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THE FINITE ELEMENT METHOD OF A EULER SCHEME FOR
STOCHASTIC NAVIER-STOKES EQUATIONS INVOLVING THE
TURBULENT COMPONENT

YUANYUAN DUAN AND XIAOYUAN YANG

Abstract. In this paper we study the finite element approximation for stochastic Navier-Stokes
equations including a turbulent part. The discretization for space is derived by finite element
method, and we use the backward Euler scheme in time discretization. We apply the general-
ized La-projection operator to approximate the noise term. Under suitable assumptions, strong
convergence error estimations with respect to the fully discrete scheme are well proved.
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1. Introduction

Let Q € R? be a bounded convex polygonal domain with boundary 9. In
this paper, we consider finite element approximation of stochastic Navier-Stokes
equations with the turbulent term

(1) Oru=Au—(u-V)u—Vp+ f(u)+[(c-V)u—Vp+g(u)W,
(2) u(0) =uo, V-u=0,

on ) in a finite time interval [0, T]. The turbulent term is driven by the white noise
W. In this article, W denotes a time derivative of a Hilbert space valued Wiener
process. Assumptions on other functions will be specified later.

The stochastic Navier-Stokes equation, which displays the behavior of a viscous
velocity field of an incompressible liquid, is widely regarded as one of the most
fascinating problems of fluid mechanics, see [1]. A. Bensoussan and R. Temam
generally analyze Navier-Stokes equations driven by white noise type random force
in [2]. Later, the existence, the uniqueness and other properties of the generalized
solutions with respect to stochastic equations have been extensively researched by
many authors; see [4], [9], [15], [18], etc. An overview of some developments in the
ergodic theory of the stochastically forced Navier-Stokes equations are presented
by Jonathan C. Mattingly in [6].

The effective researches about unsteady incompressible stochastic Navier-Stokes
equations driven by white noise are considered by R. Mikulevicius and B. L. Ro-
zovskii; see [13] and [14] with a review of relevant recent work. Under some basic
assumptions, the existence of a global weak (martingale) solution of the unsteady
incompressible stochastic Navier-Stokes equation (1.1) with Cauchy problem is well
proved in [17]. Furthermore, R. Mikulevicius and B. L. Rozovskii consider the cor-
responding fluid dynamics modeled by a stochastic flow in [16].
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The finite element method, which is a common technique for partial differential
equations, is widely used to obtain finite dimensional approximations. The ideas
based on finite element approximation to investigate stochastic differential equa-
tions are well studied in many literatures; see, [3], [10], [12], [19], [21], [22], [23]
for some previous work. Yubin Yan consider the semidiscrete Galerkin approxi-
mation of a stochastic parabolic partial differential equation in [25]. Later, the
fully finite element method for stochastic parabolic partial differential equations
driven by white noise is proved and optimal strong convergence error estimates are
given in [24]. Semidiscrete finite element approximation of the linear stochastic
wave equation with additive noise is well studies in [11]. However, numerical anal-
ysis of unsteady incompressible stochastic Navier-Stokes equations has not been
thoroughly considered. The major purpose of our paper is to study finite element
approximation for unsteady incompressible stochastic Navier-Stokes equations in-
volving the complex turbulent component. In our paper, stochastic Navier-Stokes
equations are taken in the generalized sense.

The plan of this paper is as follows. In section 2 useful notations and related
properties are introduced. Some important preliminaries are given. The regularity
in time of the solution is deduced. In section 3 we consider finite element approxi-
mation of stochastic Navier-Stokes equations with turbulent term. The semidiscrete
form and the fully discretization are obtained. In section 4 we deduce the main
error estimations with respect to the fully discretization of the stochastic equa-
tions. Using above-mentioned techniques, we finally complete the proofs of strong
convergence error estimates. Section 5 are our conclusions of this paper.

2. Notations and preliminaries

In this section we will introduce some useful notations and some important pre-
liminaries.

Let H be the Hilbert space of real vector functions in Ly(§)) with the inner
product (-, ). Given integer m > 0 and 1 < p < oo, define

WmP(Q) ={u € L,(Q) : Du € L,(Q),Ve,0 < |a|] <m},
equipped with the norm
1/p
lullwma@) = llullmp=| > D5 |  1<p<oo.
0<al<m
Set
Wy P(Q2) = {u € W™P(Q) : ulpq = 0}.
Obviously W™P?(€Q) and W™ (Q2) stand for Sobolev spaces on . More explicitly
we can write W72(€) by H™(Q) and denote W™*(Q) as HJ(Q). It is easy to
verify that WOP(Q) = L,(Q).

Moreover we can come to the conclusion that W™?(Q) and W;""(2) are Banach
spaces, and H™ () and H{*(Q2) are Hilbert spaces. The relevant inner conduct is

(U, V), = Z (D%u, D*v) 12(q), w,v € H™(Q).
0<lal<m

Obviously, the above-mentioned spaces can be extended to vector functions.
As usual, (Q, F,P) denotes a normal filtered probability space with a normal
right continuous filtration (F;). In our paper, W is a cylindrical Wiener process
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in a separable Hilbert space H on a normal filtered probability space (2, F,P). If
{ei} is a complete orthonormal basis of H, we can represent

Wi(t) = Z Wi (t)e;,

where {W(t)} are mutually independent standard scalar Wiener processes.
Let E denote the expectation. The following isometry property for the noise
holds:

B [“veawe| =& [ o

Since V - u = 0, we consider the Helmholtz decomposition of vector fields. The
set of real vector functions ¢ such that V- ¢ = 0 and ¢ € C§°(Q?) is denote by
¢ € C55, (). Moreover, H, denotes the closure of ¢ € C§%,(§2) in H. Let P be the
divergénce free projection operator of the Helmholtz decomposition. Obviously, the
following lemma holds.

Lemma 2.1. [14] The divergence free projection operator P can be extended con-
tinuously to all H3(Q),s € (—o0,00): there is a constant L, > 0 so that for all
v e H(Q),

[Polls,2 < Lplv]ls,2-

More summaries of the Helmholtz decomposition can be found in literatures [13]
and [14].

Then we denote the self-adjoint operator in H, formally given by A = —PA,
and let B(u,v) = P(u-V)v. The set of real vector functions ¢ such that V-¢ =0
and ¢ € Hj(Q) is denote by Hj ,(€2). Equivalently the relation Au = w is true if
and only if

(Vu, Vo) = (w,v), Vv € Hj ,(9).

It is easy to verify that 2(AY?) = H} (Q) and ||A?ul| = ||Vu|. The operator
A is strictly positive. For the sake of simplicity, we shall use the same notations
f(u) and g(u) instead of Pf(u) and Pg(u). More summaries of the divergence free
projection operator can be found in literatures [5], [14], and so on.

Thus, by applying the divergence free projection operator P to equation (1.1),
and taking account of the other equations, we can obtain the following abstract
problem:

(1) Ou+ Au+ B(u,u) = f(u) + [B(o(u),u) + g(u)] W.
Let E(t) = e~ (t > 0) be the analytic semigroup generated by —A. Then the
stochastic abstract problem (1) admits the following abstract integral equation:

(2) u(t) = E(t)ug— /0 E(t — s)B(u,u)ds + /0 E(t—s)f(u)ds
+/ E(t —s)[B(o(u),u) + g(u)] dW (s).
0

Now we collect some regularity analytic semigroup properties in the following
lemma; see V. Thomee [20] for more details.

Lemma 2.2. [20] For any 0 < p < e = 2.718..., 0 < v < 1, there are positive
constants Cv and Cy that

||A#E(t)|| < Clt7#7 fOT t> Oa
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and
[[A™(I = E(t))]| < Cot”, fort> Q0.

In our paper, we assume that f(u) is a measurable function, and there is a
constant Ly > 0 such that:

1 (w) = F)l| < Lyllu = vl,

and

Ll < Ly (1 +[luf).

Meanwhile we assume that g(u) and o(u) satisfy the above-mentioned similar prop-
erties. Moreover, o is bounded and V - 0 = 0. More basic assumptions about the
functions f, g, o are the same as [14] and [17].

Throughout the paper, ¢ and C' denote generic positive constants independent
of h, not necessarily the same at different occurrences. Moreover, A < CB is
abbreviated as A < B.

The existence of a global martingale solution of the Cauchy problem for the
stochastic Navier-Stokes equations (1.1) is obtained in the following theorem. The
detailed proofs can be found in R. Mikulevicius and B. L. Rozovskii [14], too. Herein
we have the same basic assumptions for the coefficients as paper [14].

Theorem 2.1. [14] There exist a probability space (2, F, P) with a right continuous
filtration (F:) of o-algebras, a cylindrical (F)-adapted Wiener process W in H, and
Lo-valued weakly continuous (Fi)-adapted process u(t) such that

E

T
sup |u(s)|3 +/ |Vu(s)|§ds] < 0.
0

s<T
Moreover, u(t) is (strongly) continuous in t.

In order to prove our main conclusion of this paper, we need the following regu-
larity in time of the solution.

Lemma 2.3. Let u be the mild solution defined in (2). Then for any t1,t2 € [0,T]
and 0 < v < 1, there is a positive constant C' that

lu(ty) — u(te)llLyim) < Ot —t2)”.
Proof. For any t1,ts € [0,T] (t1 > t2), there exists
u(ty) — u(tz)

= (E(t1) — E(t2)) uo + /0 1 E(t; — s)f(u(s))ds — /0 ’ E(ta — s)f(u(s))ds
+ [ B = a(u(e)aw(s) — [ Bt = s)gtu()aw )
_/ 1 E(t1 — s)B(u(s),u(s))ds + / ’ E(ty — s)B(u(s),u(s))ds
0 0
+ [ Bt - ) Blotuts), u(s)aw(s)
0

—AQHw—ﬁBWW@%MﬁwW@)
- L1+L2+L3a
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where

L = (B(t) - E(t2)uo + / "Bt — ) f(u(s))ds / C Bt — 5)f(u(s))ds

+ / "Bt — 5)g(u(s)dW (s) - / " B(ta — s)g(u(s))dW (s),
Loy = —/0 1 E(t; — s)B(u(s),u(s))ds —l—/o i E(te — s)B(u(s),u(s))ds,

L3 = /0 1 E(t; — s)B(o(u(s)),u(s))dW(s) — /0 ’ E(ta — s)B(o(u(s)), u(s))dW (s).

For 0 < < 1, based on the similar proof for Proposition 3.4 in [7], it is simple
to verify that

IL1llyim) S <1+ sup E||U(8)|> (t1 —t2)7.
s€[0,7)

Now we deal with the part L.

_/ "Bty — $)B(u(s), u(s))ds +/ " E(ts — $)B(u(s), u(s))ds
0 0
= _/0 (E(t1 — s) — E(ta — s)) B(u(s),u(s))ds — /t E(t1 — s)B(u(s),u(s))ds.

2

Considering the property of E(t) in Lemma 2.2,

/0 ’ (E(t; —s) — E(ta — s)) B(u(s),u(s))ds

N

| 4Bt - )] [ A= (E(ty — t2) = D[ 1B(u(s), u(s)) | ds

S (-n [ o 1B, ) s
S sw ()l (- ta).
s€1[0,T]

Similarly, there exists
t1

E(t1 — s)B(u(s),u(s))ds

to

< sup Jlu(s)[|F - (t1 — t2)7.
s€[0,T)

For the stochastic term L3, we can obtain

Ly = /0 ' E(t; — s)B(o(u(s)),u(s))dW(s) — /0 : E(ta — s)B(o(u(s)), u(s))dW (s)

/O (Bt - 8) — B(ts — )) B(o(u(s)), u(s))dW (s)

t1
+ [ Bt~ 9 Blo(uts), u(s)aw(s)
2
= L3+ Lso.
For Lj;, considering the property of the function o(u),

L3117, 0,1
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2
E

/0 (Bt — 8) — B(ts — )) B(o(u(s)), u(s))dW (s)

/O CE[|(E(t - 5) — E(ta — ) Blo(u(s)), u(s))|] ds

< / NAE(ts — )| || AT (B — t2) — D||* BIB(o(u(s)), u(s))|*ds

to 1
S (= [ BB ule) s
S sw Blo(us)]3 sw Blu(s)]3 - (6 - ),
s€[0,T s€[0,T]

Similarly, for L3, we can get
t1

E(ty — 5)B(o(u(s)), u(s))dW (s)

/t "B|B(t — $)B(o(u(s)), u(s))|)? ds

sup Ello(u(s))[i - sup Elfu(s)| - (t1 —t2)*".
s€[0,T] s€[0,T]

||L32||%2(Q;H) = E

A

Eventually, with the above-mentioned estimations, we complete the proof. [J

3. Discretization of the stochastic problem

In this section we study the finite element method for stochastic Navier-Stokes
equations. The discretization with respect to time is done by backward Euler
method. With the fully discretization scheme and abstract integral equation, the
main error estimations are obtained, and strong convergence are well proved here.

Let Q" be a polygonal approximation to Q with the boundary 99". We consider
a family {7}, } >0 of triangulations composed of triangular elements such that Q" =
Ugeqn K for all h > 0. Each element has at most one edge on 9Q", and the
nonempty intersection of any two elements is either only a vertex or a complete
edge. Let hx denote the maximum diameter of the element K in T}, and let

h= max hr. Assume the family {7}, },~0 to be shape regular.
KeTh

Assume that Q" = Q C R? for simplicity. In this article, we construct a triangu-
lation Ty, h of 2, and approximate the velocity on each element K by a polynomial
of

P (K) = [Pl D span{)\l)\g)\g}]2
and the pressure by a polynomial of P;. Now we choose the following finite element
spaces (more details can be found in [19]):

Sy, = {U S %O(Q)Q;Uh{ S f@l(K),VK S Th,’U|8Q = 0},
Qn = {g€C°()NLYY);q|x € P1,VK € Th}.

We always assume that S, C Hj .
Now we consider the generalized Lo-projection operator Pj, defined by

< P, X >=< v, X > VX 5.

More details about the projection operator Pj, can be found in previous work; see
K. Chrysafinos and L. S. Hou [8]. Moreover, for Vf € H'(2),

(1) I(I = Pu)f]| < eh'|| flli, 1=0,1,2.
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Let Ap : S, — Sp, denote the discrete analogue of the operator A, i.e.
< App, X >=< VY, VX >, Vi, X € S}.

Then the semidiscrete problem corresponding to stochastic abstract problem (1)
is to find the process {uy(t)} € Sj, such that

(2Prup + Apup, + PpB(up,upn) = Py f(up) + [PhB (o(un), un) + Prg(up)] W,

with up(0) = Pruo.
Let Ej(t) = e *4» be the analytic semigroup on S, generated by —A,. Then
the semidiscrete problem (2) admits the abstract integral equation given by

(3) un(t)
= Eh(t)PhuO — ‘/0 Eh(t — s)PhB(uh, uh)ds + /0 Eh(t - S)th(uh)ds

+ ‘/Ot En(t—s) [PhB (U(uh), up) + Phg(uh)] dW(S)

Let k£ be a time step and t¢,, = mk with m > 1. Now we apply the backward
Euler method to generate a sequence of u™ (m = 1,2, ...) such that

upt —uy !
(4) T+ Awu + PuB () g
= Puf(uy 1)+E/ [PhB( (uy 1) uy, 1) + Prg(uy, 1)} dW (s).
tm—1
With the definition of r(\) = 1+>\’ Ern = r(kAp). Then we have EJ} =

r(kAp)™, which represents the m-th power of Ey;. Now we can rewrite the e-
quality (4) in the following form

(5) uf' = EP Poug— ZEZ}L M EP,B(ul u +ZE’” kP f(ul )
Jj=1

+Z/ B a+1 pB(a(ugjl),u;;l) +Phg(u;;1)} AW (s).

t]l

4. Error estimates for the stochastic problem

In this section we will study the main error estimations of the solutions. Strong
convergence estimations are well proved here.
It follows from the scheme (2) that

(1) ultm) — E(tm)uo—/om E(tm—s)B(u,u)ds+/OmE(tm—s)f(u)ds
[ Bt~ 5) (Blotu),u) + g(w)] W (s)
0

Define the main error €™ = u}" — u(t,,). Thus from equations (5) and (1), we
can obtain the following equality

e" = [EfPh— E(tm)]uo

tim _ .
+/ E(tm (u,u)ds — ZEm J+1kPhB(ui;1,ui)
0
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tm

+ZE’" kP ful ™) - E(ty — s)f(u)ds
0

tm

+Z - E,’;‘”lphg(] NdW (s) — | B(tn = 9)g(w)dW (s)

tj . . .
+ Z B RB (o), ul ) aw(s)

ti—1

_/0 " Bty — $)B(o(u), u)dW (s).

In order to obtain the error estimations thoroughly, we divide the main error
€™ into five components which are denoted respectively by I, (k = 1,2,3,4,5) as
follows.

Il = [E]?;LLPh — E(tm)] uo,
t’VTL m .
I, = E(ty — s)B(u,u)ds — > B T kPyB(u " ),
0 =
s ) ) tm
I; = Z E,’g;l_]“kth(uf;l) - E(tm — s)f(u)ds,
j=1 0

m tj .
L= ), / By Prg(ul”)dw (s) / E(tm — 5)g(w)dW (s),
1 tj—1

Is = 2/;1 E"IHp B (U(ui_l),u;l—l) dW (s) — /0 " E(ty, — 8)B(o(u), u)dW (s).

Furthermore, the equalities imply the following statement.

||emHL2(Q;H)
< O(H11||L2(Q;H) =+ ||IQ||L2(Q;H) =+ ||I3HL2(Q;H) + HI4||L2(Q;H) =+ ||I5HL2(Q;H))'
In order to prove the main error estimations, we need the following useful con-

clusions for the corresponding deterministic problem; see Y.B. Yan [24] for more
details.

Lemma 4.1. [24] Let F,, = E}};, P, — E(t,). Then for 0 < <1,
|Full < © (K272 4 0) folg, v e HY,

and
1/2

S IE0)P | <cC (WQ + hﬁ) wlg_1, wveH
j=1

Using the above-mentioned conclusions and assumptions for corresponding func-
tions and projector operators, we deduce the estimations of the five different com-
ponents.

First of all, we consider the second term I5 of the main error e™

Lemma 4.2. Let I be defined in (2). For 0 <y <1 and 0 < 8 < 1, there exist
positive constants Co1 and Cas such that

2]l Ly (0m) < Caor k™ B/2Y o Oy
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Proof. By the definition of I, we study it as follows.
tm m ) . .
_ / E(tm — 5)B(u(s),u(s))ds — S EL T kP Bl )
0 o
m tj
= > E(tm — s)B(u( ))ds — Z/ B(u(s;),u(s;)ds
j=17tj-1 ti-1
3 [ Bt - 9)Bluts;),us,))ds - Z/ Bt — t;1)B(u(s;), u(s;))ds
j=1 tji—1
m t;
S Bt o) Blu(s; ZE’“ TP B(u(s; ), uls;)
j=17%tj—1
+ZEm T EPLB(u(sy), u(s;)) — Y By " kPuB(u(s;-1), u(s;))
j=1
+ZE’" TPy B(u(s;—1) Z El M kP, Bu) )
= 12,1 +Ioo+ 1oz + T4+ Io5.
We firstly deal with the estimation of I ;. It follows from Lemma 2.3 that
112,117 50)
m t; m tj 2
= E E(tm — s)B(u(s),u(s))ds — Z E(tm — s)B(u(sj),u(s;)ds
j=1"ti-1 j=1"ti-1
m t; 2
= E|> E(tm — s) [B(u(s), u(s)) — B(u(s;), u(s;))] ds
j=1"ti-1
< Z/t E|E(tm — s) [B(u(s),u(s)) — B(u(s;), u(s;))]lI" ds
< / E [ B(u(s). u(s)) — Blu(sy), u(s)| ds
j 1
< Z 5 E || B(u(s) — u(s;), u(s))| d8+2/ E || B(u(s;), u(s) — u(s;))| ds
j=1"%%-1

< Z/ (s —t;))*ds < k2.
j=17tj-1

Considering E(t) = e~*4, there exists

Bt — t1) — Bty — 8) = e (m=t-4 _g~in=5)4

— el —BDA(] — =(61=94) = B, — t; 1)(I - B(ty1 — 9)),
where s € [t;_1,t;]. By Lemma 2.2,

3 / |E(tm — tj—1) — E(tm — )| ds
j=1 ti—1

<2/

ool a2t st
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IN

CkZ/

tjl

AY2E(ty, —t; H

Ck ikHAWE(tm_tj,l)W <.
=1

Then for I 2, we can obtain

IN

12,2117, (o.r)

tj

Z (U(Sj)vu(sj))ds—/j E(tm —tj—1)B(u(s;), u(s;))ds

t] 1 tj71

2

S [ (B = 5) = Blt — ti-0)] Buls,). u(s;))ds
j=17ti-1

Z/t] |E(tm — 8) — E(tm —t;j—1)||” ds|| B(u(s;), u(s;))||* < k-

For I, 3, considering Lemma 4.1,

m t;
= E|> / E(tm — t;-1)B(u(s;) ZE’” TPy B(u(s;), u(s;))
j=17ti-1
2
m t;
= E Z[ Bty —tj—1)ds — Ej» 7T Puk | B(u(s;), u(s;))
j=1 L7t
. 2
S Bl [Bltw —ti-1) - By B Blu(s)), uls)
j=1
2
= E|k)_ Fnjr1Bu(sy),u(s)))| <k +h*.
j=1
For I 4, considering the stability of Eyy,, there holds
| (Q:H)
2
= E ZEZ};jJFlkPhB(u(sj),u(sj)) —ZEZ};jJFlkPhB(u(sj_l),u(sj))
Jj=1 j=1

<

2

E kZEm TP [Blu(s;), ulsy)) = Blu(sj—1), u(s;))]

kZE 1B (u(s;) — ulsj-1),u(s;)|* < k.
=1

For I 5, it follows from the inequality (1) that

12,5117, (0,0)

2
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m m

= E||D_EL T EPLB(u(s;1) )= > B kP B(ul T ul)

j=1 Jj=1

= E kZE’” tp { (u (ijl),u(sj))_B(u-}];_l’ui)}

IN
=

kZE;’;‘;jHPhB (u(sj_l) —u) u(sj))
i=1
2

+E kZEm ' p.B (ufl_l,u(sj) - ui)

2 2
m m—1

< E kZB(ejfl,u(sj)) +E|k Z B(ul™',é)
Jj=1 j=1

m
S kY EJIE
j=1

With the above-mentioned estimations, we can obtain the following conclusion.
112013, ey < Cork+ Caok® + Cosk® + Couh® + Cosk Y " Blle? 3.
j=1
By the discrete Gronwall lemma, we can get
HIQH%z(Q;H) < Cvzlkmin{?%ﬁ} + 6'22]12,37
which implies that
2]l Ly (0m) < Cor k™ B/2Y o CoohP

Here we complete the proof. [J
Similarly we study the third term I3 of the main error e

Lemma 4.3. Let I3 be defined in (2). For 0 <y <1 and 0 < 8 < 1, there exist
positive constants C31 and Cso such that

3]l Loy < Ca k™B/2E 4 CaohP.

Proof. Similarly as the proof of I5, we can obtain

Iy = ZE’” 3+1kth(qu1)—/0mE(tm—s)f(u)ds
- ZE’” I Py f(ul ZE’” kP, f(u(sj—1))
+ZE’” PP RPLS (u(s-1) Z / gy T P f (u(s))ds

+Z / B ds_z / = o) Flu(s))ds



738 Y. DUAN AND X. YANG

ti—1

m t;
#3071 (Bl = tyo) = Bt — 5)) fu(s))ds
j=1"ti
= D31+ 132+ 133+ I34.

For I5 1, considering the stability of Eyy,, there is

sl = B> En7 7 kPufl ) =Y BT kP f(u(s;o1))
j=1 j=1
2

= Bk B P f ) - Fu(sy)]

IN

Ok B [u sy || SEY B[
j=1 j=1

For I3, note that f(u) satisfies global Lipschitz condition. It follows from
Lemma 2.3 that

2
s2ll7,0m = E ZEﬁ_j+lkth(U(5jfl))—Z/] BT P, f(u(s))ds
=1 ji=17ti-1
Jm ) J .
= E|} tj BRI P, [f(u(s;—1)) — f(u(s))] ds
j=17ti-1
moort ) 2
< > [ BBt 0 - s ds
j=1"7ti-1
< 3 [ Bluls) - u(s)?
S Xm:/tj (s —sj-1)%ds S k2.
j=1"ti-1

For I5 3, considering Lemma 4.1, we can get

11,3117 (o.0)
2

_ E Z/j Eg—j+1phf(u(s))ds—z/j Bty —t;1)f(u(s))ds
j=1"ti—1 =1/t
m ts 2

- E Z/f [Eg;;mph—E(tm—tj,l)] Flu(s))ds
j=1"ti—1

2

m tj
= E Z/ Fji1 f(u(s))ds|| < kP +h%P.
j=17ti-1
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Similar as the technique we used for proving I3 2, there holds
2

bia = B> [ (Bl 9~ Bt - 1) fu(s))ds| Sk
j=1 7t

ti—1

(13,4

Therefore, we obtain the following conclusion.

HI3||%2(Q;H) < Cy1k*7 + Caok® 4 Cs3h? + C’34/€ZE|\ej_l|\%.
=1
By the discrete Gronwall lemma, we can get
HIBH%Q(Q;H) < Oy k208 4 Oy p?P,
which implies that
HI3||L2(Q;H) < CSlkmm{%ﬁ/z} + nghﬁ.

Here we complete the proof. O
Now we study the fourth term I, of the main error e™.

Lemma 4.4. Let Iy be defined in (2). For 0 <~y <1 and 0 < 8 <1, there exist
positive constants Cyqy and Cys such that

4l Ly om) < Can k™82 L Coh.

Proof. Now we consider the estimation of 4.

m t; ) ) tm
no= Y [ B gt aws) - [ B - 9w (s)
j=1"7ti-1 0

= [ E R ot ~ gtutsy)] aw s
j=1"7ti-1

m t]

3 [0 B R ) - gt aw (s

3 / (B4 Py — Bt — t51)] (u(s))aW (5
J=170

ti—1

"FZI /.j [E(tm — tj_l) — E(tm — 5)] g(u(s))dW (s)

t]71
= Iyi+ Lo+ Iys+ 144

For I, 1, considering the isometry property, we can get
2

Mot . .
%2(9;}[) = E Z/ E;’}Z_J-’_lph {g(ui 1) _g(u(sj—l))} dW(S)
j=17"%

ti—1

[[a1]

= > [ mfE e o) - otutss )]s

moort ) 2

< > [ Efotd ) - gtutsia| ds
j=1"7ti—1

S BBl - ulsi )P S EY Bl
j=1 j=1
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For I, 2, it follows from Lemma 2.3 that

2
m tj .
Mol = B|Y [ BE7 P latusio0) - a(u()]dW (s
=170t
t m—j+1 2
= > [ BB Rlstuts-0) - gt ds
j=17ti-1
m t; )
<y / E[Ju(s;_1) — u(s)|> ds
j=1"ti-1
m t;
S Z/ (S—Sj,1)2’yd5§k2v.
j=17ti-1
For I, 3, by Lemma 4.1 there holds
2
m tj .
sl = B|D / | = Bt — ti-1)| g(u(s))aw (s)
J=17%-1
m tj 1y 2
= > [ E|[En R B - )] tuto)|as
j=1"ti-1
m t;
= > / E || Fr—j19(u(s))|* ds < k7 + h?°.
j=1"7ti-1
For I, 4, it is easy to verify that
2
m t;
il = B [ (Bl =t = Bt = 9 atuls)a ()
j=1"7ti-1

S [ BB~ t7-1) ~ Bl — ) g(ul) ds < b

j=17ti-1
It follows from above estimations that
||I4H%2(Q;H) < Cpk® + Cuok? + Cuzh®® + Cuuk + Cusk Z E|[e’ 1|2
j=1

By the discrete Gronwall lemma, we can get

||I4||2Lg(Q;H) < Gy kmind27.8) 4 (:”42h2ﬁ,
which implies that

HI4||L2(Q;H) < C41kmm{%5/2} + O42h5.

Here we complete the proof. O
Then we study the fifth term I5 of the main error ™.

Lemma 4.5. Let I5 be defined in (2). For 0 <y <1 and 0 < 8 < 1, there exist
positive constants Csy and Csy such that

||I5HL2(Q;H) < CSlkmm{’Y’ﬁﬂ} + C52hﬁ.
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Proof. Now we consider the estimation of Is.

Is
= ij/i EL 7 B (U(ufl),ufl)dW(s)—/otm E(tm — 8)B(o(u), u)dW (s)

_ /t] EnItp, [B (o—(ugjl),ugjl) —B(a(u(sj,l)),u(sj,l))] AW (s)

+_§j [ (BB = Bl — 0] Blotutss ) utss- ) W ()
+/ " [B(tm — tjm1) = B(tm — )] B (0(u(s;-1)), uls;—1)) dW (s)
/ E(tm = 5) [B(o(u(s;-1)),u(sj—1)) = B (o (u(s)),u(s))] dW(s)
= Isg+1Is2+ 153+ Is54.
For I5 1, considering the global Lipschitz property of o(u), we can obtain

2
(15,11 2 (02 1)

Z/ ERTp [B o(u{;l),u{;l) —B(U(u(sjq)),u(sjfl))] dW (s)

(
- Z / BBt p B (o)), u ) = Botuls; 1), uls; )| ds
(

IN

Z/ B [ (o0 o)

23 [ B [B (st~ ats)] |
=it

m_ t] - - 2
< Z/ EHB (a(ui ") = o(u(sj-1)),up 1)” ds
i—1Yti—1
J - J ) 2
+Z/ EHB(U(“(Sj—l))v“h —“(33*1))“ ds
j=17%-1
s [ Ble (- uten ) o
Jj=1 tj—1
m t:
+Z/] EHB(“(SJfl),“h u(si=1 )H
j=1"%-1

IN IA
= >
= 11
= =
=~ =
| —~
:)_I m&)
~ [
S
\;“/
Jr
>
ilNgE
=
W
-
£’°
\_Z
——

For I5 5, it follows from Lemma 4.1 that

15,2117 , 0, 1)
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2
Mt )
= B> [ (BB P - Bt 650)] B (o(ulsy1) ulss ) W)
j=1"ti-1
moort 1 2
= > [ E|[En R B )] Botutsya)utsi)| ds
j=17t—1
= Z}/ E || Frne 41 B (o(u(s;—1)) uls;—1)) 1% ds S k2 + h%°.
j=17ti-1
For I 3, it is easy to prove that
15,317 00
tm 2
= B[ Bt~ t2) = Bt — )] Bolulsi-0),ulsy-2) W (s)
0
tm
2
= /0 E[[E(tn —tj—1) = E(tm — 5)] B (0(u(sj-1)), u(s;j—1))|" ds S k.
For I5 4, considering Lemma 2.3, we can similarly get
15,417 5 0. 1)
2

= B [ Bt~ ) (B ((ulsi1).ulsi-1)) ~ B o(ue). )] dW (s

= /O BBt — ) [B(0(ulsj-1)). uls;—1) — B (o(u(s)), u(s))]| ds

< /Otm E B (a(u(s;j—1)),ulsj—1)) = B(o(u(s)), u(s))|* ds
< /Otm E | B (o(u(sj-1)) — o(u(s)), u(s;—1))|* ds

+ [ BB (0w, u(s1-1) ~ uls)I i
< /Otm E B (u(sj—1) — u(s),u(s;_1))||* ds

t’V?‘L
+ [ BIB (ws) u(si0) — ule) | ds
0
Then we can come to the conclusion that

15117 < Cs1k + Csak? + C53k* + Csuh® + Cssk Z E|le’H[3.
j=1
By the discrete Gronwall lemma, we can get

||I5||2Lg(Q;H) < Cv5lkmin{2%5}+c~'52h2ﬁ,

which implies that

IN

115 o (0sm) Cs k™B/2E 4 CgohP.

Here we complete the proof. [
Finally we prove the conclusions of the main error e™.
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Theorem 4.1. Let u}" and u(ty,) be the solution of equations (5) and (1), respec-
tively. For 0 <~y <1 and 0 < B <1, there exist positive constants Cy and Co such
that

€™ Loy S Crk™ B2 4 OyhP.
Proof. First of all we give the estimation of I; defined in (2). It follows from
Lemma 4.1 that
m 2
10T,y = EINERPy— E(tm)]uoll” S K + 7,
which implies that
Il Lo S K272+ B2

Then considering Lemma 4.2 - Lemma 4.5, for 0 <y < 1land 0 < 8 <1, we can
come to the conclusion that

le™ | (s m)
||11HL2(Q;H) + H12||L2(Q;H) =+ ||I3||L2(Q;H) =+ ||I4HL2(Q;H) + HI5||L2(Q;H)
C kmimB/2Y L Oy pB.

The main proof is now completed. [J

S
S

5. Conclusions

In this paper, we give the finite element approximation of backward Euler scheme
for stochastic Navier-Stokes equations with turbulent component. With the projec-
tion operators, we apply finite element method to discrete the space. For the time
discretization, we consider the backward Euler method. The semidiscrete and fully
discrete scheme are obtained here. For the main error for the fully discretization,
we divide it into five parts, and prove corresponding error estimations, respectively.
Finally, strong convergence error estimations for the main error are well proved
completely.
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