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A NEW ENERGY-CONSERVED S-FDTD SCHEME FOR

MAXWELL’S EQUATIONS IN METAMATERIALS

WANSHAN LI, DONG LIANG, AND YANPING LIN

Abstract. In this paper, we develop a new energy-conserved S-FDTD scheme for the Maxwell’s
equations in metamaterials. We first derive out the new property of energy conservation of the
governing equations in metamaterials, and then propose the energy-conserved S-FDTD scheme
for solving the problems based on the staggered grids. We prove that the proposed scheme is
energy-conserved in the discrete form and unconditionally stable. Based on the energy method,
we further prove that the scheme for the Maxwell’s equations in metamaterials is first order in
time and second order in space. Numerical experiments are carried out to confirm the energy
conservation and the convergence rates of the scheme. Moreover, numerical examples are also
taken to show the propagation features of electromagnetic waves in the DNG metamaterials.

Key words. Maxwell’s equations, metamaterials, energy-conserved, splitting, FDTD, conver-
gence

1. Introduction

Metamaterials are defined as artificial engineered materials exhibiting unique or
unusual properties that cannot be found in natural materials at the frequencies of
interest. Metamaterials have been used in many applications, that allow going be-
yond some limitations encountered when using natural materials, such as microwave
and optical components, interconnects for wireless telecommunications, radar and
defense, nanolithography and medical imaging at sub-wavelength resolution, con-
struction of perfect lens and so on (see, [1, 27, 25, 26, 5, 9]).

Many kinds of metamaterials, such as double-negative (DNG) materials, neg-
ative index materials (NIM), left-handed materials (LHM) and back-ward (BW)
media, are constructed, developed and studied ([4, 6, 21, 31]). For examples, DNG
materials mean that the permittivity and permeability of the materials are both
negative at the frequencies of interest; the NIM materials refer to the fact that the
materials with simultaneously negative real parts of permittivity and permeability
exhibit a negative real part of the refraction index, leading to anomalous refraction
properties. In these kinds of metamaterials, the periodicity is much smaller than
the wavelength of the impinging electromagnetic wave. Hence they are useful and
customary continuous materials.

Some study of numerical simulations for Maxwell’s equations in metamaterials
have carried out (see, for example, [28]). Such simulations are exclusively based on
the finite-difference time-domain (FDTD) methods. Due to the constraint (i.e. the
CFL stability condition) of the FDTD methods, it leads to impractical computa-
tional costs and memory requirement in broadband applications in high dimensional
and large domains. Therefore, there is an urgent call for developing more efficien-
t and reliable numerical methods for metamaterial simulations. To overcome the
CFL restriction of the FDTD schemes for the standard Maxwell’s equations, some
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ADI-FDTD ([22, 29, 8, 12]), S-FDTD ([7]) and EC-S-FDTD ([2]) schemes were
developed for the standard Maxwell’s equations. But, there are few results of the
ADI-FDTD, S-FDTD schemes for solving the electromagnetic problems in meta-
materials. On the theoretical analysis aspect, for problems of metamatrials, some
work of finite element methods (FEM) and the discontinuous Galerkin methods
(DG) were analayzed ([10, 11, 13, 14, 15, 16, 17, 18, 19, 20]). However, there is
no theoretical analysis work of the FDTD, ADI-FDTD, S-FDTD schemes for the
Maxwell’s equations that metamaterials are involved.

In this paper, we develop the energy-conserved S-FDTD scheme for the Maxwell’s
equations in metamaterials by focussing on preserving physical property of ener-
gy conservation. We first derive out the new property of energy conservation of
the Maxwell’s equations in metamaterials. We then propose an energy-conserved
splitting FDTD scheme (EC-S-FDTD) for solving the problems that metamate-
rials are involved. We prove that the proposed EC-S-FDTD scheme satisfies the
energy-conserved identity in the discrete form and the scheme is unconditionally
stable. We further analyze the error estimates of the scheme and prove strictly that
the scheme is of first-order convergence in time step and second-order convergence
in spatial step. In numerical experiments, we show numerically the energy con-
servation property and the convergence rates of the EC-S-FDTD scheme and also
simulate numerically the physical phenomena of electromagnetic wave propagation
in the NDG metamaterials ([24, 30, 23]). Numerical results confirm our theoretical
results.

The paper is organized as follows. Section 2 introduces the Maxwell’s equations
in metamaterials and derives the new energy conservation identity of electromag-
netic fields in metamaterials. A new energy-conserved S-FDTD scheme is proposed
in Section 3. We prove the discrete energy conservation, the unconditional stability
of the proposed scheme in Section 4 and analyze the convergence of the scheme in
Section 5. Numerical experiments are presented in Section 6. Finally, conclusions
are addressed in Section 7.

2. Maxwell’s equations in metamaterials

We consider the Maxwell’s equations in the DNG metamaterials with the lossy
Drude model. The general Maxwell’s equations are

∇×E = −∂B

∂t
,(1)

∇×H =
∂D

∂t
,(2)

where E(x, t) and H(x, t) are the electric and magnetic fields, D(x, t) and B(x, t)
are the corresponding electric and magnetic flux densities. D and B are related to
E and H through the constitutive relations:

(3) D = ǫ0E+P ≡ ǫE, B = µ0H+M ≡ µH,

where ǫ0 is the vacuum permittivity, µ0 is the vacuum permeability, and P and
M are the induced electric and magnetic polarizations, respectively. We use the
lossy Drude polarization and magnetization models [3, 32] to describe the DNG
metamaterials. In the frequency domain, the permittivity and permeability are
described as:

(4) ǫ(ω) = ǫ0
(

1−
ω2
pe

ω(ω + iΓe)

)

, µ(ω) = µ0

(

1−
ω2
pm

ω(ω + iΓm)

)

,
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where ωpe and ωpm are the significant physical parameters representing the charac-
ter of plasma, i.e., electric and magnetic plasma resonance frequencies respectively,
ω is the angular frequency of the incident wave, and Γe and Γm are the electric and
magnetic damping frequencies, respectively.

The corresponding time-domain equations for the polarization P and the mag-
netization M are:

∂2P

∂t2
+ Γe

∂P

∂t
= ǫ0ω

2
peE,

∂2M

∂t2
+ Γm

∂M

∂t
= µ0ω

2
pmH.

(5)

Let the induced electric and magnetic currents be

J =
∂P

∂t
, K =

∂M

∂t
.(6)

Thus, the Maxwell’s equations modeling the electromagnetic fields in the DNG
metamaterial medium described as:

ǫ0
∂E

∂t
= ∇×H− J,(7)

µ0
∂H

∂t
= −∇×E−K,(8)

∂J

∂t
+ ΓeJ = ǫ0ω

2
peE,(9)

∂K

∂t
+ ΓmK = µ0ω

2
pmH.(10)

Assume that the boundary of Ω is perfectly conducting, i.e.,

n×E = 0, or n×H = 0, on ∂Ω,(11)

where n is the unit outward normal to ∂Ω. The initial conditions are

E(x, y, t) = E0(x, y, t), H(x, y, t) = H0(x, y, t),(12)

J(x, y, t) = J0(x, y, t), K(x, y, t) = K0(x, y, t).(13)

We now derive the energy conservation of the Maxwell’s equations (7)-(13) in
metamaterials and without sources. From (7) -(8) and (6), we get

∫ t

0

{

(

ǫ0
∂E

∂t
,E

)

+
(

µ0
∂H

∂t
,H

)

+
(

J,E
)

+
(

K,H
)

}

dτ = −
∫ t

0

∫

∂Ω

(E×H) · ndsdτ,

(14)

where (·, ·) denotes the L2(Ω) inner product. (14) follows the Poynting theory.
The first and third terms on the left side of (14) represent the increasing rates of
the electric field energy and the polarization power respectively, while the terms
(µ0

∂H
∂t

,H) and (K,H) are the increasing rates of the magnetic field energy and the
magnetization power respectively. With equations (9), (10) and the PEC boundary
condition (11), it holds that

1

2

d(ǫ0E,E)

dt
+

1

2

d(µ0H,H)

dt
+

1

2ǫ0ω2
pe

d(J,J)

dt
+

1

2µ0ω2
pm

d(K,K)

dt

+
Γe

ǫ0ω2
pe

(J,J) +
Γm

µ0ω2
pm

(K,K) = 0.

(15)
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Let W (t) be the electromagnetic energy in the case of metamaterials. Integrating
with respect to t for both sides of (15), we finally have that

W (t) ≡ǫ0||E(t)||2 + µ0||H(t)||2 + 1

ǫ0ω2
pe

||J(t)||2 + 1

µ0ω2
pm

||K(t)||2

+
2Γe

ǫ0ω2
pe

∫ t

0

||J(τ)||2dτ +
2Γm

µ0ω2
pm

∫ t

0

||K(τ)||2dτ

=ǫ0||E(0)||2 + µ0||H(0)||2 + 1

ǫ0ω2
pe

||J(0)||2 + 1

µ0ω2
pm

||K(0)||2 ≡ W (0),

(16)

which indicates that the electromagnetic energy is conserved. The above analysis
leads to a new energy conservation of Maxwell’s equations in metamaterials.

Theorem 1. (Energy conservation) For Maxwell’s equations (7)-(13) in metama-
terials, the electromagnetic energy (16) is conserved.

Remark 1: From (16), it is clear that in metamaterials with no sources, the
electromagnetic energy W (t) is conserved. This physical invariance of energy is the
most important feature on the prorogation of electromagnetic wave. It thus is an
important issue to construct numerical schemes to preserve energy conservation for
solving the electromganetic system of PDEs in metamaterials. In this study, we
will further propose an efficient energy-conserved splitting FDTD scheme to the
Maxwell’s system in metamaterials that preserves the new important identity of
energy conservation (16) in the discrete form.

3. The energy-conserved S-FDTD scheme

For simplicity, we consider the two-dimensional problems in metamaterials. The
domain is Ω= [a, b]×[c, d], t ∈ [0, T ]. The Maxwell’s equations in two dimensional
metamaterials are as follows

ǫ0
∂Ez

∂t
=

∂Hy

∂x
− ∂Hx

∂y
− Jz,(17)

µ0
∂Hx

∂t
= −∂Ez

∂y
−Kx,(18)

µ0
∂Hy

∂t
=

∂Ez

∂x
−Ky,(19)

∂Jz
∂t

+ ΓeJz = ǫ0ω
2
peEz,(20)

∂Kx

∂t
+ ΓmKx = µ0ω

2
pmHx,(21)

∂Ky

∂t
+ ΓmKy = µ0ω

2
pmHy,(22)

and the initial conditions are

Ez(x, y, t) = E0(x, y, t), H(x, y, t) = H0(x, y, t),(23)

Jz(x, y, t) = J0(x, y, t), K(x, y, t) = K0(x, y, t),(24)

the PEC boundary conditions are

(25) Ez(a, y, t) = Ez(b, y, t) = Ez(x, c, t) = Ez(x, d, t) = 0.

First, we take the following partitions. Let I, J , and N be positive integers. Let
∆x = (b − a)/I and ∆y = (d − c)/J be the spacial step sizes of x−direction and
y−direction respectively, and ∆t = T/N be the time step length. We adopt the
Yee’s staggered grids. For i=0, 1, · · · , I, j=0, 1, · · · , J and n=0, 1, · · · , N , define
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xi = a + i∆x, yj = c + j∆y, tn = n∆t, xi+ 1
2
= xi +

1
2∆x, yj+ 1

2
= yj +

1
2∆y and

tn+ 1
2
= tn + 1

2∆t. The spacial mesh indices are (i, j + 1
2 ) for Hx and Kx, (i+

1
2 , j)

for Hy and Ky, and (i, j) for Ez and Jz. The grid function Un
α,β is defined on the

staggered grid where α= i or i+1
2 and β=j or j+1

2 . The spatial difference operators
δxU , δyU and δuδvU are defined as:

δtU
n
α,β =

U
n+ 1

2

α,β − U
n− 1

2

α,β

∆t
, δxU

n
α,β =

Un
α+ 1

2 ,β
− Un

α− 1
2 ,β

∆x
,

δyU
n
α,β =

Un
α,β+ 1

2

− Un
α,β− 1

2

∆y
, δuδvU

n
α,β = δu(δvU

n
α,β),

(26)

where u and v can be taken as x− or y−directions. For the grid function Un
α,β , we

may omit the subscript if there is no confusion.
Then for grid functions defined on the staggered grid U :={Ui,j}, V :={Vi,j+ 1

2
},

W :={Wi+ 1
2 ,j

} and F :={(Vi,j+ 1
2
,Wi+ 1

2 ,j
)}, the discrete L2 norms are defined as

||U ||2E =

J−1
∑

j=0

I−1
∑

i=0

U2
i,j∆x∆y, ||V ||2Hx

=

J−1
∑

j=0

I−1
∑

i=0

V 2
i,j+ 1

2
∆x∆y,

||W ||2Hy
=

J−1
∑

j=0

I−1
∑

i=0

W 2
i+ 1

2 ,j
∆x∆y, ||F ||2H = ||V ||2Hx

+ ||W ||2Hy
.

(27)

The equations (17)-(22) can be split into the following forms in each time interval
[tn, tn+1]:

(28)



















ǫ0
2

∂Ez

∂t
= −∂Hx

∂y
− Jz

µ0
∂Hx

∂t
= −∂Ez

∂y
−Kx

∂Kx

∂t
+ ΓmKx = µ0ω

2
pmHx

∂Jz

∂t
+ ΓeJz = ǫ0ω

2
peEz

and











ǫ0
2

∂Ez

∂t
=

∂Hy

∂x

µ0
∂Hy

∂t
= ∂Ez

∂x
−Ky

∂Ky

∂t
+ ΓmKy = µ0ω

2
pmHy

.

Applying the spatial discretization approximation on the staggered grid, we pro-
pose the energy-conserved splitting finite-difference time-domain method (EC-S-
FDTD) as follows.

Stage 1 : Compute the intermediate variables E∗
z , H

n+1
x , Kn+1

x and Jn+1
z from En

z ,
Hn

x , K
n
x and Jn

z by

ǫ0
E∗

zi,j
− En

zi,j

∆t
= −1

2
δy
{

Hn
x
i,j+ 1

2

+Hn+1
x
i,j+1

2

}

− 1

2
(Jn

zi,j
+ Jn+1

zi,j
),(29)

µ0

Hn+1
x
i,j+1

2

−Hn
x
i,j+1

2

∆t
= −1

2
δy
{

En
z
i,j+1

2

+ E∗
z
i,j+ 1

2

}

− 1

2
(Kn+1

x
i,j+1

2

+Kn
x
i,j+1

2

),(30)

Kn+1
x
i,j+1

2

−Kn
x
i,j+1

2

∆t
+

Γm

2
(Kn+1

x
i,j+1

2

+Kn
x
i,j+1

2

) =
µ0ω

2
pm

2
(Hn+1

x
i,j+ 1

2

+Hn
x
i,j+1

2

),(31)

Jn+1
zi,j

− Jn
zi,j

∆t
+

Γe

2
(Jn+1

zi,j
+ Jn

zi,j
) =

ǫ0ω
2
pe

2
(En

zi,j
+ E∗

zi,j
);(32)
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Stage 2 : Compute the variables En+1
z , Hn+1

y and Kn+1
y from E∗

z , H
n
y and Kn

y by

ǫ0
En+1

zi,j
− E∗

zi,j

∆t
=

1

2
δx
{

Hn
yi,j

+Hn+1
yi,j

}

,(33)

µ0

Hn+1
y
i+1

2
,j
−Hn

y
i+1

2
,j

∆t
=

1

2
δx
{

E∗
z
i+1

2
,j
+ En+1

z
i+1

2
,j

}

− 1

2
(Kn

y
i+1

2
,j
+Kn+1

y
i+1

2
,j
),(34)

Kn+1
y
i+1

2
,j
−Kn

y
i+1

2
,j

∆t
+

Γm

2
(Kn

y
i+1

2
,j
+Kn+1

y
i+1

2
,j
) =

µ0ω
2
pm

2
(Hn

y
i+1

2
,j
+Hn+1

y
i+1

2
,j
).(35)

The boundary conditions are

E∗
z0,j

= E∗
zI,j

= E∗
zi,0

= E∗
zi,J

= 0,

En+1
z0,j

= En+1
zI,j

= En+1
zi,0

= En+1
zi,J

= 0.
(36)

The initial conditions are

E0
zi,j

= E0(xi, yj), H0
x
i,j+1

2

= Hx0(xi, yj+ 1
2
), H0

y
i+1

2
,j
= Hy0(xi+ 1

2
, yj).(37)

Remark 2: The proposed two-step EC-S-FDTD scheme can be solved convenient-
ly. For Stage 1, The scheme of (29) can be easily to rewrite as a tri-diagonal linear
system of E∗

z with the PEC boundary conditions (36) by replacing the relations of
(30) (31) and (32) into (29), where the Thomas’ algorithm can be used to solve the
tri-diagonal linear system, and then from obtained E∗

z , other Hx, Jz, and Kx can be
further calculated from (30) (31)(32). Similarly, Stage 2 can be easily solved. The
important feature is that the proposed scheme preserves the energy conservation
for all time and is unconditionally stable, which we will strictly prove in the next
section. The error estimates will also be analyzed in the following sections.

4. The discrete energy conservation

In this section, we will analyze the energy-conserved property of the proposed
scheme.

Theorem 2. (Discrete energy conservation) For the integers n > 0, let Hn :=
{(Hn

x
i,j+1

2

, Hn
y
i+1

2
,j
)} and En

z := {En
zi,j

} be the solutions of the scheme (29)-(37).

Then it satisfies the energy conservation in the discrete form that for n ≥ 0

||ǫ
1
2
0 E

n+1
z ||2E + ||µ

1
2
0 H

n+1||2H + || 1

ǫ0
1
2ωpe

Jn+1
z ||2E + || 1

µ0
1
2ωpm

Kn+1||2H

+

n−1
∑

i=0

2∆tΓe||
1

ǫ0
1
2ωpe

J
i+ 1

2
z ||2E +

n−1
∑

i=0

2∆tΓm|| 1

µ0
1
2ωpm

Ki+ 1
2 ||2H

= ||ǫ
1
2
0 E

0
z ||2E + ||µ

1
2
0 H

0||2H + || 1

ǫ0
1
2ωpe

J0
z ||2E + || 1

ǫ0
1
2ωpm

K0||2H ,

(38)

where f i+ 1
2 = fi+fi+1

2 .

Proof. Multiplying both sides of (29) with ∆t(E∗
zi,j

+ En
zi,j

) and multiplying both

sides of (30) with ∆t(Hn+1
x
i,j+ 1

2

+Hn
x
i,j+1

2

), we can get:

ǫ0(E
∗2

zi,j
− En2

zi,j
) = −∆t

2
δy
{

H∗
xi,j

+Hn
xi,j

}

(E∗
zi,j

+ En
zi,j

)

−∆t

2
(Jn

zi,j
+ Jn+1

zi,j
)(E∗

zi,j
+ En

zi,j
),(39)
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µ0(H
n+12

x
i,j+ 1

2

−Hn2

x
i,j+1

2

) = −∆t

2
δy
{

E∗
z
i,j+ 1

2

+ En
z
i,j+ 1

2

}

(Hn+1
x
i,j+1

2

+Hn
x
i,j+1

2

)

−∆t

2
(Kn+1

x
i,j+1

2

+Kn
x
i,j+1

2

)(Hn+1
x
i,j+ 1

2

+Hn
x
i,j+ 1

2

).(40)

From (31) and (32), we have

Hn+1
x
i,j+ 1

2

+Hn
x
i,j+1

2

=
2

∆tµ0ω2
pm

(Kn+1
x
i,j+1

2

−Kn
x
i,j+1

2

) +
Γm

µ0ω2
pm

(Kn+1
x
i,j+1

2

+Kn
x
i,j+1

2

),

E∗
zi,j

+ En
zi,j

=
2

∆tǫ0ω2
pe

(Jn+1
zi,j

− Jn
zi,j

) +
Γe

ǫ0ω2
pe

(Jn+1
zi,j

+ Jn
zi,j

).

Substituting the above relations into (39) and (40), summing over all terms in these
two equations and adding them together, we get that

ǫ0||E∗
z ||2E − ǫ0||En

z ||2E + µ0||Hn+1
x ||2Hx

− µ0||Hn
x ||2Hx

(41)

= −
J−1
∑

j=0

I−1
∑

i=0

[ 1

ǫ0ω2
pe

(Jn+12

zi,j
− Jn2

zi,j
) +

∆tΓe

2ǫ0ω2
pe

(Jn
zi,j

+ Jn+1
zi,j

)2
]

∆x∆y

−
J−1
∑

j=0

I−1
∑

i=0

[ 1

µ0ω2
pm

(Kn+12

x
i,j+1

2

−Kn2

x
i,j+1

2

) +
∆tΓm

2µ0ω2
pm

(Kn
x
i,j+1

2

+Kn+1
x
i,j+1

2

)2
]

∆x∆y

= − 1

ǫ0ω2
pe

(||Jn+1
z ||2E − ||Jn

z ||2E)−
2∆tΓe

ǫ0ω2
pe

||J
n
z + Jn+1

z

2
||2E

− 1

µ0ω2
pm

(||Kn+1
x ||2Hx

− ||Kn
x ||2Hx

)− 2∆tΓm

µ0ω2
pm

||K
n
x +Kn+1

x

2
||2Hx

.

Similarly treating equations (33)-(37), we obtain that

ǫ0||En+1
z ||2E − ǫ0||E∗

z ||2E + µ0||Hn+1
y ||2Hy

− µ0||Hn
y ||2Hy

(42)

= −
J−1
∑

j=0

I−1
∑

i=0

[ 1

µ0ω2
pm

(Kn+12

y
i+1

2
,j
−Kn2

y
i+1

2
,j
) +

∆tΓm

2µ0ω2
pm

(Kn
y
i+1

2
,j
+Kn+1

y
i+1

2
,j
)2
]

∆x∆y

= − 1

µ0ω2
pm

(||Kn+1
y ||2Hy

− ||Kn
y ||2Hy

)− 2∆tΓm

µ0ω2
pm

||
Kn

y +Kn+1
y

2
||2Hy

.

Combining equations (41) with (42), we finally have that for any n ≥ 0

ǫ0||En+1
z ||2E + µ0||Hn+1

x ||2Hx
+ µ0||Hn+1

y ||2Hy
+

1

µ0ω2
pm

||Kn+1
x ||2Hx

+
1

µ0ω2
pm

||Kn+1
y ||2Hy

+
1

ǫ0ω2
pe

||Jn+1
z ||2E +

2∆tΓm

µ0ω2
pm

||K
n
x +Kn+1

x

2
||2Hx

+
2∆tΓm

µ0ω2
pm

||
Kn

y +Kn+1
y

2
||2Hy

+
2∆tΓe

ǫ0ω2
pe

||J
n
z + Jn+1

z

2
||2E

= ǫ0||En
z ||2E + µ0||Hn

x ||2Hx
+ µ0||Hn

y ||2Hy
+

1

µ0ω2
pm

||Kn
x ||2Hx

+
1

µ0ω2
pm

||Kn
y ||2Hy

+
1

ǫ0ω2
pe

||Jn
z ||2E .(43)

Summing (43) overall all n from 0 to n leads to (38). This ends the proof. �

From Theorem 2, we can have the following stability result.



782 W. LI, D. LIANG, AND Y. LIN

Theorem 3. (Unconditional stability) The proposed scheme (29)-(37) is uncondi-
tionally stable.

5. Convergence analysis

In order to analyze the error estimates of our scheme (29)-(37), we first derive
the truncation errors of the scheme by finding an equivalent scheme.

From equations (29) and (33), we get the expression of E∗
z

E∗
zi,j

=
1

2

{

(En
zi,j

+ En+1
zi,j

)− ∆t

2ǫ0
δy(H

n
xi,j

+Hn+1
xi,j

)− ∆t

2ǫ0
δx(H

n
yi,j

+Hn+1
yi,j

)

−∆t

2ǫ0
(Jn

zi,j
+ Jn+1

zi,j
)
}

.(44)

Combining (29)-(37) with (44), we derive the following equivalent forms of the
EC-S-FDTD scheme

ǫ0
En+1

zi,j
− En

zi,j

∆t
= −1

2
δy(H

n
xi,j

+Hn+1
xi,j

) +
1

2
δx(H

n
yi,j

+Hn+1
yi,j

)− 1

2
(Jn

zi,j
+ Jn+1

zi,j
),

(45)

µ0

Hn+1
x
i,j+1

2

−Hn
x
i,j+1

2

∆t
=− 1

4
δy(3E

n
z
i,j+ 1

2

+ En+1
z
i,j+1

2

) +
∆t

8ǫ0
δyδy(H

n
x
i,j+1

2

+Hn+1
x
i,j+ 1

2

)

+
∆t

8ǫ0
δyδx(H

n
y
i,j+ 1

2

+Hn+1
y
i,j+1

2

) +
∆t

8ǫ0
δy(J

n
z
i,j+ 1

2

+ Jn+1
z
i,j+1

2

)

− 1

2
(Kn

x
i,j+ 1

2

+Kn+1
x
i,j+1

2

),

(46)

µ0

Hn+1
y
i+1

2
,j
−Hn

y
i+1

2
,j

∆t
=
1

4
δx(E

n
z
i+1

2
,j
+ 3En+1

z
i+1

2
,j
)− ∆t

8ǫ0
δxδy(H

n
x
i+1

2
,j
+Hn+1

x
i+1

2
,j
)

− ∆t

8ǫ0
δxδx(H

n
y
i+1

2
,j
+Hn+1

y
i+1

2
,j
)− ∆t

8ǫ0
δx(J

n
z
i+1

2
,j
+ Jn+1

z
i+1

2
,j
)

− 1

2
(Kn

y
i+1

2
,j
+Kn+1

y
i+1

2
,j
),

(47)

Kn+1
x
i,j+1

2

−Kn
x
i,j+1

2

∆t
+

Γm

2
(Kn+1

x
i,j+1

2

+Kn
x
i,j+1

2

) =
µ0ω

2
pm

2
(Hn+1

x
i,j+ 1

2

+Hn
x
i,j+1

2

),(48)

Kn+1
y
i+1

2
,j
−Kn

y
i+1

2
,j

∆t
+

Γm

2
(Kn

y
i+1

2
,j
+Kn+1

y
i+1

2
,j
) =

µ0ω
2
pm

2
(Hn

y
i+1

2
,j
+Hn+1

y
i+1

2
,j
),(49)

Jn+1
zi,j

− Jn
zi,j

∆t
+

Γe

2
(Jn+1

zi,j
+ Jn

zi,j
) =

ǫ0ω
2
pe

4

[

3En
zi,j

+ En+1
zi,j

− ∆t

2ǫ0
δy(H

n
xi,j

+Hn+1
xi,j

)

−∆t

2ǫ0
δx(H

n
yi,j

+Hn+1
yi,j

)− ∆t

2ǫ0
(Jn

zi,j
+ Jn+1

zi,j
)
]

.

(50)

Let η
n+ 1

2
1i,j

, η
n+ 1

2
2
i,j+ 1

2

, η
n+ 1

2
3
i+1

2
,j
, η

n+ 1
2

4
i,j+ 1

2

, η
n+ 1

2
5
i+1

2
,j
and η

n+ 1
2

6i,j
be the truncation errors of

the equivalent scheme (45)-(50). Fo obtaining the estimatees of η1 - η6, we consider
the following auxiliary scheme without right-sided modified terms, i.e.,

ǫ0
En+1

zi,j
− En

zi,j

∆t
= −1

2
δy(H

n
xi,j

+Hn+1
xi,j

) +
1

2
δx(H

n
yi,j

+Hn+1
yi,j

)− 1

2
(Jn

zi,j
+ Jn+1

zi,j
),

(51)
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µ0

Hn+1
x
i,j+1

2

−Hn
x
i,j+ 1

2

∆t
=− 1

4
δy(3E

n
z
i,j+ 1

2

+ En+1
z
i,j+1

2

)− 1

2
(Kn

x
i,j+1

2

+Kn+1
x
i,j+1

2

),(52)

µ0

Hn+1
y
i+1

2
,j
−Hn

y
i+1

2
,j

∆t
=
1

4
δx(E

n
z
i+1

2
,j
+ 3En+1

z
i+1

2
,j
)− 1

2
(Kn

y
i+1

2
,j
+Kn+1

y
i+1

2
,j
),(53)

Kn+1
x
i,j+1

2

−Kn
x
i,j+1

2

∆t
+

Γm

2
(Kn+1

x
i,j+1

2

+Kn
x
i,j+1

2

) =
µ0ω

2
pm

2
(Hn+1

x
i,j+ 1

2

+Hn
x
i,j+1

2

),(54)

Kn+1
y
i+1

2
,j
−Kn

y
i+1

2
,j

∆t
+

Γm

2
(Kn

y
i+1

2
,j
+Kn+1

y
i+1

2
,j
) =

µ0ω
2
pm

2
(Hn

y
i+1

2
,j
+Hn+1

y
i+1

2
,j
),(55)

Jn+1
zi,j

− Jn
zi,j

∆t
+

Γe

2
(Jn+1

zi,j
+ Jn

zi,j
) =

ǫ0ω
2
pe

4

[

3En
zi,j

+ En+1
zi,j

.(56)

Let ξ
n+ 1

2
1i,j

, ξ
n+ 1

2
2
i,j+ 1

2

, ξ
n+ 1

2
3
i+1

2
,j
, ξ

n+ 1
2

4
i,j+ 1

2

, ξ
n+ 1

2
5
i+ 1

2
,j
and ξ

n+ 1
2

6i,j
be the truncation errors of the

auxiliary scheme (51)-(56). By using Taylor’s expansions, we can obtain that

(57) |ξn+
1
2

1 |, |ξn+
1
2

2 |, . . . , |ξn+
1
2

6 | = O(∆t +∆x2 +∆y2).

Then for the equivalent scheme (45)-(50), the corresponding truncation errors
can be represented and estimated conveniently. In detail, we have that

(58) η
n+ 1

2
1i,j

= ξ
n+ 1

2
1i,j

, η
n+ 1

2
4
i,j+ 1

2

= ξ
n+ 1

2
4
i,j+ 1

2

, η
n+ 1

2
5
i+1

2
,j
= ξ

n+ 1
2

5
i+ 1

2
,j
,

η
n+ 1

2
2
i,j+ 1

2

= ξ
n+ 1

2
2
i,j+ 1

2

− ∆t

8ǫ0
δyδy

(

Hx(xi, yj+ 1
2
, tn) +Hx(xi, yj+ 1

2
, tn+1)

)

−∆t

8ǫ0
δyδx

(

Hy(xi, yj+ 1
2
, tn) +Hy(xi, yj+ 1

2
, tn+1)

)

−∆t

8ǫ0
δy
(

Jz(xi, yj+ 1
2
, tn) + Jz(xi, yj+ 1

2
, tn+1)

)

(59)

η
n+ 1

2
3
i+ 1

2
,j

= ξ
n+ 1

2
3
i+1

2
,j
+

∆t

8ǫ0
δxδy(H

n
x
i+1

2
,j
+Hn+1

x
i+1

2
,j
)

+
∆t

8ǫ0
δxδx(H

n
y
i+1

2
,j
+Hn+1

y
i+1

2
,j
) +

∆t

8ǫ0
δx(J

n
z
i+1

2
,j
+ Jn+1

z
i+1

2
,j
)(60)

η
n+ 1

2
6i,j

= η
n+ 1

2
6i,j

+
ǫ0ω

2
pe

4

[∆t

2ǫ0
δy(H

n
xi,j

+Hn+1
xi,j

) +
∆t

2ǫ0
δx(H

n
yi,j

+Hn+1
yi,j

)

+
∆t

2ǫ0
(Jn

zi,j
+ Jn+1

zi,j
)
]

(61)

From the above estimations (58)-(61), we have the following theorem.

Theorem 4. (Truncation errors) Assume that the solutions are smooth enough,
such that Ez ∈ C3([0, T ];C3(Ω)), H ∈ C3([0, T ];C4(Ω)), Jz ∈ C2([0, T ];C2(Ω)),
K∈C([0, T ];C(Ω)). Then the truncation errors of the scheme (29)-(37) are first
order in time and second order in space, i.e.,

max
0≤n≤N−1

{

|ηn+
1
2

1 |, |ηn+
1
2

2 |, |ηn+
1
2

3 |, |ηn+
1
2

4 |, |ηn+
1
2

5 |, |ηn+
1
2

6 |
}

≤ M
{

∆t+∆x2 +∆y2
}

,

(62)

where M is independent of steps ∆x, ∆y and ∆t.
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In order to get the system of the error equations, we define the intermediate
variable E∗

z (x, y) from the exact solution variables.

E∗
z (x, y) =

1

2

{

(Ez(x, y, t
n) + Ez(x, y, t

n+1))− ∆t

2ǫ0
δy(Hx(x, y, t

n) +Hx(x, y, t
n+1))

− ∆t

2ǫ0
δx(Hy(x, y, t

n) +Hy(x, y, t
n+1))− ∆t

2ǫ0
(Jz(x, y, t

n) + Jz(x, y, t
n+1))

}

.

(63)

In addition, we denote the errors as follows

Hn
x
i,j+ 1

2

= Hx(xi, yj+ 1
2
, tn)−Hn

x
i,j+1

2

, Hn
y
i+1

2
,j
= Hy(xi+ 1

2
, yj , t

n)−Hn
y
i+1

2
,j
,

En
zi,j

= Ez(xi, yj, t
n)− En

zi,j
, Kn

x
i,j+ 1

2

= Kx(xi, yj+ 1
2
, tn)−Kn

x
i,j+1

2

,

Kn
y
i+1

2
,j
= Ky(xi+ 1

2
, yj , t

n)−Kn
y
i+1

2
,j
, J n

zi,j
= Jz(xi, yj , t

n)− Jn
zi,j

,

E∗
zi,j

= E∗
z (xi, yj)− E∗

zi,j
.

By the definition of the intermediate variables E∗
zi,j

in (44), and E∗
z (x, y, t) in (63),

we can derive the system of the error equations of the EC-S-FDTD scheme as
follows.

Stage 1:

ǫ0
E
∗

zi,j
− E

n

zi,j

∆t
= −

1

2
δy
{

H
n

x
i,j+ 1

2

+H
n+1
x
i,j+ 1

2

}

−
1

2
(J n

zi,j
+ J

n+1
zi,j

) + e
n+ 1

2
1i,j

,(64)

µ0

H
n+1
x
i,j+ 1

2

−H
n

x
i,j+ 1

2

∆t
= −

1

2
δy
{

E
n

z
i,j+1

2

+ E
∗

z
i,j+1

2

}

−
1

2
(Kn+1

x
i,j+1

2

+K
n

x
i,j+ 1

2

) + e
n+ 1

2
2
i,j+ 1

2

,

(65)

K
n+1
x
i,j+ 1

2

−K
n

x
i,j+ 1

2

∆t
+

Γm

2
(Kn+1

x
i,j+1

2

+K
n

x
i,j+ 1

2

) =
µ0ω

2
pm

2
(Hn+1

x
i,j+1

2

+H
n

x
i,j+ 1

2

) + e
n+ 1

2
3
i,j+ 1

2

,

(66)

J
n+1
zi,j

− J
n

zi,j

∆t
+

Γe

2
(J n+1

zi,j
+ J

n

zi,j
) =

ǫ0ω
2
pe

2
(En

zi,j
+ E

∗

zi,j
) + e

n+ 1
2

4i,j
,(67)

and the boundary conditions

E∗
z0,j

= E∗
zI,j

= E∗
zi,0

= E∗
zi,J

= 0;(68)

Stage 2:

ǫ0
E
n+1
zi,j

− E
∗

zi,j

∆t
=

1

2
δx
{

H
∗

yi,j
+H

n+1
yi,j

}

+ e
n++ 1

2
5i,j

,(69)

µ0

H
n+1
y
i+1

2
,j
−H

∗

y
i+1

2
,j

∆t
=

1

2
δx
{

E
∗

z
i+1

2
,j
+ E

n+1
z
i+1

2
,j

}

−
1

2
(Kn

y
i+1

2
,j
+K

n+1
y
i+1

2
,j
) + e

n+ 1
2

6
i+1

2
,j
,

(70)

K
n+1
y
i+1

2
,j
−K

n

y
i+1

2
,j

∆t
+

Γm

2
(Kn

y
i+1

2
,j
+K

n+1
y
i+1

2
,j
) =

µ0ω
2
pm

2
(Hn

y
i+1

2
,j
+H

n+1
y
i+1

2
,j
) + e

n+ 1
2

7
i+1

2
,j
,

(71)

and the boundary conditions

En+1
z0,j

= En+1
zI,j

= En+1
zi,0

= En+1
zi,J

= 0.(72)
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Where

e
n+ 1

2
1i,j

=
1

2
η
n+ 1

2
1i,j

, e
n+ 1

2
2
i,j+1

2

= η
n+ 1

2
2
i,j+ 1

2

, e
n+ 1

2
3
i,j+1

2

= η
n+ 1

2
3
i,j+ 1

2

, e
n+ 1

2
4i,j

= η
n+ 1

2
4i,j

,

e
n+ 1

2
5i,j

=
1

2
η
n+ 1

2
1i,j

, e
n+ 1

2
6
i+1

2
,j
= η

n+ 1
2

5
i+1

2
,j
, e

n+ 1
2

7
i+1

2
,j
= η

n+ 1
2

6
i+1

2
,j
.

(73)

Theorem 5. (Convergence) Suppose that the exact solution components of equa-
tions (17)-(25), Ez, Hx, Hy, Jz, Kx and Ky, are smooth enough such that Ez ∈
C3([0, T ];C3(Ω)), H∈C3([0, T ];C4(Ω)), Jz∈C2([0, T ];C2(Ω)), K∈C([0, T ];C(Ω)).
For n≥ 0, let En

z , H
n
x , H

n
y , J

n
z , K

n
x and Kn

y be the solutions of the scheme (29)-
(37). Then there exists a positive constant M independent of ∆x, ∆y and ∆t such
that

ǫ0||En+1
z ||2E + µ0||Hn+1||2H +

1

µ0ω2
pm

||Kn+1||2H +
1

ǫ0ω2
pe

||J n+1
z ||2E

≤ M
(

ǫ0||E0
z ||2E + µ0||H0||2H +

1

µ0ω2
pm

||K0||2H +
1

ǫ0ω2
pe

||J 0
z ||2E

)

+M
(

∆t+∆x2 +∆y2
)2
.

(74)

Proof. Multiplying both sides of (64) with ∆t(E∗
zi,j

+ En
zi,j

), multiplying both sides

of (65) with ∆t(Hn+1
x
i,j+1

2

+Hn
x
i,j+ 1

2

) and then summing them, we can obtain

ǫ0(E∗2

zi,j
− En2

zi,j
) + µ0(Hn+12

x
i,j+ 1

2

+Hn2

x
i,j+1

2

) = −∆t

2
δy
{

Hn
x
i,j+1

2

+Hn+1
x
i,j+1

2

}

(E∗
zi,j

+ En
zi,j

)

− ∆t

2
(J n

zi,j
+ J n+1

zi,j
)(E∗

zi,j
+ En

zi,j
)− ∆t

2
δy
{

En
z
i,j+1

2

+ E∗
z
i,j+1

2

}

(Hn+1
x
i,j+ 1

2

+Hn
x
i,j+ 1

2

)

− ∆t

2
(Kn+1

x
i,j+ 1

2

+Kn
x
i,j+ 1

2

)(Hn+1
x
i,j+ 1

2

+Hn
x
i,j+ 1

2

)

+ e
n+ 1

2
1i,j

(E∗
zi,j

+ En
zi,j

)∆t+ e
n+ 1

2
2
i,j+1

2

(Hn+1
x
i,j+ 1

2

+Hn
x
i,j+ 1

2

)∆t.

(75)

Then multiplying both sides of (67) with ∆t
ǫ0ω2

pe
(Jn

zi,j
+ Jn+1

zi,j
) and multiplying

both sides of (66) with ∆t
µ0ω2

pm
(Kn

xi,j
+Kn+1

xi,j
), we have that

Jn+12

zi,j
− Jn2

zi,j

ǫ0ω2
pe

+
∆tΓe

2ǫ0ω2
pe

(Jn
zi,j

+ Jn+1
zi,j

)2 =
∆t

2
(Jn

zi,j
+ Jn+1

zi,j
) +

∆te
n+ 1

2
4i,j

ǫ0ω2
pe

(Jn
zi,j

+ Jn+1
zi,j

),

(76)

and

Kn+12

x
i,j+1

2

−Kn2

x
i,j+1

2

µ0ω2
pm

+
∆tΓm

2µ0ω2
pm

(Kn
x
i,j+1

2

+Kn+1
x
i,j+1

2

)2 =
∆t

2
(Kn

x
i,j+1

2

+Kn+1
x
i,j+1

2

)

+
∆te

n+ 1
2

3
i,j+1

2

µ0ω2
pm

(Kn
x
i,j+1

2

+Kn+1
x
i,j+1

2

).

(77)

Combining (75) with (76) and (77), summing the resulted equation with respect
to the argument subscript i and j, and using the boundary conditions (68) and
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(72), we obtain that

ǫ0(||E∗
z ||2E − ||En

z ||2E) + µ0(||Hn+1
x ||2Hx

− ||Hn
x ||2Hx

) +
1

ǫ0ω2
pe

(||J n+1
z ||2E − ||J n

z ||2E)

+
1

µ0ω2
pm

(||Kn+1
x ||2Hx

− ||Kn
x ||2Hx

) +
∆tΓe

2ǫ0ω2
pe

||J n+1
z + J n

z ||2E +
∆tΓm

2µ0ω2
pm

||Kn+1
x + Kn

x ||2Hx

=
∆t

ǫ0ω2
pe

J−1
∑

j=0

I−1
∑

i=0

e
n+ 1

2
4i,j

(J n+1
zi,j

+ J n
zi,j

) +
∆t

µ0ω2
pm

J−1
∑

j=0

I−1
∑

i=0

e
n+ 1

2
3
i,j+1

2

(Kn+1
x
i,j+ 1

2

+Kn
x
i,j+1

2

)

+ ∆t

J−1
∑

j=0

I−1
∑

i=0

e
n+ 1

2
1i,j

(E∗
zi,j

+ En
zi,j

) + ∆t

J−1
∑

j=0

I−1
∑

i=0

e
n+ 1

2
2
i,j+1

2

(Hn+1
x
i,j+ 1

2

+Hn
x
i,j+1

2

).

(78)

By the Cauchy-inequality, it holds that

e
n+ 1

2
4i,j

(J n+1
zi,j

+ J n
zi,j

) ≤ Γe

2
(J n+1

zi,j
+ J n

zi,j
)2 +

1

2Γe

e
n+ 1

2
2

4i,j
,

e
n+ 1

2
3
i,j+1

2

(Kn+1
x
i,j+ 1

2

+Kn
x
i,j+1

2

) ≤ Γm

2
(Kn+1

x
i,j+1

2

+Kn
x
i,j+ 1

2

)2 +
1

2Γm

e
n+ 1

2
2

3
i,j+1

2

.

(79)

With the above two relations in (79), we can eliminate the two terms containing
∆t on the left side of the equation (78), and get that

ǫ0(||E∗
z ||2E − ||En

z ||2E) + µ0(||Hn+1
x ||2Hx

− ||Hn
x ||2Hx

) +
1

ǫ0ω2
pe

(||J n+1
z ||2E − ||J n

z ||2E)

+
1

µ0ω2
pm

(||Kn+1
x ||2Hx

− ||Kn
x ||2Hx

)

≤ ∆t

2Γeǫ0ω2
pe

||en+
1
2

4 ||2E +
∆t

2Γmµ0ω2
pm

||en+
1
2

3 ||2Hx
+∆t

( 1

ǫ0
||en+

1
2

1 ||2E +
ǫ0
2
||E∗

z ||2E

+
ǫ0
2
||En

z ||2E +
1

µ0
||en+

1
2

2 ||2Hx
+

µ0

2
||Hn

x ||2Hx
+

µ0

2
||Hn+1

x ||2Hx

)

.

(80)

Thus, we have that

(1− ∆t

2
)
[

ǫ0||E∗
z ||2E + µ0||Hn+1

x ||2Hx
+

1

ǫ0ω2
pe

||J n+1
z ||2E +

1

µ0ω2
pm

||Kn+1
x ||2Hx

]

≤ (1 +
∆t

2
)

[

ǫ0||En
z ||2E + µ0||Hn

x ||2Hx
+

1

ǫ0ω2
pe

||J n
z ||2E +

1

µ0ω2
pm

||Kn
x ||2Hx

]

+
∆t

2Γeǫ0ω2
pe

||en+
1
2

4 ||2E +
∆t

2Γmµ0ω2
pm

||en+
1
2

3 ||2Hx
+

∆t

ǫ0
||en+

1
2

1 ||2E +
∆t

µ0
||en+

1
2

2 ||2Hx

≤ (1 +
∆t

2
)

[

ǫ0||En
z ||2E + µ0||Hn

x ||2Hx
+

1

ǫ0ω2
pe

||J n
z ||2E +

1

µ0ω2
pm

||Kn
x ||2Hx

]

+O
(

∆t(∆t+∆x2 +∆y2)2
)

.

(81)
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Similarly, from Stage 2 (69)-(72), we can get that

(1 − ∆t

2
)

[

ǫ0||En+1
z ||2E + µ0||Hn+1

y ||2Hy
+

1

µ0ω2
pm

||Kn+1
y ||2Hy

]

≤ (1 +
∆t

2
)

[

ǫ0||E∗
z ||2E + µ0||Hn

y ||2Hy
+

1

µ0ω2
pm

||Kn
y ||2Hy

]

+
∆t

2Γmµ0ω2
pm

||en+
1
2

7 ||2Hy
+

∆t

ǫ0
||en+

1
2

5 ||2E +
∆t

µ0
||en+

1
2

6 ||2Hy

≤ (1 +
∆t

2
)

[

ǫ0||E∗
z ||2E + µ0||Hn

y ||2Hy
+

1

µ0ω2
pm

||Kn
y ||2Hy

]

+O
(

∆t(∆t+∆x2 +∆y2)2
)

.

(82)

Dividing both sides of (81) with (1 − ∆t
2 ) and dividing both sides of (82) with

(1 + ∆t
2 ), summing these two inequalities leads to that that

µ0||Hn+1
x ||2Hx

+
1

ǫ0ω2
pe

||J n+1
z ||2E +

1

µ0ω2
pm

||Kn+1
x ||2Hx

+ (
1− ∆t

2

1 + ∆t
2

)

[

ǫ0||En+1
z ||2E

+ µ0||Hn+1
y ||2Hy

+
1

µ0ω2
pm

||Kn+1
y ||2Hy

]

≤ µ0||Hn+1
y ||2Hy

+
1

µ0ω2
pm

||Kn
y ||2Hy

+ (
1 + ∆t

2

1− ∆t
2

)

[

ǫ0||En
z ||2E + µ0||Hn

x ||2Hx
+

1

ǫ0ω2
pe

||J n
z ||2E

+
1

µ0ω2
pm

||Kn
x ||2Hx

]

+O
(

∆t(∆t+∆x2 +∆y2)2
)

.

(83)

Then, for that
1−∆t

2

1+∆t
2

≥ 1−∆t, we have that

(1−∆t)

[

ǫ0||En+1
z ||2E + µ0||Hn+1

x ||2Hx
+ µ0||Hn+1

y ||2Hy
+

1

ǫ0ω2
pe

||J n+1
z ||2E

+
1

µ0ω2
pm

||Kn+1
x ||2Hx

+
1

µ0ω2
pm

||Kn+1
y ||2Hy

]

≤ (
1 + ∆t

2

1− ∆t
2

)

[

ǫ0||En
z ||2E + µ0||Hn

x ||2Hx
+ µ0||Hn

y ||2Hy
+

1

ǫ0ω2
pe

||J n
z ||2E

+
1

µ0ω2
pm

||Kn
x ||2Hx

+
1

µ0ω2
pm

||Kn
y ||2Hy

]

+O
(

∆t(∆t+∆x2 +∆y2)2
)

.

(84)

Noting that for 0≤n≤N= T
∆t

,

[

(1 + ∆t
2

1− ∆t
2

) 1

(1−∆t)

]n

≤
[

(1 + ∆t
2

1− ∆t
2

) 1

(1−∆t)

]N

≤
(

1 +
∆t

1− ∆t
2

)(
1−∆t

2
∆t

) T

(1−∆t
2

) ·
(

1 +
∆t

1−∆t

)( 1−∆t
∆t

) T
(1−∆t) ≤ e2T ,

(85)

and repeating (84) from time level n to 0, we finally obtain conclusion (74). This
complete the proof. �
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6. Numerical Experiments

In this section, we will give numerical experiments to show the performance of
our proposed scheme and also compute the propagation feature of electromagnetic
waves in metamaterials.

Example 1. In this example, we test the energy conservation of our EC-S-
FDTD scheme and its convergence rates. Let Energyn be the discrete energy of
the numerical solution at tn as

Energyn = ||ǫ
1
2
0 E

n
z ||2E + ||µ

1
2
0 H

n||2H + || 1

ǫ0
1
2ωpe

Jn
z ||2E + || 1

µ0
1
2ωpm

Kn||2H

+

n
∑

i=1

2∆tΓe||
1

ǫ0
1
2ωpe

J i−1
z + J i

z

2
||2E +

n
∑

i=1

2∆tΓm|| 1

µ0
1
2ωpm

Ki−1 +Ki

2
||2H ,

(86)

and

Energy0 =||ǫ
1
2
0 E

0
z ||2E + ||µ

1
2
0 H

0||2H + || 1

ǫ
1
2
0 ωpe

J0
z ||2E + || 1

µ
1
2
0 ωpm

||K0||2H .(87)

Then let the absolute and relative errors of energy be

Energy Error I = max
1≤n≤N

∣

∣Energyn − Energy0
∣

∣,(88)

Energy Error II = max
1≤n≤N

∣

∣Energyn − Energy0
∣

∣

Energy0
.(89)

Consider a unit square domain Ω= [0, 1]× [0, 1] and a time interval [0, 1]. The
parameters of metamaterials are set as ǫ0=µ0=1, ωpe=ωpm=1, and Γe=Γm=1.
The initial electromganetic fields are given as

Ez0(x, y) = sinπx sin πy, Hx0(x, y) = π sinπx cosπy,(90)

Hy0(x, y) = −π cosπx sin πy, Jz0(x, y) = 0,(91)

Kx0(x, y) = 0, Ky0(x, y) = 0,(92)

which satisfy the PEC boundary conditions and the divergence-free condition.
Table 1 shows the numerical errors of the discrete energies with different step

sizes. We can see clearly that the Energy Error I and Energy Error II of the
EC-S-FDTD scheme both reach the machine precision. The numerical energies of
electromagnetic waves of the scheme are conserved in metamaterials, which confirm
the theoretical analysis.

Table 1. Energy Conservations of the EC-S-FDTD scheme with
different step sizes.

Mesh (I×J×N) Error I of Energy Error II of Energy

8× 8× 8 1.7764e-15 7.8012e-16
16× 16× 16 7.9936e-15 3.5106e-15
32× 32× 32 5.7732e-15 2.5354e-15
64× 64× 64 1.5099e-14 6.6311e-15

In order to show the convergence rates in time and space of the EC-S-FDTD
scheme, we define Error I and Error II of the numerical solutions as follows:

Error I = max
0≤n≤N

(

ǫ0||[Ez(t
n)− En

z ]||2E + µ0||[H(tn)−Hn]||2H
)

1
2 ,(93)
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and

Error II = max
0≤n≤N

(

ǫ0||[Ez(t
n)− En

z ]||2E + µ0||[H(tn)−Hn]||2H

+
1

ǫ0ω2
pe

||[Jz(tn)− Jn
z ||2E +

1

µ0ω2
pm

||[K(tn)−Kn||2H
)

1
2 .

(94)

The errors and convergence rates of numerical solutions of the EC-S-FDTD
scheme are listed in Tables 2 and 3. As the problem has not exact solution, we
use the reference solutions to replace the exact solution in computing the errors
in (93) and (94). In the tables, the reference solutions of the system (17)-(25) are
computed by using fine meshes of ∆x=∆y=1/243 and ∆t=10−4.

Table 2. Errors and convergence rate in time of the EC-S-FDTD scheme.

Mesh (N) Error I Rate Error II Rate

20 2.7591e-2 2.8553e-2
40 1.3694e-2 1.01 1.4165e-2 1.01
80 6.7552e-3 1.02 6.9859e-3 1.02
160 3.2887e-3 1.04 3.4012e-3 1.04

Table 3. Errors and convergence rate in space of the EC-S-FDTD scheme.

Mesh (I×J) Error I Rate Error II Rate

3× 3 1.3325e-1 1.3439e-1
9× 9 1.4972e-2 1.99 1.5101e-2 1.99
27× 27 1.6479e-3 2.01 1.6620e-3 2.01
81× 81 1.6500e-4 2.09 1.6653e-4 2.09

From Tables 2 and 3, it is clear to see that our EC-S-FDTD scheme is of first
order convergence in time and of second order convergence in space, which is con-
sistent with the theoretical analysis.

Example 2. The problem in double-negative media. We consider a planar
double-negative medium slab in the center of the domain. Choosing ωpe =ωpm =√
2ω0 and Γe=Γm=0 in (4) leads to ǫr=µr=−1. A slab with thickness d=2λ0 and

width L=10λ0 is employed. And the point source is located d/2=λ0 above the slab
interface. In simulation, we take the space step sizes ∆x=∆y=λ0/100, where the
Courant-Friedrich-Levy number is CN = 5, and set 40-cell PML layer to truncate
the computational domain. The snapshots of the contour of electric field intensity
at the time t = 400∆t obtained by our EC-S-FDTD scheme is showed in Figure
1. In the figures, the gray-scale contours represent different values. The darker
(lighter) regions correspond to lower (higher) intensity levels. It can be clearly seen
from the figure that at the center of the DNG slab the focus phenomenon happens
as well as that of outside the slab, about d/2 away from the bottom edge of the
slab.

We then simulate the propagation of electromagnetic wave through a lossy “un-
matched” double-negative slab (ǫr = µr ≈−3−0.002j). The numerical results are
shown in Figure 2. In this case, the Drude model parameters are ωpe=ωpm=2ω0

and Γe=Γm=5.3×10−4ω0. In computation, the CFL number CN =5 is employed
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Contour of Ez at t = 300 ∆ t
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Figure 1. Contours of Ez from a point source above a lossless
double-negative slab (ǫr = µr =−1) with thickness d= 2λ0, ω0 =
2πf0 and f0=30G at t = 300∆t (left) and t = 400∆t (right).

Contour of Ez at t = 500 ∆ t
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Figure 2. Contour of Ez at time t = 500∆t from a point source
above a lossy “unmatched” double-negative slab (ǫr = µr ≈−3−
0.002j). Parameters are ωpe=ωpm=2ω0, Γe=Γm=5.3×10−4ω0,
ω0=2πf0 and f0=30G.

by the EC-S-FDTD scheme. The electric field inside the metamaterial slab is ap-
proximately channeled into beams rather than being focused, as is showed in Figure
2.

Now, we carry out the simulation with an incident wave excitation in metamate-
rials. The center frequency of interest is chosen to be f0=30GHz, corresponding to
a free-space wavelength λ0=1.0cm. The main scale of the computational domain
is 600 × 200 with 10-cell PML layer in x−direction and y−direction respectively.
With the Total-Field/Scatter-Field technology, we introduce the incident wave of
the sinusoidal form and take the angular frequency ω=2πf0 and the incident an-
gle φ = π/9. To illustrate the special character of DNG metamaterials, we give
the classical propagation of oblique incidence plane wave in vacuum, in the regular
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dielectrics (i.e., double-positive (DPS) material) and in the DNG material, respec-
tively (see Figure 3). All the results are obtained by our EC-S-FDTD scheme at
the time t = 840∆t.
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Figure 3. Contours of Ez from the interaction of a sinusoidal
wave that is incident at an angle of 20◦ in vacuum (left), interac-
tion with a DPS slab with the positive index of refraction n= 1

2
(middle), and interaction with a DNG slab with the negative index
of refraction n=−1(right).

Figure 3 (left) shows the distribution of Ez in vacuum without the existence of
the DNG slab, which is of no deformation in the process of the wave propagation.
The propagation of the wave in a DPS metamaterial with ωpe = ωpm =

√
2ω0/2,

which leads to the index of refraction n= 1
2 , and Γe=Γm=0 as shown in Figure 3

(middle). Since the index of refraction of this medium is less than that in vacuum,
it is occurred that the refraction wave deviates more from the normal compared
with the incident wave. Numerical results in Figure 3 (right) display the propaga-

tion of the wave in metamaterial with ωpe=ωpm=
√
2ω0, which leads to the index

of refraction n=−1, and Γe=Γm=3.75×10−4ωpm. A negative angle of refraction
opposite to the angle of incidence is observed, which agrees with the physical char-
acter of the DNG metamaterial. Moreover, from these three figures in Figure 3, we
can find the differences of Ez values which are caused by the different propagating
speeds of the waves in different media. In vacuum, the wave propagates at the
speed of c= 3 × 108, while, in the other two media, the speeds of the waves are
both smaller than that in vacuum and are relative to the parameters of the special
metamaterial and the angular frequency of the incident waves.

Example 3. The problem in zero-index media. In this example, we further
carry out the simulation of electromagnetic waves in zero-index Drude medium
slabs, in which the permittivity and permeability are both near zero (and therefore
the refractive index) at certain frequencies for applications such as delay lines, phase
shifters, couplers and compact resonators.

We employ the scale of the slab as d=1.2λ0, L=10λ0, and choose ωpe=ωpm=ω0

and Γe=Γm=1.0×10−5ω0 for the Drude model, leading to ǫr=µr≈0.0−1.0×10−5j
and we also take 40-cell PML layer to truncate the computational domain. Then,
the line source is located at the center of the zero-index slab, normal to the x−y
plane. Figure 4 shows the contour of electric field intensity, where CN =5 is chosen
in computation by the EC-S-FDTD scheme. It implies that the field radiated
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from the center of the zero-index slab propagates away orthogonally to the face
of the slab. In fact, from Snell’s law we know that the transmitted waves will
have a transmitted angle of zero for any angle of incidence when the index of the
incident medium is zero. The cylindrical wave generated by the line source will thus
be converted into a wave with a planar wave front as the wave emerges from the
matched zero-index slab. Moreover, as the wave propagates from the source outward
through the matched zero-index slab, the constant electric field behaviour is being
established within the slab. We can see from Figure 4 that the the electric field is
constant within the whole slab, as expected for a matched zero-index medium.
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Figure 4. Contours of Ez from the line source located λ0 above
the front side of the zero-index slab (ǫr = µr = 0.0−1.0×10−5j)
with thickness d = 0.6λ0, CN = 5, ω0 = 2πf0 and f0 = 30G at
t = 300∆t.

7. Conclusion

In this paper, we studied energy-conserved numerical computations of the Maxwell’s
equations in metamaterials. We first derived out a new energy conservation iden-
tity for Maxwell’s equations in metamaterials. Then, a new energy-conserved S-
FDTD scheme (EC-S-FDTD) is developed. We proved that the scheme satisfies
the energy-conserved identity in the discrete form. We also analyzed the stabili-
ty and the convergence of the scheme. In the part of numerical experiments, we
first showed numerically the energy conservation and the accuracy of the scheme,
which confirm to our theoretical results. Then, we simulated the propagation of
electromagnetic waves in the DNG and DPS metamaterials and in the medium
with a zero index of refraction. Physical phenomenna of electromagnetic waves in
metamaterials were numerically observed and analyzed.
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