2.4779× 10−4 3.0678× 10−4 23 124.7 0.0156s
2−7 9.6034× 10−5 1.1345× 10−4 28 251.7 0.0313s
2−8 3.8711× 10−5 4.3739× 10−5 31 505.0 0.3281s
2−9 1.6231× 10−5 1.7655× 10−5 34 1010 0.3750s

CG 2−10 7.0375× 10−6 7.4347× 10−6 37 2020 0.8906s
2−11 3.1318× 10−6 3.2411× 10−6 40 4029 3.5313s
2−12 1.4028× 10−6 1.4506× 10−6 43 8050 36.890s
2−13 6.5249× 10−7 6.6054× 10−7 48 16100 2min45s
2−14 3.0381× 10−7 3.0597× 10−7 49 32200 9min47s
2−6 2.4779× 10−4 3.0678× 10−4 21 124.7 0.0156s
2−7 9.6034× 10−5 1.1345× 10−4 27 251.7 0.0313s
2−8 3.8711× 10−5 4.3739× 10−5 31 505.0 0.0469s
2−9 1.6231× 10−5 1.7655× 10−5 34 1010 0.0938s

FCG 2−10 7.0375× 10−6 7.4347× 10−6 37 2020 0.2031s
2−11 3.1318× 10−6 3.2411× 10−6 40 4029 0.3096s
2−12 1.4028× 10−6 1.4506× 10−6 43 8050 0.5781s
2−13 6.5249× 10−7 6.6054× 10−7 48 16100 1.2656s
2−14 3.0381× 10−7 3.0597× 10−7 50 32200 2.4063s

Mγ 0.0622 0.0750 - - -
γ 1.3156 1.3737 - - -

Table 2. Compare the uniform and non-uniform grid methods

Uniform Non-uniform
Grids L∞ − error Grids L∞ − error
8 0.6005 3 0.4678
16 0.5723 4 0.3937
32 0.5234 5 0.3150
64 0.4554 6 0.2418
128 0.3694 7 0.1780
256 0.2722 8 0.1248
512 0.1788 9 0.0824
1024 0.1050 10 0.0518
2048 0.0567 11 0.0328
4096 0.0297 12 0.0234
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7. Concluding Remarks

The classical theory of solid mechanics assumes that all internal forces act
through zeros distance and leads to mathematical models which are described by
partial differential equations. These models do not properly describe problems with
spontaneous formation of discontinuities or other singularities. Silling proposed a
non-local diffusion model as a reformulation of solid mechanics [8], which does not
explicitly involve the notion of deformation gradients and thus applies directly to
problems with singularities. However, the non-local nature of the new model re-
sults in numerical difficulties that were not encountered in the context of classical
models described by partial differential equations.

Galerkin finite element methods developed and analyzed for the non-local dif-
fusion model suffer from two major shortcomings computationally, despite their
theoretical advantages [3, 5, 7, 10]: (i) They generate a dense or even full stiffness
matrix, which requires O(N3) of computational work and O(N2) of memory for
storage. (ii) Each entry in the stiffness matrix involves two-folds of integration,
which makes the assembly of the stiffness matrix more expensive. As a matter of
fact, matrix assembly often takes more computational time than the solution of the
discrete linear system does.

In this paper we develop a fast collocation method which possesses the follow-
ing advantages: (i) Collocation method reduces the two-fold integration to one-fold
integration for the non-local diffusion model in one space dimension. (ii) By explor-
ing the structure of the stiffness matrix, the fast collocation method significantly
reduces the number of entries to be computed in assembling the stiffness matrix.
(iii) The fast collocation method significantly reduces the computational cost in the
matrix-vector multiplication in the conjugate gradient method. (iv) The fast collo-
cation method significantly reduces the memory requirement to store the stiffness
matrix.

We conclude this paper by the following remarks: (i) Although we have focused
on the development of the fast collocation method for piecewise linear approxima-
tions, the development also works for high-order approximations. (ii) We note that
a piecewise-constant collocation method yields inaccurate results, this is in con-
trast to piecewise-constant Galerkin finite element method which has been shown
to work well [3]. (iii) In this paper we take the advantage of the relatively simple
geometry of the one space dimension and have evaluated the entries analytically
in the fast collocation method. However, in a multidimensional analogue an an-
alytical evaluation of the stiffness matrix is impossible in general. A numerical
quadrature will have to be used. We refer the evaluation and discussion of singular
integrals to the work in [5, 9, 10]. (iv) In this paper we have also developed a fast
piecewise-linear collocation method on a geometrically decreasing grid, aiming at
handling point singularities for one-dimensional problems. In this case the finest
grid size size decreases rapidly to zero and consequently the stiffness matrix has a
very mild size. It is not clear whether any statistically meanful information on the
asymptotic behavior such as the number of iterations of the iterative method or
the condition number of the stiffness matrix can be observed for such a small size
problem. We believe this issue could be studied in a more meanful way for mul-
tidimensional problems in the future. (v) For a more realistic non-local diffusion
model in multiple space dimensions, we feel that a domain decomposition approach
probably should be used, with a coarse uniform mesh away from a singularity and a
geometrically decreasing mesh near the singularity. (vi) An important issue in the
study of any numerical method is the convergence estimate and the corresponding
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error estimate. The fast collocation method developed in this paper calls for a
rigorous theoretical analysis and convergence error estimates, which remains to be
proved and will be investigated in the future.
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