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SOME ERROR ESTIMATES OF FINITE VOLUME ELEMENT

APPROXIMATION FOR ELLIPTIC OPTIMAL CONTROL

PROBLEMS

XIANBING LUO, YANPING CHEN∗, AND YUNQING HUANG

Abstract. In this paper, finite volume element method is applied to solve the distributed optimal
control problems governed by an elliptic equation. We use the method of variational discretization
concept to approximate the problems. The optimal order error estimates in L2 and L∞-norm are
derived for the state, costate and control variables. The optimal H1 and W 1,∞-norm error esti-
mates for the state and costate variables are also obtained. Numerical experiments are presented
to test the theoretical results.

Key words. finite volume element method, variational discretization, optimal control problems,
elliptic equation, distributed control.

1. Introduction

The finite volume element method is a discretization technique for partial d-
ifferential equations. Due to its local conservative property and other attractive
properties, such as the robustness with the unstructured meshes, the finite volume
element method is widely used in computational fluid dynamics. In general, two
different functional spaces (one for the trial space and one for the test space) are
used in the finite volume element method. Owing to the two different spaces, the
numerical analysis of the finite volume element method is more difficult than that
of the finite element method and finite difference method. Since the method was
proposed, there have been many results in the literature. Early work for the finite
volume element method can be found in [2, 5, 7, 13, 15, 19]. In [2], Bank and
Rose obtain the result that the finite volume approximation is comparable with
the finite element approximation in H1-norm. The optimal L2-error estimate is
obtained in [13, 19] under the assumption that f ∈ H1. In [19], the authors also
obtain the H1-norm and maximum-norm error estimates. In [7], Chatzipantelidis
proposes a nonconforming finite volume element method and obtains the L2-norm
and H1-norm error estimates. Recently, Ye proposes a discontinuous finite volume
element method. Unified error analysis for conforming, nonconforming and discon-
tinuous finite volume element method is presented in [16]. High order finite volume
element method can be found in, e.g., [8, 14]. For other recently development, we
refer readers to see [6, 18, 21, 28] and the references therein.

The optimal control problems introduced in [23] are playing an increasingly
important role in science and engineering. They have various application in the
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operation of physical, social, and economic processes. Finite element method is
an important numerical method for the problems of partial differential equations
and widely used in the numerical solution of optimal control problems. Only for
the optimal control problems governed by linear elliptic equation, there have been
many results in the literature. For instance, some a priori error estimates of the
finite element approximation for the optimal control problems are established in
[24]. A posteriori error estimates and adaptive finite element methods are studied
in [22, 24]. Some superconvergence results are reported in, e.g. [24, 25]. The error
estimates of mixed finite element approximation for optimal control problems are
investigated in, for example, [11, 24]. Furthermore, some superconvergence results
of the mixed finite element method are obtained in, e.g., [11, 24]. Other numerical
methods for optimal control problems can be seen in [3, 12, 17, 29].

In most of these papers, the state and costate (adjoint state) variables are dis-
cretized by continuous linear elements and the control variable by piecewise constant
or piecewise linear polynomials. The approximate order of the control variable is
O(h) or O(h3/2) in the sense of L2-norm or L∞-norm (see, e.g., [26]). In [20], Hinze
proposes a variational discretization concept for optimal control problems with con-
trol constraints. With the variational discretization concept, the control variable is
not discretized directly, but discretized by a projection (defined later, see (3.7)) of
the discrete costate variable. The convergent order of the control variable is O(h2).

There are two approaches to find the approximate solution of the optimal con-
trol problems governed by partial differential equation. One is of the optimize-
then-discretize type. One first applies the Lagrange multiplier methods to obtain
an optimal system, at the continuous level, consisting of the state equation, an
adjoint equation and an optimal condition. Then one use some numerical method
to discretize the resulting system. The other is of the discretize-then-optimize type.
One first discretizes the optimal control problems by some means and then applies
the Lagrange multiplier rule to the resulting discrete optimization problem. The
two discrete systems, determined by the two approaches, are the same when finite
element method is used. But in general, these discrete systems are not the same. In
[17], the streamline upwind Galerkin method is applied to approximate the solution
of elliptic optimal control problems using the optimize-then-discretize approach. In
[29], the authors also use the optimize-then-discretize approach to solve the optimal
control problem governed by convection dominated diffusion equation.

In engineering, there exist widely optimal control problems governed by fluid flow
equation. And the finite volume element method is widely used in computational
fluid dynamics. To our best knowledge, there is no published result in which the
finite volume element method is applied to solve the optimal control problems. We
want to use finite volume element method to solve fluid optimal control problems.
But here we will use the optimize-then-discretize approach and the finite volume
element method to find the approximation of elliptic optimal control problems.

In this paper, we consider the following optimal control problems: Find y, u such
that

min
u∈Uad

1

2
||y − yd||

2
L2(Ω) +

α

2
||u||2L2(Ω),(1.1)

−∇ · (A∇y) = Bu+ f, in Ω,(1.2)

y = 0, on Γ,(1.3)

where Ω ⊂ R2 is a bounded convex polygon domain and Γ is the boundary of
Ω, α is a positive number, f, yd ∈ L2(Ω) or H1(Ω), A = (ai,j(x)) is a 2 × 2
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symmetric, smooth enough and uniformly positive definite matrix in Ω, B is a
bounded continuous linear operator, Uad is denoted by

Uad = {u ∈ L2(Ω) : a ≤ u(x) ≤ b, a.e. in Ω, a, b ∈ R}.

We first apply Lagrange multiplier method to the problem (1.1)-(1.3) and obtain
an optimal system. Then we use finite volume element method to discretize the
state and adjoint equation of the system. For the optimal condition (variational
inequality), we use the variational discretization concept to obtain the control.
Assume that (yh, ph, uh) is the numerical solution of the finite volume element
method for the problem (1.1)-(1.3). Under some reasonable assumption, we mainly
obtain the following results:

||u− uh||L2(Ω) + ||y − yh||L2(Ω) + ||p− ph||L2(Ω) = O(h2),

||y − yh||H1(Ω) + ||p− ph||H1(Ω) = O(h),

||u− uh||L∞(Ω) + ||y − yh||L∞(Ω) + ||p− ph||L∞(Ω) = O(h2|lnh|1/2).

The remainder of this paper is organized as follows. In Section 2, we present
some notations and describe the finite volume element method briefly. In Section
3, we apply the piecewise linear finite volume element method and variational dis-
cretization concept to the problem (1.1)-(1.3) and obtain the discretized optimal
system. In Section 4, we analyze the error estimates between the exact solution and
the finite volume element approximation. And in Section 5, a numerical example
is presented to test the theoretical results.

Throughout this paper, the constant C denotes different positive constant at
each occurrence, which is independent of the mesh size h.

2. Preliminaries

To begin with, we use the standard notations for Sobolev spaces Wm,p(Ω) with
1 ≤ p ≤ +∞ and their associated norms (see, e.g., [1, 4]). To simplify the notations,
we denote Wm,2(Ω) by Hm(Ω) and drop the index p = 2 and Ω whenever possible,
i.e., ||u||m,2,Ω = ||u||m,2 = ||u||m, ||u||0 = ||u||. As usual, we also use (·, ·) to denote
the L2(Ω)-inner product.

For the convex polygonal domain, we consider a quasi-uniform triangulation Th
consisting of closed triangle elements K such that Ω̄ = ∪K∈Th

K. We use Nh to
denote the set of all nodes or vertices of Th. To define the dual partition T ∗

h of Th,
we divide each K ∈ Th into three quadrilaterals by connecting the barycenter CK

of K with line segments to the midpoints of edges of K. The control volume Vi

consists of the quadrilaterals sharing the same vertex zi as is shown in Figure 1. The
dual partition T ∗

h consists of the union of the control volume Vi. Let h = max{hK},
where hK is the diameter of the triangle K. As is shown in [19], the dual partition
T ∗
h is also quasi-uniform, i.e., there exists a positive constant C such that

C−1h2 ≤ meas(Vi) ≤ Ch2, ∀ Vi ∈ T ∗
h .

We define a finite dimensional space Vh (i.e. trial space) associated with Th for
the trial functions by

Vh = {v : v ∈ C(Ω), v|K ∈ P1(K), ∀ K ∈ Th, v|Γ = 0}

and define a finite dimensional space Qh (i.e. test space) associated with the dual
partition T ∗

h for the test functions by

Qh = {q ∈ L2(Ω) : q|V ∈ P0(V ), ∀ V ∈ T ∗
h ; q|Vz

= 0, z ∈ Γ},
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where Pl(K) or Pl(V ) consists of all the polynomials with degree less than or equal
to l defined on K or V .

To connect the trial space and test space, we define a transfer operator Ih : Vh →
Qh as follows:

Ihvh =
∑

zi∈Nh

vh(zi)χi, Ihvh|Vi
= vh(zi), ∀ Vi ∈ T ∗

h ,

where χi is the characteristic function of Vi. For the operator Ih, it is well known
that there exists a positive constant C such that for all v ∈ Vh

||v − Ihv|| ≤ Ch||v||1.(2.1)

 Dual partition in a triangular K
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Figure 1. The dual partition of a triangular K on the left hand side and a control
volume Vi on the right hand side.

To address the finite volume element method clearly, we consider the following
problem

−∇ · (A∇φ) = f, in Ω,(2.2)

φ = 0, on Γ(2.3)

where A,Ω,Γ are the same as in (1.2)-(1.3), f ∈ L2(Ω) or H1(Ω).
The finite volume element approximation φh of (2.2)-(2.3) is defined as the so-

lution of the problem: Find φh ∈ Vh such that

a(φh, Ihvh) = (f, Ihvh), ∀ vh ∈ Vh,(2.4)

where the bilinear form a(φh, Ihvh) is defined by

a(φ, Ihv) = −
∑

zi∈Nh

v(zi)

∫

∂Vi

A∇φ · nds, φ, v ∈ H1
0 (Ω),

where n is the unit outward normal vector to ∂Vi.
The bilinear form a(·, ·) is not symmetric though the problem is self-adjoint. It

has the following property (see, e.g., [15, Lemma 2.4]). For all wh, vh ∈ Vh, there
exist positive constants C and h0 ≥ 0 such that for all 0 < h < h0

|a(wh, Ihvh)− a(vh, Ihwh)| ≤ Ch||wh||1 ||vh||1.(2.5)
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3. Finite volume element method for the optimal control problem

As is seen in [23], the necessary and sufficient optimal condition (system) consists
of the state equation, a costate equation and a variational inequality, i.e., find
(y, p, u) ∈ H1

0 (Ω)×H1
0 (Ω)× Uad such that

(3.1)











(A∇y,∇w) = (Bu + f, w), ∀ w ∈ H1
0 (Ω),

(A∇p,∇q) = (y − yd, q), ∀ q ∈ H1
0 (Ω),

(αu +B∗p, v − u) ≥ 0, ∀ v ∈ Uad.

If y ∈ H1
0 (Ω) ∩ C2(Ω) and p ∈ H1

0 (Ω) ∩ C2(Ω), then optimal system (3.1) can be
written by

(3.2)











−∇ · (A∇y) = Bu+ f, in Ω, y = 0, on Γ,

−∇ · (A∇p) = y − yd, in Ω, p = 0, on Γ,

(αu+B∗p, v − u) ≥ 0, ∀ v ∈ Uad.

We use finite volume element method to discretized the state and costate equation
directly. Then the continuous optimal system (3.2) can be approximated by: Find
(yh, ph, uh) ∈ Vh × Vh × Uad such that

a(yh, Ihwh) = (Buh + f, Ihwh), ∀ wh ∈ Vh,(3.3)

a(ph, Ihqh) = (yh − yd, Ihqh), ∀ qh ∈ Vh,(3.4)

(αuh +B∗ph, v − uh) ≥ 0, ∀ v ∈ Uad.(3.5)

Introducing a projection (see, e.g., [24, 20])

P[a,b](f(x)) = max(a,min(b, f(x))),

we can denote the variational inequality in system (3.2) by

u(x) = P[a,b](−
B∗p

α
).(3.6)

And the variational inequality (3.5) is equivalent to

uh(x) = P[a,b](−
B∗ph
α

).(3.7)

Then the discrete optimal system can be rewritten by: Find (yh, ph, uh) ∈ Vh ×
Vh × Uad such that

(3.8)











a(yh, Ihwh) = (Buh + f, Ihwh), ∀ wh ∈ Vh,

a(ph, Ihqh) = (yh − yd, Ihqh), ∀ qh ∈ Vh,

uh(x) = P[a,b](−
B∗ph

α ).

The system (3.8) or (3.3)-(3.5) is an approximation of (3.1). But the existence
and the uniqueness of the solution for (3.8) are not clear. To prove them, we first
present an auxiliary lemma (Lemma 3.1) and then verify the existence and the
uniqueness.

Let yh(u) be the solution of

a(yh(u), Ihwh) = (Bu + f, Ihwh), ∀wh ∈ Vh(3.9)

and ph(y) be the solution of

a(ph(y), Ihqh) = (y − yd, Ihqh), ∀qh ∈ Vh.(3.10)

For yh(u), ph(y), noting that yh = yh(uh), ph = ph(yh), we have the following
results.
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Lemma 3.1. Assume that yh(u), ph(y) are the solutions of (3.9) and (3.10), re-
spectively. Then the following results hold:

||ph(y)− ph||1 ≤ C||y − yh||,(3.11)

||yh(u)− yh||1 ≤ C||u− uh||.(3.12)

Proof. Subtracting (3.4) from (3.10), we have

a(ph(y)− ph, Ihqh) = (y − yh, Ihqh), ∀qh ∈ Vh.

Let qh = ph(y)− ph. Then (3.11) can easily follows from [19, Lemma 2.2] and the
Cauchy-Schwarz inequality. In the same way, (3.12) can be verified easily. �

Lemma 3.2. The system (3.3)-(3.5) admits a unique solution for sufficiently small
h.

Proof. We first introduce a projection Pk : L2(Ω) → Uad which is defined by

||z − Pk(z)|| = min
zh∈Uad

||z − zh||.(3.13)

The projection Pk has the property of

||Pk(z
′)− Pk(z

′′)|| ≤ ||z′ − z′′||, ∀z′, z′′ ∈ L2(Ω).(3.14)

For a given vh ∈ L2(Ω), Let (yh(vh), ph(vh)) be the solution of the following
auxiliary problem: Find (yh(vh), ph(vh)) ∈ Vh × Vh such that

a(yh(vh), Ihwh) = (f + Bvh, Ihwh), ∀wh ∈ Vh,(3.15)

a(ph(vh), Ihqh) = (yh(vh)− yd, Ihqh), ∀qh ∈ Vh.(3.16)

Define a mapping Φ : L2(Ω) → L2(Ω) by

Φ(zh) = zh − ρ(αzh +B∗ph(zh)), ∀zh ∈ L2(Ω), ρ > 0.(3.17)

Let T (zh) = PkΦ(zh). Then the proof of the existence and uniqueness of (3.3)-(3.5)
is to show that T (zh) is a contractive mapping. It follows from (3.14) that for all
z′h, z

′′
h ∈ L2(Ω)

||T (z′h)− T (z′′h)||
2 = ||Pk(Φ(z

′
h))− Pk(Φ(z

′′
h))||

2

≤ ||Φ(z′h)− Φ(z′′h)||
2 = (Φ(z′h)− Φ(z′′h),Φ(z

′
h)− Φ(z′′h)).

Note that

(Φ(z′h)− Φ(z′′h),Φ(z
′
h)− Φ(z′′h))

= (1 − 2ρα)(z′h − z′′h , z
′
h − z′′h)

−2ρ(B(z′h − z′′h), ph(z
′
h)− ph(z

′′
h))

+ρ2||α(z′h − z′′h) +B∗ph(z
′
h)−B∗ph(z

′′
h)||

2.

We have

||T (z′h)− T (z′′h)||
2

≤ (1 − 2ρα)(z′h − z′′h , z
′
h − z′′h)

−2ρ(B(z′h − z′′h), ph(z
′
h)− ph(z

′′
h))

+ρ2||α(z′h − z′′h) +B∗ph(z
′
h)−B∗ph(z

′′
h)||

2.(3.18)

For z′h, z
′′
h ∈ L2(Ω), it follows from (3.15)-(3.16) that

a(yh(z
′
h)− yh(z

′′
h), Ihwh) = (B(z′h − z′′h), Ihwh), ∀wh ∈ Vh,

a(ph(z
′
h)− ph(z

′′
h), Ihqh) = (yh(z

′
h)− yh(z

′′
h), Ihqh), ∀qh ∈ Vh.
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Let wh = ph(z
′
h)− ph(z

′′
h) and qh = yh(z

′
h)− yh(z

′′
h). We have

(B(z′h − z′′h), ph(z
′
h)− ph(z

′′
h))

= (yh(z
′
h)− yh(z

′′
h), Ih(yh(z

′
h)− yh(z

′′
h)))

+{a(yh(z
′
h)− yh(z

′′
h), Ih(ph(z

′
h)− ph(z

′′
h)))

−a(ph(z
′
h)− ph(z

′′
h), Ih(yh(z

′
h)− yh(z

′′
h)))}

+(B(z′h − z′′h), (ph(z
′
h)− ph(z

′′
h))− Ih(ph(z

′
h)− ph(z

′′
h)))

≥ {a(yh(z
′
h)− yh(z

′′
h), Ih(ph(z

′
h)− ph(z

′′
h)))

−a(ph(z
′
h)− ph(z

′′
h), Ih(yh(z

′
h)− yh(z

′′
h)))}

+(B(z′h − z′′h), (ph(z
′
h)− ph(z

′′
h))− Ih(ph(z

′
h)− ph(z

′′
h))),

where we have use the fact that (vh, Ihvh) ≥ 0 (see, e.g., [21, Lemma 3.2]). Using
[15, Lemma 2.4] and Lemma 3.1, we have

{a(yh(z
′
h)− yh(z

′′
h), Ih(ph(z

′
h)− ph(z

′′
h)))

−a(ph(z
′
h)− ph(z

′′
h), Ih(yh(z

′
h)− yh(z

′′
h)))}

≥ −C1h||ph(z
′
h)− ph(z

′′
h)||1 ||yh(z

′
h)− yh(z

′′
h)||1

≥ −C1C2h||z
′
h − z′′h ||

2.(3.19)

Note that (2.1) and Lemma 3.1. We have

(B(z′h − z′′h), (ph(z
′
h)− ph(z

′′
h))− Ih(ph(z

′
h)− ph(z

′′
h)))

≥ −C3h||ph(z
′
h)− ph(z

′′
h)||1‖|z

′
h − z′′h ||

≥ −C3C4h||z
′
h − z′′h ||

2.(3.20)

Combining (3.19)-(3.20), we deduce that

(B(z′h − z′′h), ph(z
′
h)− ph(z

′′
h)) ≥ −(C1C2 + C3C4)h ||z′h − z′′h ||

2.(3.21)

Moreover, it is easy to see that

||α(z′h − z′′h) +B∗ph(z
′
h)−B∗ph(z

′′
h)||

2 ≤ C5||z
′
h − z′′h||

2.(3.22)

Then it follows from (3.18), (3.21) and (3.22) that

||T (z′h)− T (z′′h)||
2 ≤ C∗||z′h − z′′h ||

2(3.23)

where C∗ = (1−ρ(2α−2(C1C2+C3C4)h)+ρ2C5). For sufficiently small h we have
α− (C1C2+C3C4)h > 0. Then 0 < C∗ < 1 if 0 < ρ < (2α−2(C1C2+C3C4)h)/C5.
Therefore T (zh) is a contractive mapping and hence (3.3)-(3.5) admits a unique
solution. �

4. Error estimates

In this section, we analyze the error estimates of the finite volume element ap-
proximation. We first estimate the error between the exact solution and the FVEM
approximation in L2-norm. Then we estimate H1-norm error. At the end of this
section we present some maximum-norm error estimates.

4.1. L2 error estimates. In this subsection, we analyze the L2-error estimates.
Owing to the property of the variational inequality, we first estimate the error of
the approximate control in L2-norm. Using the properties of the control, we then
estimate the error of the numerical solutions for the state and the costate.
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Theorem 4.1. Assume that A ∈ W 1,∞(Ω) and u, f, yd ∈ L2(Ω). Let (y, p, u) ∈
(H2(Ω)∩H1

0 (Ω))× (H2(Ω)∩H1
0 (Ω))×Uad and (yh, ph, uh) ∈ Vh× Vh×Uad be the

solutions of (3.1) and (3.3)-(3.5), respectively. Then there exists an h0 > 0 such
that for all 0 < h ≤ h0

||u− uh|| ≤ Ch.(4.1)

Moreover, if A ∈ W 2,∞(Ω) and u, f, yd ∈ H1(Ω), then there exists an h0 > 0 such
that for all 0 < h ≤ h0

||u− uh|| ≤ Ch2.(4.2)

Proof. Let v = u in (3.5) and v = uh in the variational inequality of (3.2). Then
we have

α(u− uh, u− uh) ≤ (B∗(p− ph), uh − u) = (p− ph, B(uh − u))

= (p− ph(y), B(uh − u)) + (ph(y)− ph, B(uh − u))

= (p− ph(y), B(uh − u)) + (Ih(ph(y)− ph), B(uh − u))

+((ph(y)− ph)− Ih(ph(y)− ph), B(uh − u))

= (p− ph(y), B(uh − u)) + a(yh − yh(u), Ih(ph(y)− ph))

+((ph(y)− ph)− Ih(ph(y)− ph), B(uh − u))

The second term can be written by

a(yh − yh(u), Ih(ph(y)− ph))

= a(yh − yh(u), Ih(ph(y)− ph))− a(ph(y)− ph, Ih(yh − yh(u)))

+a(ph(y)− ph, Ih(yh − yh(u)))

= a(yh − yh(u), Ih(ph(y)− ph))− a(ph(y)− ph, Ih(yh − yh(u)))

+(y − yh, Ih(yh − yh(u)))

= a(yh − yh(u), Ih(ph(y)− ph))− a(ph(y)− ph, Ih(yh − yh(u)))

+(y − yh(u), Ih(yh − yh(u)))− (yh − yh(u), Ih(yh − yh(u)))

≤ a(yh − yh(u), Ih(ph(y)− ph))− a(ph(y)− ph, Ih(yh − yh(u)))

+(y − yh(u), Ih(yh − yh(u))),

where we have used the fact that (yh − yh(u), Ih(yh − yh(u))) ≥ 0. Connecting the
previous two inequalities, we have that

α(u − uh, u− uh)

≤ (p− ph(y), B(uh − u)) + (y − yh(u), Ih(yh − yh(u)))

+((ph(y)− ph)− Ih(ph(y)− ph), B(uh − u))

+a(yh − yh(u), Ih(ph(y)− ph))− a(ph(y)− ph, Ih(yh − yh(u)))

= I1 + I2 + I3 + I4.(4.3)

(i) We first consider the case that A ∈ W 1,∞(Ω) and u, f, yd ∈ L2(Ω). In this
case, we can easily obtain

I1 = (p− ph(y), B(uh − u))

≤ ||p− ph(y)|| ||B(uh − u)||

≤ ||p− ph(y)|| ||uh − u|| ≤ Ch||uh − u||,(4.4)

where we have used the estimate of [19, Theorem 3.5]. Using Lemma 3.1, and
noticing the fact that (Ih(yh−yh(u)), Ih(yh−yh(u))) is equivalent to (yh−yh(u), yh−
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yh(u)) (see, e.g., [19]), we have that

I2 = (y − yh(u), Ih(yh − yh(u)))

≤ ||y − yh(u)|| ||yh − yh(u)||

≤ ||y − yh(u)|| ||uh − u|| ≤ Ch||uh − u||.(4.5)

Lemma 3.1 and (2.1) imply that

I3 = ((ph(y)− ph)− Ih(ph(y)− ph), B(uh − u))

≤ Ch||ph(y)− ph||1 ||uh − u||

≤ Ch||y − yh|| ||uh − u||

≤ Ch(Ch||y||2 + ||uh − u||) ||uh − u||

≤ Ch||uh − u||2.(4.6)

Using (2.5) and Lemma 3.1, we have that

I4 = (a(yh − yh(u), Ih(ph(y)− ph))− a(ph(y)− ph, Ih(yh − yh(u)))

≤ Ch||yh − yh(u)||1 ||ph(y)− ph||1

≤ Ch||uh − u|| ||y − yh||

≤ Ch(Ch||y||2 + ||uh − u||) ||uh − u||

≤ Ch||uh − u||2.(4.7)

Inequalities of (4.3)-(4.7) imply that there exists an h0 > 0 such that for all 0 <
h ≤ h0 (4.1) holds.

(ii) We then consider the case that A ∈ W 2,∞(Ω) and u, f, yd ∈ H1(Ω). In this
case, we can easily obtain

I1 = (p− ph(y), B(uh − u))

≤ ||p− ph(y)|| ||B(uh − u)||

≤ ||p− ph(y)|| ||uh − u|| ≤ Ch2||uh − u||,(4.8)

where we have used the estimate of [19, Theorem 3.5]. Using Lemma 3.1 and [19,
Theorem 3.5], and noticing the fact that (yh − yh(u), Ih(yh − yh(u))) is equivalent
to (yh − yh(u), yh − yh(u)) (see, e.g., [19]), we have that

I2 = (y − yh(u), Ih(yh − yh(u)))

≤ ||y − yh(u)|| ||yh − yh(u)||

≤ ||y − yh(u)|| ||uh − u|| ≤ Ch2||uh − u||.(4.9)

Using (4.3) and (4.6)-(4.9), we have that there exists an h0 > 0 such that for all
0 < h ≤ h0 (4.2) holds. �

Theorem 4.2. Assume that A ∈ W 1,∞(Ω) and u, f, yd ∈ L2(Ω). Let (y, p, u) ∈
(H2(Ω)∩H1

0 (Ω))× (H2(Ω)∩H1
0 (Ω))×Uad and (yh, ph, uh) ∈ Vh× Vh×Uad be the

solutions of (3.1) and (3.3)-(3.5), respectively. Then there exists an h0 > 0 such
that for all 0 < h ≤ h0

||y − yh||+ ||p− ph|| ≤ Ch.(4.10)

Moreover, if A ∈ W 2,∞(Ω) and u, f, yd ∈ H1(Ω), then there exists an h0 > 0 such
that for all 0 < h ≤ h0

||y − yh||+ ||p− ph|| ≤ Ch2.(4.11)
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Proof. Using the triangle inequality, we have that

||y − yh|| ≤ ||y − yh(u)||+ ||yh(u)− yh||,

||p− ph|| ≤ ||p− ph(y)||+ ||ph(y)− ph||.

Lemma 3.1 implies that

||y − yh|| ≤ ||y − yh(u)||+ C||u − uh||,(4.12)

||p− ph|| ≤ ||p− ph(y)||+ C||y − yh||.(4.13)

(i) We first consider the case that A ∈ W 1,∞(Ω) and u, f, yd ∈ L2(Ω). In this
case, noticing [19, Theorem 3.5], we can easily obtain

||y − yh(u)|| ≤ Ch, and ||u− uh|| ≤ Ch.(4.14)

From (4.12) and (4.14) we have that

||y − yh|| ≤ Ch.(4.15)

Using (4.13), (4.15), and noticing that ||p− ph(y)|| ≤ Ch, we have

||p− ph|| ≤ Ch.(4.16)

From (4.14)-(4.15) we can immediately obtain (4.10).
(ii) We then consider the case that A ∈ W 2,∞(Ω) and u, f, yd ∈ H1(Ω). In this

case, noticing [19, Theorem 3.5], we can easily obtain

||y − yh(u)|| ≤ Ch2, and ||p− ph(y)|| ≤ Ch2.(4.17)

Using (4.12), (4.13), (4.2) and (4.17), we can immediately obtain (4.11). �

4.2. H1 error estimates. In this subsection, we estimate the error of the numer-
ical solutions of the state and costate in H1-norm.

Theorem 4.3. Assume that A ∈ W 1,∞(Ω) and u, f, yd ∈ L2(Ω). Let (y, p, u) ∈
(H2(Ω)∩H1

0 (Ω))× (H2(Ω)∩H1
0 (Ω))×Uad and (yh, ph, uh) ∈ Vh× Vh×Uad are the

solutions of (3.1) and (3.3)-(3.5), respectively. Then there exists an h0 > 0 such
that for all 0 < h ≤ h0

||y − yh||1 + ||p− ph||1 ≤ Ch.(4.18)

Proof. Using the triangle inequality, we have that

||y − yh||1 ≤ ||y − yh(u)||1 + ||yh(u)− yh||1,

||p− ph||1 ≤ ||p− ph(y)||1 + ||ph(y)− ph||1.

Lemma 3.1 implies that

||y − yh||1 ≤ ||y − yh(u)||1 + C||u− uh||,(4.19)

||p− ph||1 ≤ ||p− ph(y)||1 + C||y − yh||.(4.20)

From [19, Theorem 3.3] we can obtain

||y − yh(u)||1 ≤ Ch, ||p− ph(y)||1 ≤ Ch.(4.21)

From Theorem 4.2 and (4.19)-(4.21) we can easily obtain (4.18) �
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4.3. Maximum-norm error estimates. In this subsection, we estimate the er-
ror of the numerical solutions of control, state and costate in L∞(Ω)-norm. Then
we estimate W 1,∞-error for the state and costate.

Theorem 4.4. Assume that A ∈ W 2,∞(Ω) and u, f, yd ∈ H1(Ω). Let (y, p, u) ∈
(H2(Ω)∩H1

0 (Ω))× (H2(Ω)∩H1
0 (Ω))×Uad and (yh, ph, uh) ∈ Vh× Vh×Uad be the

solutions of (3.1) and (3.3)-(3.5), respectively. Then there exists an h0 > 0 such
that for all 0 < h ≤ h0

||u− uh||∞ ≤ C||p− ph||∞ ≤ Ch2(| lnh|)1/2,(4.22)

||y − yh||∞ ≤ Ch2(| ln h|)1/2.(4.23)

Proof. Using the definition of P[a,b](·) and (3.6)-(3.7), we have that

||u− uh||∞ ≤ C||p− ph||∞

≤ C(||p− ph(y)||∞ + ||ph(y)− ph||∞)

≤ C||p− ph(y)||∞ + C(| ln h|)1/2||ph(y)− ph||1

≤ C||p− ph(y)||∞ + C(| ln h|)1/2||y − yh||

≤ Ch2(| lnh|)1/2,

where we have used the inverse inequality, [19, Theorem 3.11], Lemma 3.1, and
Theorem 4.1. Here we complete the proof of (4.22). Analogous to (4.22), we have
that

||y − yh||∞ ≤ ||y − yh(u)||∞ + ||yh(u)− yh||∞

≤ ||y − yh(u)||∞ + C(| lnh|)1/2||yh(u)− yh||1

≤ ||y − yh(u)||∞ + C(| lnh|)1/2||u− uh||

≤ Ch2(| lnh|)1/2.

Then we complete the proof of (4.23). �

Theorem 4.5. Assume that A ∈ W 2,∞(Ω) and u, f, yd ∈ H1(Ω). Let (y, p, u) ∈
(H2(Ω)∩H1

0 (Ω))× (H2(Ω)∩H1
0 (Ω))×Uad and (yh, ph, uh) ∈ Vh× Vh×Uad be the

solutions of (3.1) and (3.3)-(3.5), respectively. Then there exists an h0 > 0 such
that for all 0 < h ≤ h0

||p− ph||1,∞ ≤ Ch | lnh|,(4.24)

||y − yh||1,∞ ≤ Ch | lnh|.(4.25)

Proof. Using the inverse inequality, and considering [19, Theorem 3.10] and Lemma
3.1 , we have that

||∇(p− ph)||∞ ≤ ||∇(p− ph(y))||∞ + ||∇(ph(y)− ph)||∞

≤ ||∇(p− ph(y))||∞ + Ch−1||∇(ph(y)− ph)||

≤ ||∇(p− ph(y))||∞ + Ch−1||y − yh||

≤ Ch | lnh|+ Ch ≤ Ch | lnh|.

Here we complete the proof of (4.24). Analogous to (4.24), we have that

||∇(y − yh)||∞ ≤ ||∇(y − yh(u))||∞ + ||∇(yh(u)− yh)||∞

≤ ||∇(y − yh(u))||∞ + Ch−1||yh(u)− yh||

≤ ||∇(y − yh(u))||∞ + Ch−1||u− uh||

≤ Ch | lnh|+ Ch ≤ Ch | lnh|.

Then we complete the proof of (4.25). �
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5. Numerical example

In order to test the theory of the previous section, we present one numerical
example to illustrate them. We solve the discrete problem (3.3)-(3.5) or (3.8) using
the algorithm presented in [27].

Example 5.1. We investigate a distributed optimal control problem with Dirichlet
boundary value condition ([25]).

min
u∈Uad

1

2
||y − yd||

2
L2(Ω) +

1

2
||u||L2(Ω),(5.1)

−∆y = u, in Ω, y = 0, on Γ,(5.2)

where Ω = {(x1, x2); 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1}, Γ denotes the boundary of Ω. The
exact state y is sin(πx1)sin(πx2)− yg. Where yg is the solution of the problem

−∆yg = g, in Ω,

yg = 0, on Γ.

The function g is given by

g(x1, x2) =







uf(x1, x2)− a, if uf (x1, x2) < a,
0, if uf(x1, x2) ∈ [a, b],
uf(x1, x2)− b, if uf(x1, x2) > b,

with uf(x1, x2) = 2π2sin(πx1)sin(πx2). And yd = (4π4+1)sin(πx1)sin(πx2)−yg,
p = −2π2sin(πx1)sin(πx2), u = P[a,b](−p) = max(a,min(b, p)), a = 3, b = 15.

(Choose u
(0)
h (x) = 8.0).

Table 1. Numerical results of L2-error with Delaunay mesh

finite element method finite volume element method

||u− uh|| ||y − yh|| ||p− ph|| ||u− uh|| ||y − yh|| ||p− ph|| Dof

0.1315 0.0173 0.2046 0.0719 0.0067 0.1320 126
0.0328 0.0040 0.0485 0.0190 0.0015 0.0299 444
0.0084 0.0011 0.0122 0.0048 0.0004 0.0073 1642
0.0021 0.0003 0.0031 0.0012 0.0001 0.0019 6193
0.0005 0.0001 0.0008 0.0003 0.0000 0.0005 23642

Table 2. Numerical results of L∞-error with Delaunay mesh

FEM FEVM

||u− uh||∞ ||y − yh||∞ ||p− ph||∞ ||u− uh||∞ ||y − yh||∞ ||p− ph||∞
0.1090 0.0206 0.1368 0.1741 0.0160 0.2980
0.0292 0.0049 0.0348 0.0594 0.0043 0.0878
0.0074 0.0013 0.0092 0.0186 0.0013 0.0262
0.0022 0.0004 0.0033 0.0052 0.0004 0.0075
0.0006 0.0001 0.0010 0.0014 0.0001 0.0022

To compare with the finite element method, we list the results of finite element
approximation and FVEM approximation in the same table. In Table 1, we present
the error in L2-norm for the numerical solution of the triple (u, y, p). In Table 2,
we present the error in L∞-norm for the numerical solution of the triple (u, y, p).
We present H1-error and W 1,∞-error in Table 3 and Table 4, respectively. The
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corresponding convergent rates of FEVM approximation are presented in Figure 2
and Figure 3.

Table 3. Numerical results of H1(Ω)-error with Delaunay mesh

FEM FVEM

||y − yh||1 ||p− ph||1 ||y − yh||1 ||p− ph||1 Dof

0.1912 3.6573 0.1869 3.6698 126
0.0859 1.6807 0.0854 1.6823 444
0.0421 0.8279 0.0420 0.8282 1642
0.0211 0.4152 0.0210 0.4153 6193
0.0106 0.2100 0.0106 0.2100 23642

Seen from the numerical results listed in these tables, the finite volume element
approximation and the finite element approximation have almost the same accuracy.
The convergent rates listed in Figure 2 and Figure 3 match the theories derived in
the previous section.

Table 4. Numerical results of W 1,∞(Ω)-error with Delaunay mesh

FEM FVEM

||y − yh||1,∞ ||p− ph||1,∞ ||y − yh||1,∞ ||p− ph||1,∞ Dof

0.3266 6.4466 0.3266 6.4466 126
0.1866 3.6797 0.1871 3.6743 444
0.1036 2.0452 0.1037 2.0486 1642
0.0530 1.0474 0.0531 1.0487 6193
0.0279 0.5500 0.0279 0.5501 23642
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Figure 2. The convergent rates in the L2-norm on the left hand side and in the
L∞-norm on the right hand side for the finite volume element approximation.

(The slopes of the solid lines are −1)
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W 1,∞-norm on the right hand side for the finite volume element approximation.
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