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A SEMIDISCRETE APPROXIMATION SCHEME FOR

NEUTRAL DELAY-DIFFERENTIAL EQUATIONS

R. H. FABIANO

Abstract. We consider an approximation scheme for systems of linear delay-differential equations
of neutral type. The finite dimensional approximating systems are constructed with basis functions
defined using linear splines, extending to neutral equations a scheme which had previously been
defined only for retarded equations. A Trotter-Kato semigroup convergence result is proved, and
numerical results are given to illustrate the qualitative behavior of the scheme.
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1. Introduction

In this paper we consider semidiscrete approximation schemes for linear au-
tonomous neutral delay differential equations. In particular, the neutral equation
is formulated as a linear system on an infinite dimensional Hilbert space, and this
system is approximated by a sequence of linear differential equations on finite di-
mensional Hilbert spaces. A Trotter-Kato type theorem is used to argue conver-
gence.

The idea of using this type of semigroup-theoretic finite dimensional approxima-
tion for delay differential equations has been known for some time. It has often
been the case that an approximation scheme is developed first for retarded equa-
tions and later extended to neutral equations (this has often been the case for the
development of other parts of the theory for delay differential equations as well).
Perhaps the earliest paper with a rigorous implementation of this idea (that is, rig-
orous justification of both well-posedness as well as Trotter-Kato type semigroup
convergence) is [1]. There Banks and Burns prove convergence of the so-called
averaging approximation scheme (the basis functions are piecewise constant) for
linear retarded delay equations, and the scheme is applied to a control problem.
The averaging scheme for retarded equations was extended to neutral equations by
Kappel and Kunisch in [19] and [23]. Meanwhile in [3] Banks and Kappel construct
an approximation scheme for retarded delay equations which uses certain splines
(in particular, splines which are restricted to be in the domain of the infinitesimal
generator of the semigroup associated with the equation) as basis functions for the
finite dimensional approximation spaces. They show this scheme obtains better
convergence rates than the averaging scheme when applied to retarded equations.
This spline based scheme was extended to neutral equations by Kappel and Ku-
nisch in [19] and [20]. Later in [2] Banks, Ito, and Rosen observed numerically that
this spline based scheme performed poorly (that is, worse than the numerically ob-
served performance of the averaging scheme) when used to approximate feedback
gains in an optimal control problem for a retarded equation. The authors in [2]
conjectured that the spline based scheme of [3] did not yield convergence for the
adjoint semigroup, and this conjecture was confirmed by Burns, Ito, and Propst
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in [8]. In [21] Kappel and Salamon developed an improved spline based approxi-
mation scheme for retarded delay equations (in particular, the domain restriction
on the splines is removed), and the scheme yielded both semigroup convergence
and adjoint semigroup convergence. In the present paper we extend this improved
spline scheme to neutral delay equations, and prove semigroup convergence. This
extends results in [14] which considered the scalar, single delay neutral equation.
The adjoint semigroup convergence has been verified for the scalar single delay
neutral case in [10], but the extension to the general multiple delay neutral sys-
tems under consideration in this paper is a subject for further investigation. An
additional contribution of this paper is a variational version of the Trotter-Kato
theorem which is especially suitable for our construction. This paper is concerned
only with semidiscrete approximation of linear neutral delay equations. For fully
discrete and other approaches to approximation of delay equations, we refer to [4],
[5], [26], and the references therein.

We now define the system of linear neutral delay-differential equations under
consideration. Given η0 ∈ Cn and φ0 ∈ L2(−r, 0;Cn), consider the initial value
problem

d

dt
[x(t) +

m∑

k=1

Ckx(t− rk)] = Ax(t) +

m∑

k=1

Bkx(t− rk),(1)

x(0) +

m∑

k=1

Ckx(−rk) = η0, x(θ) = φ0(θ), −r ≤ θ < 0,

where Bk, Ck, k = 1, . . . ,m and A are n × n matrices with complex entries, and
0 = r0 < r1 < · · · < rm ≡ r. In a standard fashion first described in [7], the initial
value problem (1) can be reformulated as an abstract Cauchy problem on a Hilbert
space. In particular, define the Hilbert space X = Cn×L2(−r, 0;Cn) endowed with
the norm

(2) ‖(η, φ)‖2X = ‖η‖2 +

∫ 0

−r

φ(θ)
T
G(θ)φ(θ) dθ.

Here and throughout the paper we use the unsubscripted norm notation ‖·‖ to
denote the standard Euclidean norm on C

n or its induced matrix norm on n × n
matrices. It is clear that the norm ‖·‖X depends on the choice of the n×n matrix-
valued weight function G, although we do not indicate this explicitly in the notation.
However we take as a standing assumption that the weight function G is chosen
so the norm ‖·‖X is equivalent to the usual energy norm which corresponds to
G(θ) ≡ I. (Later we shall impose further restrictions on the function G so as to
obtain an important dissipative inequality). We may also write the norm as

‖(η, φ)‖2X = ‖η‖2 +
m∑

k=1

∫ −rk−1

−rk

φ(θ)
T
G(θ)φ(θ) dθ

with compatible inner product

(3) 〈(η, φ), (ξ, ψ)〉X = ξ
T
η +

m∑

k=1

∫ −rk−1

−rk

ψ(θ)
T
G(θ)φ(θ) dθ.

Next define the linear operator A : domA ⊂ X → X on the domain

domA = {(η, φ) ∈ X : φ ∈ H1(−r, 0;Cn), η = φ(0) +
m∑

k=1

Ckφ(−rk)},
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by

(4) A(η, φ) = (Aφ(0) +

m∑

k=1

Bkφ(−rk), φ
′).

It is well known that A is the infinitesimal generator of a strongly continuous
semigroup T (t) on X , and if we make the identification

z(t) = (x(t) +

m∑

k=1

Ckx(t− rk), x(t+ θ))

then as introduced in [7] equation (1) can be reformulated as the Cauchy problem

d

dt
z(t) = Az(t),(5)

z(0) = (η0, φ0),

on X . It is within this semigroup theoretic setting that we wish to construct an
approximation scheme and analyze its convergence properties. By a semidiscrete
approximation scheme for (5) we mean a sequence {AN , XN}∞N=1 of finite dimen-
sional subspaces XN ⊂ X and operators AN : XN → XN . The operators AN

define semigroups TN(t) = etA
N

on XN , and the subspaces XN define orthogonal
projections PN : X → XN . Such an approximation scheme defines a sequence of
finite dimensional Cauchy problems

d

dt
zN (t) = ANzN(t),(6)

zN(0) = PNz0,

on XN . A typical convergence result involves showing that PN → I strongly
and that TN(t)PN → T (t) in the Trotter-Kato sense. Such a convergence result
justifies using (6) to approximate the dynamics of (5), and being finite dimensional,
(6) can be solved on the computer. The remainder of the paper proceeds as follows.
In the next section we consider the first order spline scheme found in [21], which
was applied to retarded delay equations, and modify it to construct a scheme for
neutral delay equations. We also prove Trotter-Kato type semigroup convergence
for the scheme. In the final section we give some numerical examples illustrating
the qualitative behavior of the approximation scheme.

2. A Semidiscrete Approximation Scheme

In [19] Kappel constructed semidiscrete approximation schemes for the neutral
system (5) by extending the ideas and basis functions which had been used for
retarded systems in [3]. In [20] Kappel and Kunisch extended these ideas to higher
order spline schemes for neutral equations. Later in [21] and [22] Kappel and
Salamon introduced a new approximation scheme (with different basis functions)
for retarded systems and showed how the scheme improved upon that in [3]. In this
section we extend the scheme in [21] to the neutral system (5). We note that in all of
these references the authors make use of some version of the Trotter-Kato semigroup
convergence theorem which is suitable for their construction. Likewise we shall
make use of the following semigroup convergence theorem, which is particularly
suitable to our construction (the proof is deferred to the appendix). The theorem
is similar in theme to the theorems found in [3], [16], [18], [20], and [21]. The
hypotheses of our theorem are stated in a variational form which is suitable for
applications in delay equations, and are used to verify the so-called stability and
consistency properties of the Trotter-Kato theorem. In this respect the motivation
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for our result is similar to the motivation for the results in [16], in which Ito and
Kappel discuss the issue of how to establish stability and consistency.

Theorem 1. Suppose V and X are Hilbert spaces, with V densely and continuously
embedded in X, and let cV > 0 satisfy

(7) ‖x‖X ≤ cV ‖x‖V ∀x ∈ V.

Assume A : dom A ⊂ V ⊂ X → X is the infinitesimal generator of a C0-semigroup
T (t) on X, and there is a sesquilinear form σ : V × V → C and a fixed ω ∈ R

satisfying

(8) σ(u, v) = 〈Au, v〉X ∀u ∈ domA, v ∈ V,

and

(9) Reσ(u, u) ≤ ω ‖u‖2X ∀u ∈ V.

Let {XN}∞N=1 be a sequence of finite dimensional subspaces of V , and let PN denote
the orthogonal projection of X onto XN . For each N define the operator AN :
XN → XN by

(10) 〈ANu, v〉X = σ(u, v) ∀u, v ∈ XN .

If there are constants s ≥ 1 and L > 0 such that for all v ∈ domAs and all
N = 1, 2, . . ., there exists vN ∈ XN satisfying

(11) |σ(u, v − vN )| ≤ L ‖u‖X ‖v − vN‖V ∀u ∈ V,

and

(12) lim
N→∞

‖v − vN‖V = 0,

then TN(t)PN → T (t) strongly on X. Here TN(t) = etA
N

is the semigroup on XN

generated by AN .

In order to apply this result we must first construct a suitable sesquilinear form
σ. Thus we define the Hilbert space V by

V = C
n ×H1(−r, 0;Cn)

endowed with the usual norm

(13) ‖(η, φ)‖2V = ‖η‖2 +

∫ 0

−r

(‖φ(θ)‖2 + ‖φ′(θ)‖2) dθ.

Clearly V is densely and continuously embedded in X for any choice of weight
function G under consideration in this paper. For u = (η, φ), v = (ξ, ψ) ∈ V define
the sesquilinear form σ : V × V → C by

σ(u, v) = ξ
T

[
Aη −A

m∑

k=1

Ckφ(−rk) +

m∑

k=1

Bkφ(−rk)

]

+

m∑

k=1

∫ −rk−1

−rk

ψ(θ)
T
G(θ)φ′(θ) dθ

+ψ(0)
T
G(0)

[
η − φ(0)−

m∑

k=1

Ckφ(−rk)

]
.
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The form σ is dependent upon the choice of weight function G. However, assuming
the same weight function is used in the definition of σ and the norm ‖·‖X , it is
straightforward to check that

σ(u, v) = 〈Au, v〉X

for all u ∈ domA, v ∈ V , so (8) holds. We turn next to verification of (9), a
dissipative inequality for the sesquilinear form σ. Is has been noted in [20] that
such a dissipative inequality for the operator A is generally not possible without
further restrictions on the weight function G, and it is reasonable to expect similar
restrictions for (9). Thus let us further assume

G(θ) = gk(θ)I for − rk ≤ θ ≤ −rk−1,

where I is the n×n identity matrix and the scalar functions gk are positive and con-
tinuously differentiable on [−rk,−rk−1] for k = 1, 2, . . . ,m. With this assumption
we may write the norm as

‖(η, φ)‖2X = ‖η‖2 +

m∑

k=1

∫ −rk−1

−rk

gk(θ) ‖φ(θ)‖
2 dθ,

the inner product as

(14) 〈(η, φ), (ξ, ψ)〉X = ξ
T
η +

m∑

k=1

∫ −rk−1

−rk

gk(θ)ψ(θ)
T
φ(θ) dθ,

and the sesquilinear form σ as

σ((η, φ), (ξ, ψ)) = ξ
T

[
Aη −A

m∑

k=1

Ckφ(−rk) +

m∑

k=1

Bkφ(−rk)

]

+

m∑

k=1

∫ −rk−1

−rk

gk(θ)ψ(θ)
T
φ′(θ) dθ

+ψ(0)
T
g1(0)

[
η − φ(0)−

m∑

k=1

Ckφ(−rk)

]
.

We have the following result, which essentially says that if the weight functions gk
have appropriate jump discontinuities at the interior delays r1, . . . , rm−1, then (9)
holds.

Lemma 2. If the scalar weight functions gk, k = 1, . . . ,m are positive and contin-
uously differentiable on [−rk−1,−rk] and satisfy

1

2
gm(−rm)− g1(0)m‖Cm‖2 ≥ 0(15)

gk(−rk)− gk+1(−rk)− 1− 2g1(0)m‖Ck‖
2 ≥ 0, k = 1, . . . ,m− 1,(16)

then there exists ω ∈ R so that (9) holds. That is,

(17) Reσ(u, u) ≤ ω ‖u‖2X ∀u ∈ V.
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Proof: For u = (η, φ) ∈ V , we have

Reσ(u, u) = Re

{
ηTAη +

m∑

k=1

ηT (Bk −ACk)φ(−rk)

+

m∑

k=1

∫ −rk−1

−rk

gk(θ)φ(θ)
T
φ′(θ) dθ

+g1(0)φ(0)
T
[η − φ(0)−

m∑

k=1

Ckφ(−rk)]

}

= Re

{
ηTAη +

m∑

k=1

ηT (Bk −ACk)φ(−rk)

}

+
1

2

m∑

k=1

(
gk(−rk−1) ‖φ(−rk−1)‖

2 − gk(−rk) ‖φ(−rk)‖
2
)

−g1(0)‖φ(0)‖
2 −

1

2

m∑

k=1

∫ −rk−1

−rk

g′k(θ)‖φ(θ)‖
2 dθ

+g1(0)Re{φ(0)
T
[η −

m∑

k=1

Ckφ(−rk)]}.

Next we apply the Cauchy-Schwarz inequality Re yTx ≤
ǫ

2
‖x‖2 +

1

2ǫ
‖y‖2 to several

of the above terms. We have

Re

m∑

k=1

ηT (Bk −ACk)φ(−rk) ≤
mB̃

2
‖η‖2 +

1

2

m∑

k=1

‖φ(−rk)‖
2,

where B̃ = max
k

‖Bk −ACk‖
2. Also

g1(0)Reφ(0)
T
η ≤ g1(0)‖η‖

2 +
1

4
g1(0)‖φ(0)‖

2,

and

−g1(0)Reφ(0)
T

m∑

k=1

Ckφ(−rk) ≤
1

4
g1(0)‖φ(0)‖

2 + g1(0)m

m∑

k=1

‖Ck‖
2 ‖φ(−rk)‖

2.

It follows that (because the ‖φ(0)‖2 terms cancel to zero)

Reσ(u, u) ≤ ‖η‖2(‖A‖+
mB̃

2
+ g1(0)) +

1

2

m∑

k=1

∫ −rk−1

−rk

|g′k(θ)|‖φ(θ)‖
2 dθ

+T1 + T2,

where

T1 = −‖φ(−rm)‖2(
1

2
gm(−rm)− g1(0)m‖Cm‖2)

T2 = −

m−1∑

k=1

1

2
‖φ(−rk)‖

2(gk(−rk)− gk+1(−rk)− 1− 2g1(0)m‖Ck‖
2).
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But from the assumptions (15)-(16) on the functions gk we get T1 ≤ 0 and T2 ≤ 0.
Thus

(18) Reσ(u, u) ≤ T3‖η‖
2 + T4

m∑

k=1

∫ −rk−1

−rk

|gk(θ)|‖φ(θ)‖
2 dθ,

where

T3 = ‖A‖+
mB̃

2
+ g1(0), T4 = max

1 ≤ k ≤ m,
θ ∈ [−rk−1,−rk]

1

2

|g′k(θ)|

gk(θ)
.

Hence (17) follows with ω = max{T3, T4}. 2

We make several remarks. First, it is straightforward to construct a piecewise linear
weight function G with jumps at the delays −r1,−r2, . . . ,−rm−1 which satisfies
(15)-(16). For example this construction was done in [19] and [20]. Second, as
observed in [20] and by others, it appears that for the case of multiple delays the
jump discontinuities in G at each interior delay −r1,−r2, . . . ,−rm−1 are necessary
to obtain such a dissipative inequality. Finally, we have not attempted here to find
a weight function which gives the ‘best’ (smallest) value of the dissipative constant
ω - the argument in the proof yields a rather crude estimate. Indeed if ω < 0 then
(17) guarantees that the semigroup generated by A is exponentially stable and
that the finite dimensional semigroups to be constructed using σ are exponentially
stable uniformly in the discretization parameter. In certain cases such a weight
function has been successfully constructed. For example, for single delay neutral
equations see [11], [13], and for retarded systems with multiple delays see [12].
For the general multiple delay neutral equations considered here, the construction
of weight functions which yield such dissipative inequalities is open for further
investigation.

We turn next to the construction of the sequence of finite dimensional subspaces
V N needed to apply the theorem. We are motivated by [21] and use basis functions
similar to the basis functions found in that paper. For a discretization parameter
N = 1, 2, . . ., choose the meshpoints

θNk,j = −rk−1 − j
Rk

N
, k = 1, 2, . . . ,m, j = 0, 1, . . . , N,

where Rk = rk−rk−1. Thus each delay is a meshpoint and although the meshpoints
are not equally spaced across the whole interval, they are equally spaced between
each delay. With this notation we see that θNk,N = θNk+1,0, so there are Nm + 1
distinct meshpoints. Next we define a set of first order splines across the entire
interval [−r, 0] by combining splines defined on each subinterval, taking care to
avoid overlap at the endpoints of each subinterval. Thus on the first subinterval
(k = 1), define the following first order splines:

bN1,0(θ) =






N
R1

(θ − θN1,1) if θN1,1 ≤ θ ≤ θN1,0

0 otherwise,

bN1,j(θ) =





− N
R1

(θ − θN1,j−1) if θN1,j ≤ θ ≤ θN1,j−1

N
R1

(θ − θN1,j+1) if θN1,j+1 ≤ θ ≤ θN1,j

0 otherwise,



APPROXIMATION FOR NEUTRAL DELAY EQUATIONS 719

for j = 1, . . . , N − 1. On the remaining subintervals, for k = 2, . . . ,m, define

bNk,0(θ) =






− N
Rk−1

(θ − θNk−1,N−1) if θNk−1,N ≤ θ ≤ θNk−1,N−1

N
Rk

(θ − θNk,1) if θNk,1 ≤ θ ≤ θNk,0

0 otherwise,

bNk,j(θ) =






− N
Rk

(θ − θNk,j−1) if θNk,j ≤ θ ≤ θNk,j−1

N
Rk

(θ − θNk,j+1) if θNk,j+1 ≤ θ ≤ θNk,j

0 otherwise,

for j = 1, . . . , N − 1. On the last subinterval of the last interval (k = m, j = N)
define

bNm,N(θ) =






− N
Rm

(θ − θNm,N−1) if −r ≤ θ ≤ θNm,N−1

0 otherwise.

There are Nm + 1 of these first order splines, the so-called ‘hat functions’ cor-
responding to the distinct mesh points. Here we point out a difference between
our construction and the one in [21]. We use mN + 1 splines, but in [21] they use
m(N+1) splines. The reason is that at each meshpoint corresponding to an interior
delay they have one more spline than we do. In fact all of our splines are the same
as those in [21] except those which are nonzero at the interior delays. In particular,
instead of our bNk,0(θ) they use two distinct splines essentially corresponding to the

two distinct parts of bNk,0(θ) on either side of the delay. Since there arem−1 interior
delays, they havem−1 more first order splines than we do. We could still apply our
method using their splines, but it would require a differently defined Hilbert space
V , and we do not pursue the idea here. It is an issue for further investigation, and
we note that it is only an issue for the multiple delay case - for the single delay case
our splines are exactly the same as those in [21]. To complete our construction, let
ei ∈ Cn denote the standard Euclidean basis vector (entries all zero except for the
value 1 in the ith position). Define

El =






(el, 0) if l = 1, 2, . . . , n

(0, bNk,j(θ) ei) if l = n+ (k − 1)Nn+ jn+ i,

(0, bNm,N(θ) ei) if l = (mN + 1)n+ i,

for k = 1, 2, . . . ,m, j = 0, 1, . . . , N − 1, and i = 1, 2, . . . , n. Then define

XN = span {El}
n[mN+2]
l=1 ,

and we observe that XN is a subspace of V of dimension n[mN + 2]. (Note that
because of our earlier remark the subspace XN constructed in [21] has dimension
n[(N + 1)m+ 1]).
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We note that it is possible to arrange the basis functions in a different order.
For example, we can define

Ẽl =






(ei, 0) if l = (i − 1)(Nm+ 2) + 1

(0, bNk,j(θ) ei) if l = (i − 1)(Nm+ 2) + (k − 1)N + j + 2,

(0, bNm,N(θ) ei) if l = i(Nm+ 2),

for k = 1, 2, . . . ,m, j = 0, 1, . . . , N − 1, and i = 1, 2, . . . , n. We still have

XN = span {Ẽl}
n[mN+2]
l=1 .

The choice of ordering for the basis functions (El or Ẽl) affects the computation of
matrix representations.

Now that we have constructed the finite dimensional spaces XN ⊂ V , we use
(10) to define the operators AN . In particular, for each N = 1, 2, . . . , define the
operator AN : XN → XN by

〈ANu, v〉X = σ(u, v) for all u, v ∈ XN .

These operators define semigroups TN(t) = etA
N

, and in order to conclude that
TN(t)PN → T (t) strongly on X we must verify (11) and (12). To do this we
will take advantage of properties of interpolating linear splines. In particular, for
N = 1, 2, . . . , and any f ∈ H3(−r, 0) let fN

I be the linear spline which interpolates
f at the meshpoints θNk,j , k = 1, . . . ,m, j = 0, . . . , N . The interpolating spline has

the property that (see [25])

‖f − fN
I ‖L2(−r,0) ≤ O(

1

N2
)(19)

‖
d

dθ
(f − fN

I )‖L2(−r,0) ≤ O(
1

N
),(20)

and hence ‖f − fN
I ‖H1(−r,0) → 0 as N → ∞. Next let us define the following space

which is the span of our first order splines:

Y N = span



{bNm,N(θ)} ∪

m⋃

k=1

N−1⋃

j=0

bNk,j(θ)



 ,

and observe that the interpolating spline is an element of Y N . In Theorem 1 we
take s = 3 and observe that if v ∈ domA3, then

v = (ψ(0) +
m∑

k=1

Ckψ(−rk), ψ).

Here we have

ψ(θ) = (ψ1(θ), . . . , ψn(θ)),

where ψi ∈ H3(−r, 0) for i = 1, 2, . . . , n. For each N = 1, 2, . . ., let us define

ψN
I (θ) =

(
(ψ1)

N
I , . . . , (ψn)

N
I

)
,

where (ψi)
N
I is the linear spline which interpolates ψi(θ). Then define

vN =

(
ψN
I (0) +

m∑

k=1

Ckψ
N
I (−rk), ψ

N
I

)
∈ XN .
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Because each delay is also a meshpoint, we have

(ψi)
N
I (−rk) = ψi(−rk)

for i = 1, . . . , n and k = 0, . . . ,m. From this it follows that

v − vN =
(
0, ψ − ψN

I

)
.

Therefore

‖v − vN‖2V = ‖ψ − ψN
I ‖2H1(−r,0;Cn)

=

n∑

i=1

‖ψi − (ψi)
N
I ‖2H1(−r,0)

→ 0 as N → ∞

by (19)-(20). Thus, (12) holds, and it only remains to verify (11). To see that (11)
holds, note that for u = (η, φ) ∈ V we have

|σ(u, v − vN )| = |σ((η, φ), (0, ψ − ψN
I ))|

=

∣∣∣∣∣

m∑

k=1

∫ −rk−1

−rk

gk(θ)[ψ(θ) − ψN
I (θ)]

T
φ′(θ) dθ

∣∣∣∣∣

=

∣∣∣∣∣

m∑

k=1

∫ −rk−1

−rk

d

dθ

(
gk(θ)[ψ(θ) − ψN

I (θ)]
T
)
φ(θ) dθ

∣∣∣∣∣

≤
m∑

k=1

∫ −rk−1

−rk

|gk(θ)| |
d

dθ

(
[ψ(θ)− ψN

I (θ)]
T
)
φ(θ)| dθ

+

m∑

k=1

∫ −rk−1

−rk

|g′k(θ)| |[ψ(θ) − ψN
I (θ)]

T
φ(θ)| dθ

≤ K

m∑

k=1

∫ −rk−1

−rk

|
d

dθ

(
[ψ(θ)− ψN

I (θ)]
T
)
φ(θ)| dθ

+K

m∑

k=1

∫ −rk−1

−rk

|[ψ(θ)− ψN
I (θ)]

T
φ(θ)| dθ,

where K depends only on the weight functions gk. Moreover

|σ(u, v − vN )| ≤ K

∫ 0

−r

|
d

dθ

(
[ψ(θ) − ψN

I (θ)]
T
)
φ(θ)| dθ

+K

∫ 0

−r

|[ψ(θ) − ψN
I (θ)]

T
φ(θ)| dθ,

≤ K‖φ‖L2(−r,0;Cn)‖ψ − ψN
I ‖H1(−r,0;Cn)

≤ L‖u‖X‖v − vN‖V ,

which verifies that (11) holds. It follows from Theorem 1 that TN(t)PN → T (t)
strongly, which is the desired Trotter-Kato semigroup convergence.

In the next section we illustrate the implementation of the scheme in some ex-
amples. We close this section by noting that our construction extends in a straight-
forward manner to higher order splines. In fact, as long as the interpolating splines
satisfy properties analagous to (19)-(20), the convergence proof will be virtually
unchanged.
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Table 1. Approximation error for Example 1

N 4 8 16 32 64

ǫNS .0444 .0139 .0040 - -

ǫNH .0940 .0230 .0046 - -

ǫN .0673 .0196 .0063 .0042 .0024

3. Examples

In this section we present examples which illustrate implementation of the ap-
proximation scheme presented in this paper. In particular, we calculate the matrix
representations of (6) and solve the resulting system of differential equations using
standard differential equations solvers available in Matlab.

Example 1. Consider the simple scalar equation

ẋ(t) +
1

4
ẋ(t− 1) = x(t) + x(t− 1), t ≥ 0

x(t) = −t for − 1 ≤ t ≤ 0.

This example is considered in [20], and the true solution is given by

x(t) = h(t) = t−
1

4
+

1

4
et, t ∈ [0, 1],

x(t) = h(t)−
5

4
− 2(t− 1) +

5

4
et−1 +

3

16
(t− 1)et−1, t ∈ [1, 2].

In [20] Kappel and Kunisch implement one approximation scheme using cubic s-
plines and another using cubic Hermite splines. The main and significant difference
between these schemes and the one constructed in this paper is that in [20] the
semidiscrete problems (6) evolve on spaces XN which satisfy XN ⊂ domA, and
our scheme does not have this restriction involving domA. For this example we
have

σ((η, φ), (ξ, ψ)) = ηξ +
3

4
φ(−1)ξ +

∫ 0

−1

g(θ)φ′(θ)ψ(θ) dθ,

+g(0) [η − φ(0)−
1

4
φ(−1)]ψ(0).

In the results reported in Table 1 we use a weight function g(θ) ≡ 1 and for various
values of the discretization parameter N we compare xN (t) with the true solution
x(t). In particular, for ti = 0.2i, i = 1, 2, . . . 10, we define the error term

ǫN = max
i

|x(ti)− xN (ti)|.

For this definition of error we compare our scheme with the two schemes in [20]. We
denote by ǫNS and ǫNH the error reported in [20] for cubic splines and cubic Hermite
splines, respectively. Our linear spline scheme demonstrates suitable convergence
behavior.
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Table 2. Approximation error for Example 2

N 4 8 16 32 64

ǫN .025634 .008336 .002617 .001340 .000765

Example 2. Consider the neutral equation with two delays

ẋ(t) +
1

4
ẋ(t−

1

2
) = −x(t) +

1

4
x(t − 1), t ≥ 0

x(t) = −t for − 1 ≤ t ≤ 0.

The true solution is given by

x(t) = h(t) =
1

4
(3 − t− 3e−t), t ∈ [0, 1/2],

x(t) = h(t)−
3

16
+

1

32
(9− 6t)e−(t− 1

2
), t ∈ [1/2, 1].

We must choose weight functions g1, g2 so that conditions (15)-(16) are satisfied.
For the numerical results we chose

g1(θ) = a1s+ 1, −1/2 ≤ θ ≤ 0,

g2(θ) = a2(s+ 1/2) + 1, −1 ≤ θ ≤ −1/2,

with a1 = −4 and a2 = −1. In this example we calculate the error ǫN over the
interval 0 ≤ t ≤ 1 for ti = 0.1i, i = 1, 2, . . . 10 and list the result in Table 2.

This approximation scheme has been tested on several problems, and the exam-
ples here are illustrative of the qualitative behavior of the scheme. We also refer
to [9] where this scheme was used on an LQR control problem for a scalar neutral
delay equation with excellent results.

4. Conclusion

We have provided a general variational framework (Theorem 1) which allows us
to construct a new semidiscrete approximation scheme for neutral delay equations.
This extends to neutral equations a scheme which was originally constructed for
retarded delay equations in [21]. One advantage of the scheme is the general vari-
ational framework, which can accomodate various types of basis functions (we use
linear splines). Another advantage of this framework is the possibility of establish-
ing adjoint semigroup convergence, especially if one can choose the Hilbert space
V to contain both dom A and dom A∗. This is a subject for further investigation,
although for the scalar single delay case the adjoint semigroup convergence has
been established in [10].

5. Appendix

We provide a proof of Theorem 1. The theorem and proof are clearly based on
ideas in the proof of Cea’s Lemma [6], [24] as well as some of the variational versions
of the Trotter-Kato semigroup convergence theorem in [17]. We include the result
since it is particularly suitable for the approximation framework we construct.

Proof of Theorem 1: Since A is the infinitesimal generator of a C0-semigroup, it
follows that domAs is dense in H . For any x ∈ X , v ∈ domAs, and vN ∈ XN , we
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have

(21) ‖PNx− x‖X ≤ ‖vN − x‖X ≤ cV ‖v
N − v‖V + ‖v − x‖X ,

so by (12) and the denseness of domAs we get

(22) lim
N→∞

‖PNx− x‖X = 0 for all x ∈ X.

Fix λ > ω. By (9) it follows that λ ∈ ρ(A) ∩ ρ(AN ) for all N . We claim that

(23) lim
N→∞

‖(λI −AN )−1PNw − (λI −A)−1w‖X = 0 for all w ∈ X.

To show this claim, we shall first verify (23) on the dense subset domAs−1, and
then use denseness together with a uniform bound on the resolvent to argue that
(23) holds on all of X . To proceed, let w ∈domAs−1, set

y = (λI −A)−1w,

and for each N set

yN = (λI −AN )−1PNw.

Thus y ∈domAs, and by hypothesis there exists a sequence of vectors {ỹN}∞N=1,
ỹN ∈ V N , with the properties (11) and (12). Observe that

(24) λ〈y,Ω〉X − σ(y,Ω) = 〈w,Ω〉X ∀Ω ∈ V,

and for each N ,

λ〈yN ,Ω〉X − σ(yN ,Ω) = 〈w,Ω〉X ∀Ω ∈ V N .

Of course, (24) also holds for all Ω ∈ V N . Thus we may subtract the above
equations and for each N we have

(25) λ〈y − yN ,Ω〉X − σ(y − yN ,Ω) = 0 ∀Ω ∈ V N .

Hence for each N and all Ω ∈ V N we have

λ〈y − yN , y − yN 〉X − σ(y − yN , y − yN )

= λ〈y − yN , y − Ω〉X − σ(y − yN , y − Ω)

+λ〈y − yN ,Ω− yN 〉X − σ(y − yN ,Ω− yN )

= λ〈y − yN , y − Ω〉X − σ(y − yN , y − Ω)

by (25) since Ω− yN ∈ V N . Thus for each N

λ ‖y − yN‖2X = λ〈y − yN , y − Ω〉X + σ(y − yN , y − yN)− σ(y − yN , y − Ω)

= λ〈y − yN , y − Ω〉X − σ(y − yN , yN − Ω)

= λRe 〈y − yN , y − Ω〉X − Reσ(y − yN , yN − Ω),(26)

for all Ω ∈ V N since λ is real. It follows from (9) and (26) that for each N and all
Ω ∈ V N ,

(λ− γ)‖y − yN‖2X = λ ‖y − yN‖2X − γ ‖y − yN‖2X

≤ λ ‖y − yN‖2X − Reσ(y − yN , y − yN )

= λRe 〈y − yN , y − Ω〉X − Reσ(y − yN , yN − Ω)

−Reσ(y − yN , y − yN )

= λRe 〈y − yN , y − Ω〉X − Reσ(y − yN , y − Ω)

≤ |λ| ‖y − yN‖X ‖y − Ω‖X + |σ(y − yN , y − Ω)|.(27)
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Now for each N we choose Ω = ỹN , where {ỹN}∞N=1 is the sequence noted above
with the properties (11) and (12). It follows that for each N

(λ− γ)‖y − yN‖2X ≤ |λ| ‖y − yN‖X‖y − ỹN‖X + L ‖y − yN‖X‖y − ỹN‖V ,

and hence

(28) (λ− γ)‖y − yN‖X ≤ |λ| ‖y − ỹN‖X + L ‖y − ỹN‖V .

Thus

(29) lim
N→∞

‖(λI −AN )−1PNw − (λI −A)−1w‖X = 0

for all w ∈domAs−1. Since domAs−1 is dense in X and we have the uniform bound
‖(λI −AN )−1PN

X ‖X ≤ 1
λ−γ

for all N , it follows that (23) is true for all w ∈ X , and

the claim (23) is proved. The result now follows from Theorem 3.1 in [15]. 2
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