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AN EFFECTIVE GRADIENT PROJECTION METHOD FOR

STOCHASTIC OPTIMAL CONTROL

NING DU, JINGTAO SHI, AND WENBIN LIU

Abstract. In this work, we propose a simple yet effective gradient projection algorithm for a
class of stochastic optimal control problems. The basic iteration block is to compute gradient
projection of the objective functional by solving the state and co-state equations via some Euler
methods and by using the Monte Carlo simulations. Convergence properties are discussed and
extensive numerical tests are carried out. Possibility of extending this algorithm to more general
stochastic optimal control is also discussed.
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1. Introduction

Stochastic optimal control is an essential tool for developing and analyzing mod-
els that have stochastic dynamics, and it has been fully developed both theoretically
and practically in mathematics, physics and engineering. There has existed a very
extensive body of literature in this area, and it is impossible to present an even very
brief review on its development here. Some introductive accounts (more from math-
ematical points of view) can be found, for example, in [5, 6, 18, 30], and [11, 14].
Some of the research relevant to our work can be found in [5, 15, 18, 29], and
[4, 10, 16, 31, 41, 42, 43]. Practical examples of stochastic optimal control include
engineering systems [10, 27, 31, 43, 45], option pricing and portfolio optimization
models from finance [25, 26, 37, 47, 50], analysis of climate change policies [1], and
biological and medical applications [17].

Let (Ω,F , {Ft}t≥0, P ) be a complete probability space with the natural filtra-
tion {Ft}t≥0, which is generated by a one-dimensional standard Brownian motion
{Wt}t≥0. Let T > 0 be a fixed real number that is called time horizon. We
denote by L2(Ω,FT ;R) the space of real-valued square-integrable FT -measurable
random variables, and by L2

F([0, T ];R) the space of real-valued square-integrable
Ft-adapted processes such that

(1) E
{

∫ T

0

|yt|
2dt

}

< +∞.

In this paper we consider numerical solutions to the following stochastic control
problem. The objective functional

(2) J(y, u) =

∫ T

0

E[h(y)]dt+

∫ T

0

j(u)dt,

where h and j are smooth functions with the continuous first order derivatives,
u ∈ Uad is a deterministic control, where Uad is a close convex set in the control
space L2(0, T ).
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An admissible control u∗ is called optimal if it attains the minimum of J(y(u), u),
where the state y(u) ∈ L2

F([0, T ];R) is a stochastic process which is generated by

(3) dy = f(t, y, u)dt+ g(t, y)dWt, y(0) = y0.

In this paper we assume that f, g are continuously differentiable with respect to
(t, y, u) and (t, y), respectively, and that their derivatives are bounded.

Under the above assumptions, we know equation (3) admits a unique solution
y(·) ∈ L2

F([0, T ];R) for the given (y0, u(·)) ∈ R×Uad (see [22]). We call such a y(·)
the corresponding trajectory. Let us note that here the control does not appear
in the diffusion term for ease of exposition. For the general case, one would need
to have more theoretical preparations on backward stochastic differential equations
for a rigorous treatment of the adjoint state equations (see [6, 41, 42]), although
our methods are still applicable.

In general most realistic models do not admit closed form solutions and thus
effective numerical methods play a key role for practical applications of stochastic
optimal control. In the literature numerous numbers of numerical methods have
been proposed for stochastic optimal control and the related problems. Numerical
methods used to solve stochastic optimal control have at least four broad classes:
Those transferring the control problem into finite dimensional stochastic program-
ming, see, e.g., [12, 16, 19, 20, 31, 43, 46, 48]; those based on Dynamic Programming
Principle (DPP), see e.g. [7, 30], in particular those solving HJB equations for the
feedback solutions - there are many references in this area, see [2, 5, 6, 13, 21] for
some early work; the third class based on martingale methods, see e.g. [25, 26, 44];
and those based on the Stochastic Maximum Principle (SMP) [18]. The method
proposed in this paper is based on an iterative algorithm for the solution of the
SMP. There exists extensive research on the first three classes methods. Although
the SMP is widely used in solving the stochastic optimal control, see, e.g., [47] and
[50], it is not often used in numerical algorithms yet. The likely reasons are that
it will not directly produce the feedback control as explained below, and the com-
putation of the adjoins requires the solution of a backwards stochastic differential
equation (BSDE), which is computationally expensive.

Compared with the deterministic optimal control, stochastic optimal control is
much more complicated from the perspective of obtaining numerical solutions that
are realizable to real applications. One of the reasons is that often the value of
optimal control u(t) at a time t will depend on ω (so u(t, ω)) so that it is not very
useful to only compute and then apply the numerical solutions of the optimal con-
trol like in the deterministic case. To be practically useful, some forms of feedback
relationship between the optimal state and optimal control need to be computed
numerically as well (as in the approach of Bellman Equation), as otherwise the
optimal control is difficult to realize. Therefore the existing numerical methods in
the literature are rather complex. In this paper we study a useful case where the
control is deterministic (but the state is still stochastic) as the first step towards
developing fast numerical algorithms for general stochastic optimal control. In this
case the optimal control does not directly depend on ω (but depends on y(t)) so
that it is meaningful to just compute the optimal control and apply it without the
feedback laws. This is quite desirable in some business and engineering decision
making where the stochastic effect is not overwhelming and thus deterministic de-
cision rules are desirable and sufficient. A deterministic solution is also useful for
future planning. Such examples can be found e.g. in [10, 31] (Engineering Control),
[12] (Financial) and [43] (Stochastic Hybrid Systems). In this work we are then able
to derive simple yet effective numerical algorithms with convergence analysis. More
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importantly these algorithms can be extended to the case where the optimal control
is stochastic as to be seen later, although further study like feedback law regression
will then be needed, which will be investigated in the next step. Thus this study
will pave the way to developing effective methods for the general case.

The method proposed in this paper utilizes SMP and orbit Monte Carlo sim-
ulation. We utilize the adjoint state to compute the gradient efficiently and then
search the next descending direction using the negative gradient. For computation
of the adjoint state, we do not directly use algorithms for a BSDE but utilize the
special constructs of the adjoint equation so that we can compute its numerical
solutions quickly. Furthermore this method does not need to use any PDE or DPP,
and thus is quite simple to implement. More importantly it has the potential ca-
pability of handling high dimensional problems and is easy to parallelize for large
scale problems. We will present extensive numerical tests to show its features.

The plan of this paper is as follows: In Section 2, we introduce the algorithm
and examine its convergence. In Section 3, we present extensive numerical tests to
verify this algorithm. Conclusions are summarized in Section 4. Finally, in Section
5, we describe the details of designing the numerical examples.

2. A Gradient Algorithm for Stochastic Optimal Control

Let J(u) = J(y(u), u), where y(u) is the solution of (3), to be referred to as the
reduced objective functional. We first state this projection method for the reduced
control problem in a general space. Let U be a real Hilbert space with U ′ = U , and
K be a closed convex subset of U . Consider

(4) min
u∈K

J(u)

where J(u) is a convex functional on U . The widely used necessary and sufficient
optimality condition of (4) reads (see [32])

(5) (J ′(u), v − u) ≥ 0, ∀v ∈ K,

where J ′ ∈ U is the G-differential of J .
Let b(·, ·) be a symmetric and positive definite bilinear form such that there exist

constants c0 and c1 satisfying

(6) |b(u, v)| ≤ c1‖u‖U‖v‖U , ∀u, v ∈ U,

(7) b(u, u) ≥ c0‖u‖
2
U .

Define operator b : U → U by

(8) (bu, v) = b(u, v), ∀u, v ∈ U.

It is clear that the norm ‖ · ‖b =
√

b(·, ·) is equivalent to the norm ‖ · ‖U by the
assumptions.

Now define the projection operator P b
K U → K: For a given w ∈ U , find

P b
Kw ∈ K such that

(9) b(P b
Kw − w,P b

Kw − w) = min
u∈K

b(u− w, u − w),

which is equivalent to

(10) b(P b
Kw − w, v − P b

Kw) ≥ 0, ∀v ∈ K.

It is clear that P b
K is well-defined for any closed convex subset in U .

It follows from (5) that for any ρ > 0 the solution u of (4) reads:

(11) u = P b
K(u− ρb−1J ′(u)).
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For the reduced control problem (4), define an iterative scheme (n = 0, 1, 2, . . .):

(12)

{

b(un+ 1
2
, v) = b(un, v)− ρn(J

′
n(un), v), ∀v ∈ U,

un+1 = P b
K

(

un+ 1
2

)

.

where J ′
n is the approximate functional of J ′ in the nth iteration. One can extend

this scheme to the case where b also depends on n. Then the Newton method is
included as a special case where ρn = 1 and b is defined by the Hessian. In [33]
this pre-conditional algorithm has been widely used to solve deterministic optimal
control problems governed by various PDEs, and is shown quite efficient even for
large scale problems.

For the above scheme we have the following convergence result:

Theorem 1. Assume that J ′ is Lipschitz and uniformly monotone in the sense

that there are positive constants c, C such that

(13) |J ′(u)− J ′(v)| ≤ C‖u− v‖U , ∀u, v ∈ U,

(14) (J ′(u)− J ′(v), u− v) ≥ c‖u− v‖2U , ∀u, v ∈ U.

Furthermore, if J ′
n is uniformly convergent to J ′ in the sense that

(15) ‖J ′
n(u)− J ′(u)‖b ≤ εn → 0,

then there exists an ǫ > 0 such that

(16) lim
n→∞

‖u− un‖b = 0,

provided ρn < ǫ.

Proof. For the iteration scheme (12) we have

(17) un+1 = P b
K

(

un − ρnb
−1J ′

n(un)
)

.

Using (11), we deduce

(18) un+1 − u = P b
K

(

un − ρnb
−1J ′

n(un)
)

− P b
K

(

u − ρnb
−1J ′(u)

)

By (5) we have

(19)

‖un+1 − u‖2b = ‖P b
K

(

un − ρnb
−1J ′

n(un)
)

− P b
K

(

u − ρnb
−1J ′(u)

)

‖2b

≤ ‖un − u− ρnb
−1 (J ′

n(un)− J ′(u)) ‖2b

= ‖un − u‖2b + ‖ρnb
−1 (J ′

n(un)− J ′(u)) ‖2b

−2b(ρnb
−1 (J ′

n(un)− J ′(u)) , un − u).

Noting that

(20)

‖ρnb
−1 (J ′

n(un)− J ′(u)) ‖2b

= ‖ρnb
−1 (J ′

n(un)− J ′(un) + J ′(un)− J ′(u)) ‖2b

≤ Cρ2n(‖un − u‖2b + ε2n),

(21)

−2b(ρnb
−1 (J ′

n(un)− J ′(u)) , un − u)

= −2b(ρnb
−1 (J ′

n(un)− J ′(un) + J ′(un)− J ′(u)) , un − u)

≤ −cρn‖un − u‖2b + 2εnρn‖un − u‖b

≤ −cρn‖un − u‖2b + ρ2n‖un − u‖2b + ε2n,
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we have

(22) ‖un+1 − u‖2b ≤

[

1− cρn

(

1−
C + 1

c
ρn

)]

‖un − u‖2b + (Cρ2n + 1)ε2n.

Choose ρn < ǫ to be sufficiently small such that

(23) 0 ≤ 1− cρn

(

1−
C + 1

c
ρn

)

≤ δ < 1,

and denote ε̂n = (Cρ2n + 1)ε2n. Then it follows:

(24) ‖un+1 − u‖2b ≤ δ‖un − u‖2b + ε̂n.

It then can be derived that

(25) ‖un+1 − u‖2b ≤ δn+1‖u0 − u‖2b +

n
∑

i=0

ε̂iδ
n−i.

Let Sn =
n
∑

i=0

ε̂iδ
n−i. We only need to show that Sn converges to zero when

n → ∞.
Since lim

n→∞
ε̂n=0, then there exists a constant K > 0 such that |ε̂n| ≤ K. Fur-

thermore, ∀ε > 0, there exists a positive integer m(m < n) satisfies

(26) ε̂i <
1− δ

2
ε,

so that

(27)

Sn =
n
∑

i=0

ε̂iδ
n−i

=
m
∑

i=0

ε̂iδ
n−i +

n
∑

i=m+1

ε̂iδ
n−i

≤ K
1− δm+1

1− δ
δn−m +

1− δ

2
ε
1− δn−m

1− δ

≤
K

1− δ
δn−m +

ε

2
.

Since 0 < δ < 1, then for sufficiently large n,
K

1− δ
δn−m ≤

ε

2
and Sn ≤ ε. Then

the convergence result holds.
�

In the actual computational process, the discrete functional J ′
n often remains

unchanged for a fixed partition, i.e., J ′
n = J ′

h, and the corresponding iterative
scheme is

(28)

{

b(un+ 1
2
, v) = b(un, v)− ρn(J

′
h(un), v), ∀v ∈ U,

un+1 = P b
K

(

un+ 1
2

)

,

where h is the maximum step size of the partition. Therefore, we need to consider
the stability of the current scheme:

Corollary 1. Suppose all the conditions of Theorem 1 hold except that the conver-

gence of J ′
n to J ′ is replaced by

(29) ‖J ′
h(u)− J ′(u)‖b ≤ ε,

where ε is a positive number, then there exists a constant Ĉ > 0 such that

(30) ‖u− un‖b < δn‖u0 − u‖2b + Ĉε2.
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Proof. The proof is almost the same as that of the above theorem, except that we
replace J ′

n by J ′
h, and εn by ε. Thus, we have

(31) ‖un+1 − u‖2b ≤ δ‖un − u‖2b + (Cρ2n + 1)ε2 ≤ δ‖un − u‖2b + C̄ε2,

where C̄ is an upper bound of Cρ2n + 1. Then

(32) ‖un+1 − u‖2b ≤ δn+1‖u0 − u‖2b + C̄ε2
n
∑

i=0

δn−i ≤ δn+1‖u0 − u‖2b +
C̄

1− δ
ε2.

Let Ĉ =
C̄

1− δ
, then the proof is finished. �

The above results can be extended to the case where J ′ is only Lipschitz and
monotone locally. It follows from the proof that we still have convergence and the
error estimate if u0 and u are close enough.

It is possible to compute the gradient directly like in [10]. However it is in gen-
eral inefficient. In order to apply this abstract algorithm to our stochastic control
problem, we first compute the directional derivative of the objective functional by
using the adjoint equation:

Let u(·) be an optimal control for (2)-(3), and y(·) the corresponding optimal
trajectory. Let v(·) ∈ L2(0, T ) be given such that v(·) ∈ Uad. We take vρ =
u(·) + ρv(·), 0 ≤ ρ ≤ 1. Since Uad is convex, vρ(·) ∈ Uad. Then we have

(33)
J ′(u)(v) = lim

ρ→0

J(u+ ρv)− J(u)

ρ

= E
[

∫ T

0

h′(y)D(y)(v)dt
]

+

∫ T

0

j′(u)vdt.

where v ∈ L2(0, T ) and

(34) D(y)(v) = lim
ρ→0

1

ρ
[y(u+ ρv)− y(u)].

It follows that this derivative exists (see [15, 41, 47]). Noting that

(35) dy = f(t, y, u)dt+ g(t, y)dWt, y(0) = y0,

and then

(36) y = y0 +

∫ t

0

f(s, y, u)ds+

∫ t

0

g(s, y)dWs,

we find that D(y)(v) is determined by

(37) D(y)(v) =

∫ t

0

[f ′
y(s, y, u)D(y)(v) + f ′

u(s, y, u)v]ds+

∫ t

0

g′y(s, y)D(y)(v)dWs,

and then

(38) d(D(y)(v)) = [f ′
y(t, y, u)D(y)(v) + f ′

u(t, y, u)v]dt+ g′y(t, y)D(y)(v)dWt.

Define an adjoint state p backwards adapted such that E
{

∫ T

0 |pt|
2dt

}

< +∞

(39) −dp = [h′(y) + pf ′
y(t, y, u)− p(g′y(t, y))

2]dt+ pg′y(t, y)dWt, p(T ) = 0.
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Using stochastic integration by parts formula, we have

(40)

J ′(u)(v) = E
[

∫ T

0

h′(y)D(y)(v)dt
]

+

∫ T

0

j′(u)vdt

= E
[

∫ T

0

(

− dp− pf ′
y(t, y, u)dt+ p(g′y(t, y))

2dt

−pg′y(t, y)dWt

)

D(y)(v)
]

+

∫ T

0

j′(u)vdt

= E
[

∫ T

0

pd(D(y)(v)) +

∫ T

0

dp · d(D(y)(v))

−

∫ T

0

pf ′
y(t, y, u)D(y)(v)dt+

∫ T

0

p(g′y(t, y))
2D(y)(v)dt

−

∫ T

0

pg′y(t, y)D(y)(v)dWt

]

+

∫ T

0

j′(u)vdt

= E
[

∫ T

0

p
[

(f ′
y(t, y, u)D(y)(v) + f ′

u(t, y, u)v)dt

+g′y(t, y)D(y)(v)dWt

]

−

∫ T

0

p(g′y(t, y))
2D(y)(v)dt

−

∫ T

0

pf ′
y(t, y, u)D(y)(v)dt+

∫ T

0

p(g′y(t, y))
2D(y)(v)dt

−

∫ T

0

pg′y(t, y)D(y)(v)dWt

]

+

∫ T

0

j′(u)vdt

=

∫ T

0

E[p(f ′
u(t, y, u)) + j′(u)]vdt.

Remark 2.1. Our purpose of introducing p is to obtain a more convenient way
to compute the gradient of the objective in applying the project gradient algorithm.
There exist different ways to introduce an adjoint state aiming to obtain the SMP
for stochastic optimal control, which has been a theme subject to intensively studies
in the literature (see a summary in [51]). In the above derivation of J ′(u)(v) we
have not assumed that p is a Ft-adapted process, as it is well-known that equation
(39) may not have a Ft-adapted solution. However we did not utilize any mar-
tingale properties in the derivation, and the final formulation of J ′(u)(v) makes
sense without the Ft-adaptivity for p, see [6]. More importantly, our extensive
numerical tests show that the algorithm described below is relatively simple and
yet quite fast. More rigorous treatment is quite involved but definitely possible,
and relevant technicalities can be found in, for example, [3], [23], [28], [35], [39],
and [40]. On the other hand, if imposing Ft-adaptivity for p, then we have to use
a BSDE to redefine an adjoint process to simplify J ′(u)(v) as many researchers
do (see, e.g. [35] and [42]). However a fast numerical algorithm for a BSDE is
yet to be developed, particulary for the high dimensional case, see [35] and [49].
For the case where u appears in the diffusion term, it is still not clear if one has
to use a BSDE to develop fast algorithms, and this is still under active investigation.

We then apply the above projection algorithm to the optimal control problem.
Let U = L2(0, T ) and b(·, ·) = (·, ·)U . From the above computation we know:

(41) J ′(u)(v) = (E[p(f ′
u(t, y, u))] + j′(u), v),

where y, p are the solutions of the state and co-state equations (35) and (39). In
order to numerically compute the derivative, we use the Euler scheme for computing
y, p, and then adopt the gradient method for numerically solving the optimal control
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problem. This yields the following algorithm (PPGA).

(42)











b(un+ 1
2
, v) = b(un, v)− ρn(E[pn(f

′
u(t, yn, un))] + j′(un), v),

un+ 1
2
, un ∈ U, ∀v ∈ U,

un+1 = P b
K

(

un+ 1
2

)

,

where yn, pn, un represent the step functions constructed via (we have omitted the
subscript h) the Euler scheme of the state and the co-state equations as follows:

(i) Choose the initial control u0 arbitrarily.

For n = 0, 1, · · · , let u = un, do the following iteration loops (ii)-(v).
(ii) Use Euler explicit scheme to compute the state equation:

(43)







y0 = y0,

ym+1 = ym + f(tm, ym, um)∆tm + g(tm, ym)∆Wm,

m = 0, 1, · · · ,M − 1.

where M is the total number of time steps. ∆tm = tm+1 − tm represents
the mth time-step size, ∆Wm = Wtm+1 −Wtm is the N(0,∆tm) increment
of the Brownian motion Wt on [tm, tm+1].

(iii) Use Euler implicit scheme to compute the adjoint equation:

(44)



















pM = 0,

pm = pm+1 + [h′(ym) + pmf ′
y(t

m, ym, um)

−pm(g′y(t
m, ym))2]∆tm + pmg′y(t

m, ym)∆Wm,

m = M − 1,M − 2, · · · , 0.

The steps (ii) and (iii) are simulated for several orbits and then
E[pm(f ′

u(t
m, ym, um))] can be obtained approximately for m = 0, 1, · · · ,M .

(iv) Use the gradient method to update the control:

(45)

{

um
n+ 1

2

= um − ρn (E[pm(f ′
u(t

m, ym, um))] + j′(um)) , m = 0, 1, · · · ,M.

um
n+1 = P b

K

(

un+ 1
2

)

.

(v) Compute ǫn = ‖un − un+1‖∞. If ǫn is small enough, exit. Otherwise, Let
u = un+1, repeat the iteration loops (ii)-(v).

Next we use Theorem 1 and its corollary to discuss the convergence of the above
algorithm by showing convergent property of J ′

n to J ′, i.e., ‖J ′(un) − J ′
n(un)‖ ≤

εn → 0 if h is kept reduced towards to zero in iterations, or ‖J ′(un)− J ′
n(un)‖ ≤ ε

if the size h is fixed during the iterations, assuming that the above Euler Schemes
are convergent (see, e.g., [24]).

To this end, we first notice that

(46) J ′(un)(v) = (E[p̂n(f
′
u(t, ŷn, un))] + j′(un), v),

where un is the control of the current iterative step, ŷn and p̂n are the corresponding
solution of the following SDEs, respectively:

(47) dŷn = f(t, ŷn, un)dt+ g(t, ŷn)dWt, ŷn(0) = y0,

(48)
−dp̂n = [h′(ŷn) + p̂nf

′
y(t, ŷn, un)− p̂n(g

′
y(t, ŷn))

2]dt+ p̂ng
′
y(t, ŷn)dWt, p̂n(T ) = 0.

On the other hand, we have

(49) J ′
n(un)(v) = (E[pn(f

′
u(t, yn, un))] + j′(un), v),
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where yn and pn are the approximate solutions of ŷn and p̂n, respectively, obtained
by using the Euler schemes we mentioned above. Thus,

(50)

|J ′(un)(v)− J ′
n(un)(v)|

= (E[p̂n(f
′
u(t, ŷn, un))]− E[pn(f

′
u(t, yn, un))], v)

= (E[p̂n(f
′
u(t, ŷn, un))]− E[p̂n(f

′
u(t, yn, un))], v)

+(E[p̂n(f
′
u(t, yn, un))]− E[pn(f

′
u(t, yn, un))], v)

≤ (E[|p̂n| · |ŷn − yn|], |v|) + (E[|p̂n − pn| · |(f
′
u(t, yn, un))|], |v|)

≤ C(‖E[|ŷn − yn|]‖+ ‖E[|p̂n − pn|]‖) · ‖v‖,

Let εn = C(‖E[|ŷn − yn|]‖ + ‖E[|p̂n − pn|]‖), then ‖J ′(un) − J ′
n(un)‖ ≤ εn, and

we know that lim
n→∞

εn = 0 from the assumptions on convergence of the above Euler

schemes.
If the size h is fixed, then we only can have ‖J ′(un)−J ′

n(un)‖ ≤ ε. Then we can
only infer un is close to the optimal control u.

The above approach is applicable to the case where the control is a stochastic
process. However the convergence analysis may be much involved as can be seen
in [4]. Furthermore with the simulated sample data of optimal orbits and opti-
mal control, it is possible to reconstruct the feedback laws via suitable stochastic
regressions (see [16]), which is to be studied in the next stage.

3. Numerical Experiments

In this section, we present some numerical experiments to demonstrate our dis-
cretisation schemes and the methods developed in the above section.

Our first and second numerical examples are the Black-Scholes type of optimal
control problems:

(51)
min

u∈L2(0,T )
J(u) =

1

2

∫ T

0

E[(y − y⋆)2]dt+
1

2

∫ T

0

u2dt,

s.t. dy(t) = u(t)y(t)dt+ σy(t)dWt, y(0) = y0,

where σ is a constant.
According to the procedure in Section 2, the optimal control problem can be

solved by

(52)











dy = uydt+ σydWt, y(0) = y0,

−dp = (y − y⋆ + up− pσ2)dt+ pσdWt, p(T ) = 0,

u = −E(py).

For comparison, we design two examples which have the exact expression of the
optimal control as follows (see the Appendix). The first is

(53) u =
T − t

1

y0
− T t+

t2

2

, y⋆ =
eσ

2t − (T − t)2

1

y0
− T t+

t2

2

+ 1.

We choose T = 1, y0 = 1 in the numerical computation.
Figures 1a, 1b show the results of the first numerical experiment with σ =0.0,

0.1, 0.3, 0.5, respectively. The time step is set h = 0.02, and 2000 orbits are used
in the Monte Carlo simulation. The exit condition for the iteration is ǫn < 0.01.
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Figure 1a: Black-Scholes experiment I with σ = 0.0, 0.1
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Figure 1b: Black-Scholes experiment I with σ = 0.3, 0.5

The second example is

(54) u =
e−T − e−t

1

y0
+ 1− e−t − e−T t

, y⋆ =
eσ

2t − (e−T − e−t)2

1

y0
+ 1− e−t − e−T t

− e−t,

we also choose T = 1, y0 = 1 in the numerical computation.
Figures 2a, 2b show the results of the second numerical experiment with σ =0.2,

0.5, 0.7, 1.0, respectively. The same numerical settings for the Euler Scheme and
Monte Carlo simulation are used.
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Figure 2a: Black-Scholes experiment II with σ = 0.2, 0.5
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Figure 2b: Black-Scholes experiment II with σ = 0.7, 1.0

The third example is the inventory control problem with deterministic control
(see [52]): Let y(t) be the inventory level at time t for a goods, and let u(t) and
r(t) be the production and market demand rates of this goods. But the inventory
can be easily damaged, the amount of the damage is a stochastic process: Let σ be
the damage rate of the inventory, then

(55) dy = (u− r)dt + σdWt

The objective is to minimize the total production and storage cost:

(56) min
u≥0

J = 0.5[c1

∫ T

0

E[(y − y⋆)2] + c2

∫ T

0

u2].

Based on the procedure in Section 2, we have

(57)











dy = (u − r)dt+ σdWt, y(0) = y0,

−dp = (y − y⋆)dt, p(T ) = 0,

u = max
(

0,−
c1

c2
E(p)

)

.

We design the following example with exact control (see the Appendix):

(58) c1 = c2 = 1, y0 = 0, y⋆ = 0.5T t− 0.25t2 + 1, r = 0.5(T − t), u = T − t.

Figures 3a, 3b show the results of the third numerical experiment with σ =0.0,
1.0, 3.0, 5.0, respectively. The same numerical settings for the Euler Scheme and
Monte Carlo simulation are used and, the exit condition for the iteration is ǫn <

0.005.
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Figure 3a: Inventory experiment with σ = 0.0, 1.0
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Figure 3b: Inventory experiment with σ = 3.0, 5.0

The fourth example is the following type of optimal control problem:

(59)
min

u∈L2(0,T )
J(u) =

1

2

∫ T

0

E[(y − y⋆)2]dt+
1

2

∫ T

0

(u− u⋆)2dt,

s.t. dy(t) =
1

2
u(t)(u(t)− u⋆(t))y(t)dt + σy(t)dWt, y(0) = y0,

where σ is a constant.
The optimal control problem can be solved by

(60)



















dy =
1

2
u(u− u⋆)ydt+ σydWt, y(0) = y0,

−dp = (y − y⋆ − pσ2)dt+ pσdWt, p(T ) = 0,

u− u⋆ + E[p(u−
u⋆

2
)] = 0.

It is clear that we have the exact solutions:.

(61) u = u⋆ = 6 sinπt, y = y⋆ = y0e
−σ

2

2
t+σWt .

We choose T = 1, y0 = 1 in the numerical computation.
Figures 4 show the results of the fourth numerical experiment with σ =0.3, 0.5,

respectively. The same numerical settings for the Euler Scheme and Monte Carlo
simulation are used and, the exit condition for the iteration is ǫn < 0.05.
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Figure 4: The fourth experiment with σ = 0.3, 0.5

The fifth example is the following type of optimal control problem:

(62)
min

u∈L2(0,T )
J(u) =

1

2

∫ T

0

E[(y − 1)2]dt+
1

2

∫ T

0

u2dt,

s.t. dy(t) = u(t)y(t)dt+ σ
√

1 + y(t)2dWt, y(0) = y0,
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where σ is a constant.
The optimal control problem can be solved by

(63)



















dy = uydt+ σ
√

1 + y2dWt, y(0) = y0,

−dp =
(

y − 1 + pu− p
σ2y2

1 + y2

)

dt+ p
σy

√

1 + y2
dWt, p(T ) = 0,

u = −E(py).

However this time we do not know the exact solution. In the numerical tests
below, we choose T = 1, y0 = 1 in the computation.

Figures 5 show the results of the fifth numerical experiment with σ =0.5, 0.7,
respectively. The same numerical settings for the Euler Scheme and Monte Carlo
simulation are used and, the exit condition for the iteration is ǫn < 0.005.
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Figure 5: The fifth experiment with σ = 0.5, 0.7

Since we do not know the exact solution this time, we carry out several numerical
simulations of J(u) for some selected control u(t), and compare them with the
optimal numerical value J(u∗). First, we choose the constant control u(t) = c,
where c ranges from −1 to 1 with the step 0.01. The corresponding values of J(c)
are shown in Figure 6 for σ = 0.7. The minimum value of J(c) = 0.2751, is reached
at c = −0.2, which is close to (but still larger than) the value of J(u∗). The
corresponding u∗ is shown in the right figure of Figure 5.
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Figure 6: Illustration of J(c) as a function of c for σ = 0.7

We also tested other randomly selected controls, e.g., u = t2 − 1, u = sin(t)− 1,
etc. All these simulations produce much larger values of functional J(u) than J(u∗).
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4. Conclusions

In this work we propose a numerical algorithm for a class of stochastic optimal
control, where the control is deterministic. This algorithm is relatively simple for
implementation, but quite effective as shown in our extensive numerical tests. It
is applicable for the high dimensional case where there are many risky assets to be
managed. The purpose of selecting this simpler control class in this paper is that
we wish to separate the study of numerically computing the optimal control, and
that of constructing feedback laws, which is to be studied in the next stage.

5. Appendix

In this section, we describe the details of designing the numerical experiments
in Section 3. The exact solutions are based on a different optimal condition, which
can be used to solve the exact optimal control.

5.1. The Black-Scholes cases. We first examine the Black-Scholes control prob-
lem with deterministic control u(t) ∈ L2(0, T ):

(64) J(u) =
1

2

∫ T

0

E[(y − y⋆)2]dt+
1

2

∫ T

0

u2dt,

where y⋆ is deterministic. We need to determine min
u∈L2(0,T )

J(u) with

(65) dy(t) = u(t)y(t)dt+ σy(t)dWt, y(0) = y0,

where σ is a constant.
In the follows, we derive a different optimality condition, which can be used to

design the close form optimal control. It follows from Itô formula that

(66) y(t) = y0e
∫

t

0
u(s)ds− σ

2

2
t+σWt ,

and then

(67) E(y) = y0e
∫

t

0
u(s)ds− σ

2

2
tE(eσWt) = y0e

∫
t

0
u(s)ds,

so we have

(68) dE(y) = u(t)E(y)dt

and

(69) E[(y − y⋆)2] = [E(y)]2eσ
2t − 2y⋆E(y) + [y⋆]2.

Noting that

(70) J ′(u)(v) =

∫ T

0

[E(y)eσ
2t − y⋆][E(y)′(u)(v)]dt +

∫ T

0

uvdt,

if we define p satisfies

(71) −dp(t) = (u(t)p(t) + E(y)eσ
2t − y⋆)dt, p(T ) = 0,

then

(72)

J ′(u)(v) =

∫ T

0

(

−
dp

dt
− up

)

[E(y)′(u)(v)]dt+

∫ T

0

uvdt

=

∫ T

0

p
d[E(y)′(u)(v)]

dt
dt−

∫ T

0

up[E(y)′(u)(v)]dt +

∫ T

0

uvdt

=

∫ T

0

(u+ pE(y))vdt = 0, ∀v ∈ L2(0, T ),
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which means

(73) u = −pE(y).

Based on the above deduction, we construct the following two examples:
I. Let p = t− T , from

(74) dE(y) = u(t)E(y)dt = −p(E(y))2, E(y)(0) = y0

we have

(75) E(y) =
1

1

y0
− T t+

t2

2

.

Then the optimal control u can be derived as

(76) u =
T − t

1

y0
− T t+

t2

2

.

Finally, y⋆ can be obtained as follows:

(77) y⋆ =
dp

dt
+ u(t)p(t) + E(y)eσ

2t =
eσ

2t − (T − t)2

1

y0
− T t+

t2

2

+ 1.

II. Similarly, let p = e−t − e−T , we have

(78) E(y) =
1

1

y0
+ 1− e−t − e−T t

.

Then

(79) u =
e−T − e−t

1

y0
+ 1− e−t − e−T t

and

(80) y⋆ =
eσ

2t − (e−T − e−t)2

1

y0
+ 1− e−t − e−T t

− e−t.

5.2. The Inventory case. The Inventory control problem is to minimize the total
production and storage cost

(81) min
u≥0

J = 0.5[c1

∫ T

0

E[(y − y⋆)2] + c2

∫ T

0

u2].

s.t.

(82) dy = (u − r)dt+ σdWt, y(0) = y0.

We will derive a similar optimality condition to design the numerical example.
It follows that

(83) y = y0 +

∫ t

0

(u− r)dt + σWt = E(y) + σWt,

so that

(84) E(y) = y0 +

∫ t

0

(u(s)− r(s))ds
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and

(85) dE(y) = (u − r)dt.

Noting that

(86) E[(y − y⋆)2] = E[(E(y) − y⋆ + σWt)
2] = [E(y)− y⋆]2 + σ2t,

if we define

(87) −dp = [E(y)− y⋆]dt, p(T ) = 0,

then

(88)

J ′(u)(v) = c1

∫ T

0

(

−
dp

dt

)

[E(y)′(u)(v)]dt+ c2

∫ T

0

uvdt

= c1

∫ T

0

p
d[E(y)′(u)(v)]

dt
dt+ c2

∫ T

0

uvdt

=

∫ T

0

(c1p+ c2u)vdt.

The optimal condition reads

(89)

∫ T

0

(c1p+ c2u)(v − u)dt ≥ 0, ∀v ≥ 0,

which means

(90) u(t) = max(0,−
c1

c2
p).

Now we design the corresponding numerical experiment. Let c1 = c2 = 1, y0 =
0, and p = t− T , we first have

(91) u(t) = max(0,−
c1

c2
p) = T − t.

Let r(t) = 0.5(T − t), then

(92) E(y) =

∫ T

0

(u− r)dt = 0.5T t− 0.25t2,

and finally

(93) y⋆ =
dp

dt
+ E(y) = 0.5T t− 0.25t2 + 1.
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