
INTERNATIONAL JOURNAL OF c© 2013 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 10, Number 3, Pages 745–755

AN ALGORITHM FOR FINDING NONNEGATIVE MINIMAL

NORM SOLUTIONS OF LINEAR SYSTEMS

SAÏD BAHI AND AARON ROSS

(Communicated by Edward Allen)

Abstract. A system of linear equations Ax = b, in n unknowns and m equations which has a
nonnegative solution is considered. Among all its solutions, the one which has the least norm

is sought when R
n is equipped with a strictly convex norm. We present a globally convergent,

iterative algorithm for computing this solution. This algorithm takes into account the special
structure of the problem. Each iteration cycle of the algorithm involves the solution of a similar
quadratic problem with a modified objective function. Duality conditions for optimality are
studied. Feasibility and global convergence of the algorithm are proved. As a special case we
implemented and tested the algorithm for the ℓp-norm, where 1 < p < ∞. Numerical results are
included.

Key words. Linear equations, Least norms, Optimality, Duality conditions.

1. Introduction

We will be considering a system of real linear equations

(1.1) Ax = b,

where A is an m× n-real matrix, b in m-real vector and x an n-real vector. Under
the assumption that the system (1.1) has a non-negative solution, we study the
following problem: out of all non-negative solutions of (1.1) compute the solution
that has the least norm when the norm considered on R

n is strictly convex. This
naturally, includes the ℓp-norm, 1 < p < ∞. The algorithm proposed in this work
solves the minimal norm problem

(P ) min {‖x‖ | Ax = b, x ∈ R
n, x ≥ 0}.

We assume that b 6= 0, because otherwise the problem is trivial. All the steps of
the algorithm for computing the solution of (P ) will be shown to be feasible. Its
global convergence will then be proved.

To solve the given problem, a dual problem, denoted (P ′), will be associated
with (P ). An outline of the correspondence between (P ) and (P ′) will be given.
The main application of this work is the ℓp-norm case. Namely, find x ∈ R

n that
minimizes the ℓp- problem

(1.2) minimize{ ‖x‖p | Ax = b, x ∈ R
n, x ≥ 0}.

It should be noted here that the objective function in (1.2) need not be twice
differentiable. The case 1 < p < 2 has been more troublesome since methods
requiring second derivatives will not be defined for certain non-zero points. While
(1.2) is a smooth convex programming problem and thus susceptible to general
programming procedures, it seems natural to take into account in our algorithm
the special structure of the problem. For its convergence the proposed algorithm
does not need extra differentiability of the norm.

Received by the editors July 5, 2012 and, in revised form, October 9, 2012.
2000 Mathematics Subject Classification. 90C25, 90C30.

745



746 S. BAHI AND A. ROSS

For p = 2, problem (1.2) becomes a special case of what Lawson and Hanson
referred to in [7] as the least distance programming (LDP) and for which they gave
a finite algorithm. This algorithm (or any other similar purpose one) is used in this
work as follows: at each iteration step of our algorithm, the LDP problem

Ax = b, x ≥ 0, ‖x− ak‖2(min),

where (ak) is a sequence defined by the algorithm, is solved using the LDP algo-
rithm.

The main contribution of this paper is to propose a method of solution of probelm
(P ) that is not limited to a single norm such as the ℓ2-norm. Different applications
suggest different norms to use. Ideally, we seek a solution that optimize general
norms. In many applications, a system of linear equations may have many solutions
(e.g. when solving linear operator equations) and it may be needed, following a
discretization, to select one solution under a given criteria. This criteria could be
to find a solution that has the least norm or a solution that is the closest to a (target)
point a in which case one needs to minimize ‖x− a‖ among all solutions of a linear
system. The classical ℓ2-norm may not be always the best choice. For instence,
in sparse solution construction and compressed sensing, similar ℓp minimization
problems arise for 0 < p < 1. Other applications arise when solving some variational
problems.

2. Main notation and duality

Let the norm ‖ · ‖ on R
n, n ≥ 1, be arbitrary. The norm is said to be smooth

if and only if through each point of unit norm there passes a unique hyperplane
supporting the closed unit ball B = {x ∈ R

n | ‖x‖ ≤ 1}. The norm is said to be
strictly convex if and only if the unit sphere S = {x ∈ R

n | ‖x‖ = 1} has no line
segment on it.

To introduce the dual problem (P ′), we define the dual norm ‖ · ‖′ on R
n by

‖y‖′ = max{〈x, y〉 | ‖x‖ = 1, x ∈ R
n}.

For any vector v ∈ R
n, v 6= 0, a ‖ · ‖-dual vector, v′ is defined by

(2.1) ‖v′‖ = 1, 〈v′, v〉 = ‖v‖′.

Similarly, for the dual norm, a ‖ · ‖′-dual vector v∗ is defined by

‖v∗‖′ = 1, 〈v∗, v〉 = ‖v‖.

The map y 7→ y′ (resp. y 7→ y∗) is odd, continuous and positively homogeneous
of degree zero on R

n\{0}, if the norm is strictly convex (resp. smooth). For v 6= 0,

we have the relations v
′∗ = v/‖v‖′ (resp. v∗

′

= v/‖v‖) when the norm ‖ · ‖ is
smooth (resp. strictly convex.)

When ‖ · ‖ = ‖ · ‖p, 1 < p < ∞, is the usual ℓp-norm, then ‖ · ‖′ = ‖ · ‖q, where
p+ q = pq. In terms of components, the dual vectors are given by

v′i = (|vi|/‖v‖q)
q−1sgn (vi), v∗i = (|vi|/‖v‖p)

p−1sgn (vi), i = 1, . . . , n.

Let K = {x ∈ R
n | x ≥ 0, Ax = b}. Given problem (P ), we associate a dual

problem ([1], [8])

(P ′) max{〈b, y〉 | ξ ∈ R
n, ξ ≥ 0, y ∈ R

m, ‖ξ +AT y‖′ ≤ 1},

where AT is the transpose of the matrix A. The relation between (P ) and (P ′) is
studied in the next two results.



MINIMAL NORM SOLUTIONS OF LINEAR SYSTEMS 747

Lemma 2.1 If the norm ‖ ·‖ on R
n is arbitrary and K is non-empty, then value

of (P ′) ≤ value of (P ).

Proof. Let x ∈ K, and let ξ and y be as defined in problem (P ′). Then

〈b, y〉 = 〈x,AT y〉 ≤ 〈x,AT y + ξ〉 ≤ ‖x‖.‖AT y + ξ‖′ ≤ ‖x‖. �

In their paper [8], Nikolopoulos and Sreedharan investigated in details the duality
between (P ) and (P ′) and stated that for an arbitrary norm on R

n the two problems
have the same value. A useful characterization of the solution of (P ) was then
proposed by the authors. We discuss this characterization below. If K is non-empty
and the norm ‖ · ‖ on R

n is strictly convex, then x̄ is a non-negative minimal norm
solution of problem (P ) if and only if Ax̄ = b, x̄ ≥ 0 and there exist ξ ∈ R

n, ξ ≥ 0
and y ∈ R

m such that

(2.2) 〈b, y〉 > 0, ‖AT y + ξ‖′ = 1

and

(2.3) x̄ = 〈b, y〉(AT y + ξ)′, 〈ξ, (AT y + ξ)′〉 = 0.

If in addition the norm ‖ · ‖ is smooth, then x̄∗ = ξ + AT y and 〈ξ, x̄〉 = 0.
The couple (y, ξ) solves (P ′) and finally 〈b, y〉 = 〈x̄∗, x̄〉. A characterization of the
solution of problem (P ) in the ℓ2-norm case follows immediately from the discussion
above. This is an important ingredient in the subsequent development of this work.
We state it as

Corollary 2.2 If ‖ · ‖ = ‖ · ‖2, then x̄ is the solution of the problem (P ) if and
only if x̄ ∈ K, and

(2.4) x̄ = AT y + ξ and 〈ξ, x̄〉 = 0

for some ξ ∈ R
n, ξ ≥ 0 and y ∈ R

m.

It should be noted that when ‖·‖ = ‖·‖2, then x̄∗ = x̄/‖x̄‖2, so that the corollary
follows easily from the general case discussed earlier.

3. Algorithm

We assume that the system of linear equations Ax = b, x ≥ 0, is feasible and that
the norm ‖·‖ is strictly convex. We present an algorithm for computing the solution
of (P ). The feasibility and all other assertions made will be proven subsequently.

Algorithm 3.1

Step 0. Find the solution x0 of Ax = b, x ≥ 0, ‖x‖2 (min). Let

g0 = x0/‖ x0‖
′, β0 = 〈g0, x0〉 and k = 0.

Step 1. Set ak = βkg
′
k. Find xk+1 solution of

Ax = b, x ≥ 0, ‖x− ak‖2 (min).

Let uk = xk+1 − ak
Step 2. If uk = 0, stop. xk+1 is the solution of (P ); else continue.
Step 3. Set γk = 〈uk, xk+1〉.
Step 4. If γk ≥ βk‖uk‖

′ + 1
4
‖uk‖

2
2, let gk+1 = uk/‖uk‖

′ and βk+1 = γk/‖uk‖
′

and GO TO step 8; else continue.
Step 5. Let µk = (γk −

1
2
‖uk‖

2
2)/βk.

Step 6. Find αk > 0 such that ‖gk + αkuk‖
′ = 1 + αkµk.



748 S. BAHI AND A. ROSS

Step 7. Let gk+1 = (gk+
1
2
αkuk)/‖gk+

1
2
αkuk‖

′, and βk+1 = (βk+
1
2
αkγk)/‖gk+

1
2
αkuk‖

′.
Step 8. Increase k by 1 and return to step1.
Later the stopping rule of step 2 will be used as follows. We will show that the

constructed sequence (uk)k≥0 converges to zero. Then because of this convergence,
it will be proven that the algorithm converges to the solution of problem (P ).
However, for implementation purpose, one would use a more realistic stopping rule
such as the duality gap criterion. In other words, we replace the condition uk = 0
of step 2 by the condition

(‖xk‖ − βk)/‖xk‖ ≤ η,

where η > 0 is a stopping rule parameter.
The main interest in the remaining discussion will be focused on proving that

the various steps of the algorithm are valid and that the important step 6, defining
the step length αk > 0, is answered affirmatively and, finally, proving that the
algorithm leads effectively to the solution of problem (P ).

Because of corollary 2.2 we have

(3.1) g0 = ξ0 +AT y0, ‖g0‖
′ = 1 and β0 = 〈b, y0〉 > 0,

for some ξ0 ≥ 0 in R
n and y0 in R

m. To see this, we recall that a necessary and
sufficient condition for x0 to be l2-solution, as in step 0, is that x0 = AT z+ ξ, and
〈ξ, x0〉 = 0. If we set g0 = x0/‖x0‖

′ we get g0 = ξ0 + AT y0 with the appropriate
ξ0 and y0. Finally, we note that β0 = 〈g0, x0〉 = ‖x0‖

2
2/‖x0‖

′ > 0 and 〈g0, x0〉 =
〈ξ0 +AT y0, x0〉 = 〈y0, Ax0〉 = 〈y0, b〉.

In the following results of this paper, it will be shown that algorithm 3.1 is
feasible and converges to a solution of problem (P ). The lemmas presented in the
remaining of this section show the feasibility of the algorithm. It depends mainly
on the feasibility of steps 5 to 7. Lemma 3.2 proves the feasibility of step 7 of the
algorithm and that the sequence of parameters βk in fact approximates the optimal
value of the dual problem. Lemma 3.4 shows that this sequence is positive strictly
increasing and hence step 5 of the algorithm is well defined. The convergence of
this sequence is also shown. The central result of the existence of a solution αk > 0
to the equation in step 6 and hence the feasibility of this step is shown in lemma
3.3.

Lemma 3.2. (a) Let uk 6= 0, be as defined in the algorithm. Then

(3.2) ∀α > 0, gk + αuk 6= 0.

(b) Let αk > 0 be as defined by step 6 of the algorithm, then there exist ξk+1 ∈
R

n, ξk+1 ≥ 0, yk+1 ∈ R
m such that

(3.3) gk+1 = ξk+1 +AT yk+1, ‖gk+1‖
′ = 1 and βk+1 = 〈b, yk+1〉.

Proof. (a) is proved by induction on k. For k = 0, suppose that (a) does not hold,

i.e. ∃α > 0, g0 = −αu0. Using step 1 of the algorithm for k = 0, u0 = x1−a0, thus

‖u0‖
2
2 = 〈u0, x1 − a0〉 = −α−1(〈g0, x1〉 − 〈g0, a0〉)

= −α−1(〈x1, ξ0 +AT y0〉 − β0) = −α−1(〈Ax1, y0〉+ 〈x1, ξ0〉 − β0)

= −α−1(β0 + 〈x1, ξ0〉 − β0) = −α−1(〈x1, ξ0〉),

where the second equality is due to (3.1) and the fact that β0 = 〈g0, x0〉. This yields
a contradiction since x1 ≥ 0, ξ0 ≥ 0, and u0 6= 0.



MINIMAL NORM SOLUTIONS OF LINEAR SYSTEMS 749

To prove (b), from step 1 of the algorithm and (2.4), there exist ξ ∈ R
n, ξ ≥

0, z ∈ Rm such that

(3.4) u0 = x1 − a0 = ξ +AT z,

and 〈z, b〉 = 〈u0, x1〉 = γ0. Suppose α0 is determined by step 6 of the algorithm.
Then g0 + (α0/2)u0 is nonzero. Let

y1 = (y0 + (α0/2)z)/‖g0 + (α0/2)u0‖
′

and

ξ1 = (ξ0 + (α0/2)ξ)/‖g0 + (α0/2)u0‖
′.

From (3.1) and (3.4), we obtain

AT y1 + ξ1 = (ξ0 +AT y0 + (α0/2)(ξ +AT z))/‖g0 + (α0/2)u0‖
′

= (g0 + (α0/2)u0)/‖g0 + (α0/2)u0‖
′ = g1,

and

〈y1, b〉 = (〈y0, b〉+ (α0/2)〈z, b〉)/‖g0 + (α0/2)u0‖
′

= (β0 + (α0/2)γ0)/‖g0 + (α0/2)u0‖
′ = β1.

The same argument applies for any integer k if we assume the proposition to be
true for k − 1. �

It will be shown later that the sequence (βk) generated by the algorithm is
strictly increasing. This observation combined with (3.1) implies that βk > 0, for
all k. For this reason, step 5 is properly formulated. The crucial step of finding
αk > 0 is step 6 of the algorithm will now be proved to be feasible.

Lemma 3.3. Suppose the algorithm is at the stage of executing step 5. Let µk

be defined by µk = (γk − ‖uk‖
2
2/2)/βk. Then, there exists αk > 0 such that

(3.5) ‖gk + αkuk‖
′ = 1 + αkµk.

Proof. We only give a sketch of the proof which actually follows the same lines as

in theorem 4.1 of [1]. We define the real valued functions f(λ) = ‖gk + λuk‖
′ and

l(λ) = 1 + λµk, where λ is a real number. Then f is a strictly convex function,
f(0) = ‖gk‖

′ = 1 = l(0), by the definition of gk in step 4 of the algorithm, and
f ′(0) = 〈g′k, uk〉. It is easily seen that if the algorithm is at the stage of executing
step 5, then uk 6= 0, g′k = 1

βk

ak and

f ′(0)− l′(0) = 〈g′k, uk〉 − µk

=
1

βk

〈ak, uk〉 − µk

=
1

βk

〈xk+1 − uk, uk〉 − µk

=
1

βk

〈xk+1, uk〉 −
1

βk

〈uk, uk〉 −
1

βk

(γk − ‖uk‖
2
2/2)

=
1

βk

γk −
1

βk

‖uk‖
2
2 −

1

βk

γk +
1

2βk

‖uk‖
2
2

= −‖uk‖
2
2/(2βk) < 0.

Hence, there must exist λ > 0 such that f(λ) − l(λ) < 0. Now, αk > 0 in step
5 is sought only if step 4 in the algorithm is answered negatively, i.e. if γk <
βk‖uk‖

′ + ‖uk‖
2
2/4, in which case

f(λ)− l(λ) ≥ λ(βk‖uk‖
′ − γk + ‖uk‖

2
2/2)/βk − 2 −→ ∞,



750 S. BAHI AND A. ROSS

as λ −→ ∞. Thus, because of continuity, (3.5) holds. �

Lemma 3.4. Let the norm ‖.‖ be smooth. Then: (a) the sequence (βk) generated
by the algorithm is strictly increasing, and (b) either the sequence (βk) is finite or
it is a convergent infinite sequence.

Proof. βk is computed either in step 4 or step 7 of the algorithm. If the first is
executed then γk ≥ βk‖uk‖

′ + ‖uk‖
2
2/4, so that by step 4 defining βk+1

βk+1 = γk/‖uk‖
′ ≥ βk + ‖uk‖

2
2/4‖uk‖

′ > βk

(since uk 6= 0). Now on the contrary, if we assume that step 4 of the algorithm is
answered negatively, then βk+1 is defined in step 7. Because the norm is smooth
and so the dual norm ‖.‖′ is strictly convex, it follows that for αk > 0 as defined in
step 6 and by equation (3.5)

‖gk + (αkuk)/2‖
′ < ‖gk + αkuk‖

′/2 + ‖gk‖
′/2 =

1

2
(1 + αkµk) +

1

2

= 1 +
1

2
αkµk

= 1 + αk(γk − ‖uk‖
2
2/2)/(2βk),

where the last equality is due to the definition of µk in step 5 of the algorithm.
Multiplying both sides by βk, we have

βk‖gk + (αkuk)/2‖
′ < βk + αk(γk − ‖uk‖

2
2/2)/2 < βk + (αkγk)/2.

Consequently,

βk < (βk + (αkγk)/2)/‖gk + (αkuk)/2‖
′ = βk+1,

by definition of βk+1 in step 7 of the algorithm. This shows that, in all cases, the
sequence βk is strictly increasing. To prove (b), suppose that the sequence (βk) is
infinite. Then, we see immediately from the weak duality that βk = 〈yk, b〉 ≤ ‖x‖,
for any fixed feasible solution x ∈ R

n. This shows that (βk) is bounded and thus,
convergent. �

4. Convergence

After the preliminary results in the previous section concerning the feasibility of
the algorithm, we begin the study of its convergence. The next two Lemmas will
be needed to establish the convergence to the solution of problem (P ).

Lemma 4.1. Let αk > 0 be as defined in step 6 of the algorithm. Then

(4.1) βk〈(gk + αkuk)
′, uk〉+ ‖uk‖

2
2/2 ≥ γk.

Proof. From the definition of the dual vectors and the construction of gk, we
know that ‖(gk + αkuk)

′‖ = 1 and ‖gk‖
′ = 1, and this implies

〈(gk + αkuk)
′, gk〉 ≤ ‖(gk + αkuk)

′‖.‖gk‖
′ = 1.

Due to the definition of the dual norm, we also have the defining equation

‖gk+αkuk‖
′ = 〈(gk+αkuk)

′, (gk+αkuk)〉 = 〈(gk+αkuk)
′, gk〉+αk〈(gk+αkuk)

′, uk〉.

Therefore
‖gk + αkuk‖

′ ≤ 1 + αk〈(gk + αkuk)
′, uk〉.

This, combined with the equation (3.5) defining αk and step 5 defining µk, yields

1 + αk(γk − ‖uk‖
2
2/2)/βk = 1 + αkµk = ‖gk + αkuk‖

′ ≤ 1 + αk〈(gk + αkuk)
′, uk〉,



MINIMAL NORM SOLUTIONS OF LINEAR SYSTEMS 751

so that

αk(γk − ‖uk‖
2
2/2)/βk ≤ αk〈(gk + αkuk)

′, uk〉,

which implies (4.1) since αk > 0. �

Lemma 4.2. let αk, xk and uk be as defined in the algorithm. Then the
sequences (ak), (xk) and (uk) are bounded.

Proof. If the algorithm terminates in a finite number of iterations, the lemma is
trivial. Consider the case when the sequences are infinite. Let d > 0 be the value of
the minimization problem (P ). Then, as mentioned above, βk = 〈b, yk〉 ≤ d, for all
k, by Lemma (2.1). From step 1 of the algorithm, we see that ‖ak‖2 = βk‖g

′
k‖2 ≤

Mβk‖g
′
k‖ ≤ Md, where M > 0 is such that ‖v‖2 ≤ M‖v‖ for all v ∈ R

n. Hence
(ak) is bounded.

To see that the sequence (xk) is bounded, let x̃ be any fixed feasible solution of
problem (P ). Because xk+1 is the minimizer of the problem

Ax = b, x ≥ 0, ‖x− ak‖2 (min),

(this minimization is done in step 1 of the algorithm at each iteration cycle) we get

‖xk+1‖ ≤ ‖xk+1 − ak‖2 + ‖ak‖2 ≤ ‖x̃− ak‖2 + ‖ak‖2 ≤ ‖x̃‖2 + 2‖ak‖2 ≤ ‖x̃‖2 + 2Md.

Thus (xk) is bounded. From this it clearly follows that the sequence (uk) where
uk = xk+1 − ak is also bounded. �

We now put everything together to prove that the algorithm converges to the
solution of problem (P ). The first thing is to observe that step 2 is true, i.e. for
the sequence (uk) generated by the algorithm, if uk = 0 for some k, then xk+1

is the solution of problem (P ). If uk = 0 as in step 2, then because of step 1,
xk+1 = ak = βkg

′
k. By virtue of lemma 3.2, βk = 〈b, yk〉 and gk = ξk +AT yk, from

which it follows that

xk+1 = 〈b, yk〉(ξk +AT yk)
′.

Moreover, ‖ξk +AT yk‖
′ = 1 and 〈b, yk〉 > 0. Using (2.2) and (2.3), it is obvious

now that xk+1 solves (P ). The previous discussion is summarized in the first part
of the following convergence theorem.

Theorem 4.3. If the algorithm terminates after a finite number k of iterations,
then xk+1 is the solution of problem (P ). If the algorithm generates an infinite
sequence (xk), then it converges to the solution of (P ).

Proof. Assume that the algorithm is executed for an infinite number of iterations
(k). By Lemma 4.2, the sequence γk defined by γk = 〈uk, xk+1〉, where (xk) and (uk)
are generated by the algorithm, is clearly a bounded sequence. Hence, by passing
to a subsequence if necessary, we may assume that γk −→ γ. Since 0 < βk ≤ d
and ‖gk‖

′ = 1, let us pass to further subsequence, denoted again by (k), such that
βk −→ β. and gk −→ g. The first goal is to establish that limk→∞ uk = 0. Suppose
the claim were false. Then, once more by Lemma 4.2, there exists a subsequence,
denoted again (k), such that

uk −→ u 6= 0.

Case 1. Step 6 is executed for an infinite number of iterations. We begin by
showing that the sequence of positive numbers (αk) is bounded from above. Because
uk −→ u 6= 0, we can pick a subsequence, denoted once more by (k), such that



752 S. BAHI AND A. ROSS

‖uk‖
2
2 ≥ δ for some δ > 0. Now, using (3.5) and once more the definition of µk in

step 5, it follows that

αk‖uk‖
′ − 1 ≤ ‖gk + αkuk‖

′ = 1 + αkµk = 1 + αk(γk − ‖uk‖
2
2/2)/βk.

This shows that

(4.2) αk(βk‖uk‖
′ − γk + ‖uk‖

2
2/2)/βk ≤ 2.

Recall that step 6 is executed only if

(4.3) γk < βk‖uk‖
′ + ‖uk‖

2
2/4,

that is only if

γk − βk‖uk‖
′ < ‖uk‖

2
2/4.

Rewriting (4.2) as

αk(βk‖uk‖
′ − γk + ‖uk‖

2
2/2)/ ≤ 2βk

and combining with the above inequality, we have

αk‖uk‖
2
2/2 ≤ 2βk + αk(γk − βk‖uk‖

′) < 2βk + αk‖uk‖
2
2/4

from which we get αk‖uk‖
2
2/4 < 2βk, so that 0 < αk < 8d/δ, since (βk) is bounded

from above by d as it was shown earlier and ‖uk‖
2
2 ≥ δ. Thus the sequence (αk) is

bounded. Passing to a further subsequence if necessary, we may assume that there
exists α ≥ 0 such that αk −→ α, as k −→ ∞.

If we let k −→ ∞ in (4.1), then by continuity of the map z 7→ z′ on R
n\{0} it

follows that

(4.4) β〈(g + αu)′, u〉+ ‖u‖22/2 ≥ γ.

We distinguish two possibilities, α = 0 and α > 0 and show that these two cases
both will lead as to conclude that limuk = 0.

If α = 0, then (4.4) becomes

(4.5) β〈g′, u〉+ ‖u‖22/2 ≥ γ.

From the definition of uk and ak in step 1 of the algorithm, it follows that

‖uk‖
2
2 = 〈xk+1 − ak, uk〉 = 〈xk+1, uk〉 − 〈ak, uk〉 = γk − βk〈g

′
k, uk〉.

Passing to the limit on both sides of the above relation leads to ‖u‖22 = γ −β〈g′, u〉.
This with inequality (4.5) force u to satisfy ‖u‖22/2 ≤ 0. So u = 0.

Suppose now that α > 0. Using step 7 of the algorithm and allowing k −→ ∞,
we get

βk+1 −→ (β +
1

2
αγ)/‖g +

1

2
αu)‖′ = β̂.

Note that βk = 〈yk, b〉 and βk+1 = 〈yk+1, b〉 both have the same limit. So β = β̂.
This yields the equation

(4.6) β‖g +
1

2
αu‖′ = β +

1

2
αγ.

Once more allowing k −→ ∞ in the equation (3.5) defining αk and using the
definition of µk, we have

(4.7) β‖g + αu‖′ = β + α(γ −
1

2
‖u‖22).



MINIMAL NORM SOLUTIONS OF LINEAR SYSTEMS 753

Applying the strict convexity of the dual norm ‖.‖′ implies

β‖g +
1

2
αu‖′ < β

(

1

2
‖g‖′ +

1

2
‖g + αu‖′

)

= β

(

1

2
+

1

2

[

1 + α

[

γ −
1

2
‖u‖22

]

/β

])

= β +
1

2
α

(

γ −
1

2
‖u‖22

)

.

Inserting this in (4.6) shows that

β +
1

2
αγ < β +

1

2
α

(

γ −
1

2
‖u‖22

)

,

which implies ‖u‖22/4 < 0 leading to a contradiction so that the sequence (uk)
converges to zero, as sought.

Case 2. Assume that the condition in step 4 of the algorithm is satisfied for all,
but a finite number of indices (k). As in the first case we proceed by contradiction
by assuming that (uk) does not converge to zero. So assume that there exists a
subsequence denoted (k) again and a nonzero vector u such that

lim
k→∞

uk = u 6= 0.

Since step 4 is answered affirmatively for all k, we have γk ≥ βk‖uk‖
′ + 1

4
‖uk‖

2
2,

for all k. Letting k −→ ∞ in the above inequality implies

(4.8) γ ≥ β‖u‖′ +
1

4
‖u‖22.

In step 4, βk+1 = γk/‖uk‖
′, thus as k −→ ∞, this converges to β = γ/‖u‖′,

which combined with inequality (4.8), leads to 1
4
‖u‖22 ≤ 0, a contradiction with

the assumption made. We have thus proved that in all cases, the sequence (uk)
generated by the algorithm converges to zero.

It remains now to prove that the algorithm converges to the unique solution of
problem (P ). Let x∗ be any cluster point of the sequence (xk) and let (xk′ ) be a
subsequence converging to x∗. Writing the relation in step 1 of the algorithm for
all k′, we have

(4.9) xk′+1 = uk′ + βk′g′k′ ,

where g′k′ = AT yk′ + ξk′ , ‖gk′‖′ = 1 and βk′ = 〈yk′ , b〉, for all k′, by virtu of Lemma
3.2. Since ‖gk′‖′ = 1, by passing to a further subsequence that we denote (k′), we
get gk′ −→ g, ‖g‖′ = 1. It has been proven earlier that limuk′ = 0, so if we let
k′ −→ ∞ in (4.8), then

(4.10) x∗ = βg′, ‖g‖′ = 1.

Clearly, x∗ is feasible since K = {x ∈ R
n | x ≥ 0, Ax = b} is closed. In other words

Ax∗ = b and x∗ ≥ 0.
From earlier discussion in the proof, we have seen that β = lim〈yk′ , b〉, where

yk′ ∈ R
n, ξ ≥ 0 and ‖AT yk′ + ξk′‖′ = 1. By the weak duality lemma and (4.9)

〈yk′ , b〉 ≤ ‖x∗‖ ≤ β.

Letting k′ −→ ∞ in the above relation yields equality. This shows that every
cluster point of the sequence (xk) is a solution of problem (P ). Due to the unique-
ness of the solution, we conclude that (xk) converges to the unique solution of (P ).
This completes the proof of the theorem. �



754 S. BAHI AND A. ROSS

5. Numerical Implementation

We coded algorithm 3.1 in MatLab. To compare its performance to existing
algorithms, the first implementation was performed using a numerical example
(example 1) from [8]. The norm ‖ · ‖ used was the usual lp-norm and the algorithm
was implemented for various values of p. The minimization subproblems in Steps 0
and 1 were executed using a standard minimization routine in MatLab. Note that
these steps require solving a quadratic program and therefore, any of the available
codes for quadratic optimization could be used. For the stopping criterion of step
2, the duality gap discussed in section 3 was used. The results are tabulated and
presented in Table 1.
Example 1 ([8]).

A =





3 1 −1 0 0
4 3 0 −1 0
1 2 0 0 −1



 b =





3
6
2





Table 1: the values of p are shown in the first column. The number of iterations k is recorded in
the second column and for comparison, the third column reports the number K of iteration in [8]
in which the first 2 values were not calculated. Our objective value ‖x‖p is shown in column 4

and for comparison the last column records the objective value in [8].

p k K ‖x‖p ‖x‖p in [8]

10.0 89 - 0.919912 -
5.0 20 - 0.995628 -
4.0 18 3555 1.044519 1.044507
3.5 24 430 1.084034 1.084030
3.0 12 102 1.142350 1.142349
2.0 0 0 1.395230 1.395229
1.5 20 2 1.172643 1.726367
1.2 50 3 2.144088 2.143688
1.1 1000 3 2.357813 2.357813

These numerical results show that algorithm 3.1 performed extremely well and
surpassed Nikolopoulos-Sreedharan results in [8] for values of p larger than 2. For
example when p = 4, they found a solution after 3555 iterations while we only
needed 18 iterations and for p = 3.5 and p = 3 they found a solution in 430
and 102 iterations respectively. We found it in 24 and 12 iterations respectively.
However the situation is reversed for p < 2. For instance when p = 1.2, the number
of iterations for a solution in [8] was 3 while we needed 50. The gap widens for
p = 1.1, where algorithm 3.1 found a solution in 1000 iterations. The fact that we
relied on MatLab existing solver to find αk in step 6 of the algorithm may explain
the relatively large number of iteration for values of p < 2. In fact we included step
6 as minimization of a subproblem where the equation in this step is considered as
a constraint and the search is stopped once a feasible solution was found. This may
not be the most efficient way to solve for αk. A second advantage of the present
algorithm is that it was able to solve problems with larger values of p than in [8]
in which the highest p tested was 4.

Compared to existing literature where only relatively small problems were solved
numerically, algorithm 3.1 was also tested numerically to solve relatively large size
problems. Examples with hundreds of variables were solved. For each numerical
experiment, a random matrix A is generated in MatLab. To guarantee the existence
of at least one feasible solution, a random vector x is also generated and then the
vector b = Ax is computed. The algorithm converged for matrices of size 250×1000



MINIMAL NORM SOLUTIONS OF LINEAR SYSTEMS 755

and larger. The results were tabulated for a 250× 1000 matrix and are presented
in Table 2. The second column indicates the simulation time in seconds using a
Pentium 4 with 1.83 GHz and 3 GB of main memory.

Table 2: the values of p are shown in the first column. The second column indicates the

simulation time in seconds and the objective value is reported in the third column.

p Time(sec) ‖x‖p p Time(sec) ‖x‖p
5.0 605.1 1.776275 1.9 410.8 13.937503
4.5 719.5 2.022385 1.8 310.2 16.867340
4.0 1232.3 2.391415 1.7 277.7 20.890271
3.5 948.1 2.987279 1.6 263.9 26.598117
3.0 1144.8 4.033336 1.5 267.4 35.008729
2.5 720.1 6.164389 1.4 265.5 47.986690
2.2 392.4 8.750690 1.1 595.1 198.626041

6. Conclusion

A common problem encountered in many applications is that of fining minimal
solution of linear systems. In this paper we presented an algorithm for finding
the vector of minimal solution of a system of linear equations. The feasibility and
global convergence of the algorithm were proved for general strictly convex, smooth
norms. This naturally, includes the ℓp-norm, 1 < p < ∞. As a consequence, the
algorithm in this paper covers the interesting case, where 1 < p < 2. In this range,
the ℓp-norm is not twice differentiable. The algorithm was implemented and tested,
on various examples, when the objective function was the ℓp-norm, 1 < p < ∞ and
showed superior performance for values of p larger than 2 and good performance for
p less than 2. The algorithm also performed well for relatively large size problem,
which we have not seen covered in literature.

References

[1] Bahi, S. and Sreedharan, V.P., A least distance algorithm for a smooth strictly convex norm,
Int. J. Computer Math., 75 (2000), 445-463.

[2] Bahi, S. and Sreedharan, V.P., An algorithm for a minimum norm solution of a system of
linear inequalities, Int. J. Computer Math., 80 (2003), 639-647.

[3] Boyd, S. and Vandenberghe, L., Convex Optimization, Cambridge University Press, 2004.
[4] Borwein, J. M., Maximum entropy-type methods and (non-)convex programming, Atlantic

Optimization Days. URL: www.cs.dal.ca/ jbrowein, 2006.
[5] Cheney, E.W., Introduction to approximation theory, 2nd ed., McGraw-Hill, New York, 1982.
[6] Donoho, D. L., For most large underdetermined systems of linear equations the minimal

l1−norm solution is also the sparsest solution, Comm. Pure Appl. Math., Vol. 6 (2006),
797-829.

[7] Lawson, C.L. and Hanson, R.J., Solving Least Squares Problems, Prentice Hall, Englewood
Cliffs, NJ, 1974.

[8] Nikolopoulos, P.V. and Sreedharan, V.P., An algorithm for computing non negative minimal
norm solutions, Numer. Funct. Anal. Optimiz., 15 (1994), 87-103.

[9] Nirenberg, L., Functional Analysis, Lectures given in 1960-61, notes by Lesley Sibner, New
York University, 1961.

[10] Späth, H. Mathematical Algorithms for Linear Regression, Academic Press, New York, 1992.
[11] Sreedharan, V.P., An algorithm for a non negative norm minimal solutions, Numer. Funct.

Anal. Optimiz., 9 (1987), 193-232.

Department of Mathematics, 351 West University Boulevard, Southern Utah University, Cedar
City, UT 84720

E-mail : bahi@suu.edu and aross83@yahoo.com


