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MIXED FOURIER-GENERALIZED JACOBI RATIONAL

SPECTRAL METHOD FOR TWO-DIMENSIONAL EXTERIOR

PROBLEMS

JINGXIA WU AND ZHONGQING WANG*

Abstract. In this paper, we develop a mixed Fourier-generalized Jacobi rational spectral method

for two-dimensional exterior problems. Some basic results on the mixed Fourier-generalized Jacobi

rational orthogonal approximations are established. Two model problems are considered. The

convergence for the linear problem is proved. Numerical results demonstrate its spectral accuracy

and efficiency.
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1. Introduction

In the past several decades, spectral method has become increasingly popular

in scientific computing and engineering applications (cf. [2, 5, 6, 7, 11, 20] and the

references therein). Recently, more and more attentions were paid to its applications

to numerical solutions of exterior problems (cf. [9, 10, 16, 17, 22, 25, 26, 28, 29]).

Most existing literature of spectral method concerning exterior problems is based

on Laguerre polynomial/function approximations. For instance, Guo, Shen and

Xu [16] and Zhang and Guo [29] developed the mixed spectral methods for two-

/three-dimensional exterior problems, by taking Laguerre polynomials as the basis

functions. While Zhang, Wang and Guo [28] andWang, Guo and Zhang [26] studied

the mixed spectral methods for two-/three-dimensional exterior problems, by taking

Laguerre functions as the basis functions. Besides, some authors also considered the

pseudospectral method for symmetric solutions of certain specific exterior problems,

which are reduced to one-dimensional problems on the half line, see [17, 25].

On the other hand, spectral methods based on rational approximations are de-

veloped rapidly, which are also very effective for simulating numerically various par-

tial differential equations (PDEs) on unbounded domains, see [3, 4, 8, 14, 15]. By

using this approach, we could also approximate differential equations on unbound-

ed domains directly, without any artificial boundary and variable transformation.

However, the existing rational functions are usually induced by the Legendre or

Chebyshev polynomials. Accordingly, the weight functions of the corresponding

orthogonal systems are fixed, which might not be the most appropriate in many

cases. This drawback limits the applications of rational spectral method seriously.
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A natural idea is to construct an orthogonal system of rational functions induced

by the Jacobi polynomials, so that the related rational spectral method is available

for more practical problems, see [24]. But the orthogonal system given in [24] is

induced by the standard Jacobi polynomials. Hence its application is still limit-

ed. Recently, some authors introduced a family of generalized Jacobi orthogonal

polynomials/functions, see [12, 13, 21]. Meanwhile, Guo and Yi [18], and Yi and

Guo [27] investigated the generalized Jacobi rational orthogonal approximations on

unbounded domains, which enlarges applications of rational spectral method. The

previous statements motivate us further study and applications of the generalized

Jacobi rational spectral method for exterior problems.

This paper is devoted to the mixed Fourier-generalized Jacobi rational spectral

method for two-dimensional exterior problems. We shall establish some basic results

on the mixed Fourier-generalized Jacobi rational orthogonal approximations. As

examples, we design the mixed spectral schemes for two model problems and analyze

the numerical error of the linear problem. Especially, taking suitable base functions,

the resultant linear discrete systems are symmetric and sparse. Thereby, we can

resolve them efficiently. The suggested method also provides accurate numerical

solutions with the spectral accuracy.

The paper is organized as follows. In Section 2, we establish some basic results

on the mixed Fourier-generalized Jacobi rational orthogonal approximations. In

Section 3, we propose the mixed spectral method for a linear model problem and

analyze its numerical error. In Section 4, we present some numerical results for two

model problems. The final section is for some concluding remarks.

2. Mixed orthogonal approximations

In this section, we derive some results on the mixed Fourier-generalized Ja-

cobi rational orthogonal approximations.

2.1. Generalized Jacobi rational orthogonal approximations. Let ωα,β(y) =

(1 − y)α(1 + y)β. Denote the standard Jacobi polynomials by Jα,β
n (y), α, β >

−1, n ≥ 0. Let Γ(y) be the Gamma function. For α, β > −1, the set of Jacobi

polynomials forms a complete L2
ωα,β (−1, 1)-orthogonal system, i.e.,

(2.1)

∫ 1

−1

Jα,β
m (y)Jα,β

n (y)ωα,β(y)dy = γα,βn δm,n,

where δm,n is the Kronecker symbol, and

γα,βn =
2α+β+1Γ(n+ α+ 1)Γ(n+ β + 1)

(2n+ α+ β + 1)Γ(n+ 1)Γ(n+ α+ β + 1)
.

The Jacobi polynomials fulfill the recurrence relation (cf. [23]):

(2.2)

2n(n+ α+ β)(2n+ α+ β − 2)Jα,β
n (y)

= (2n+ α+ β − 1)
[
(2n+ α+ β)(2n+ α+ β − 2)y + α2 − β2

]
J
α,β
n−1(y)

−2(n+ α− 1)(n+ β − 1)(2n+ α+ β)Jα,β
n−2(y).

For convenience of statements, we denote the set of real numbers by R, the set

of positive integers by N, and the set of negative integers by N−. For any α, β ∈ R,
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we set

α̂ :=





−α, α ≤ −1,

0, α > −1,
ᾱ :=





−α, α ≤ −1,

α, α > −1,

(likewise for β̂ and β̄). The symbol [α] represents the largest integer ≤ α, and

n0 := n
α,β
0 := [α̂] + [β̂], n1 := n

α,β
1 := n− n

α,β
0 .

The generalized Jacobi polynomials/functions with α, β ∈ R are defined by (cf.

[12, 13, 21])

(2.3) jα,βn (y) = ωα̂,β̂(y)J ᾱ,β̄
n1

(y), n ≥ n
α,β
0 .

We can rewrite (2.3) in a more explicit form:

(2.4)

jα,βn (y) =





Jα,β
n (y), α, β > −1,

(1 + y)−βJα,−β
n1

(y), α > −1, β ≤ −1, n1 = n− [−β],

(1− y)−αJ−α,β
n1

(y), α ≤ −1, β > −1, n1 = n− [−α],

(1− y)−α(1 + y)−βJ−α,−β
n1

(y), α, β ≤ −1, n1 = n− [−α]− [−β].

We next turn to the generalized Jacobi rational functions. To this end, let

Λ = (0,∞) and χ(x) be a certain weight function. For any integer r ≥ 0, we define

the weighted Sobolev space Hr
χ(Λ) in the usual way, and denote its inner product,

semi-norm and norm by (u, v)r,χ,Λ, |v|r,χ,Λ and ‖v‖r,χ,Λ, respectively. In particular,

L2
χ(Λ) = H0

χ(Λ), (u, v)χ,Λ = (u, v)0,χ,Λ and ‖v‖χ,Λ = ‖v‖0,χ,Λ. For any r > 0, we

define Hr
χ(Λ) and its norm by space interpolation. When χ(x) ≡ 1, we omit the

subscript χ in the notations. We also denote by ω
α,β
R (x) = xβ(1 + x)−α−β−2.

Obviously,

(2.5) ω
α,β
R (x) ∼= x−α−2, as x→ ∞, ω

α,β
R (x) ∼= xβ , as x→ 0.

The generalized Jacobi rational functions are defined by

(2.6) Rα,β
n (x) = jα,βn (

x− 1

x+ 1
), n ≥ n0, x ∈ Λ,

which are the eigenfunctions of the following Sturm-Liouville problem (cf. [27]):

(2.7) ∂x(ω
α−3,β+1
R (x)∂xv(x)) + λα,βn ω

α,β
R (x)v(x) = 0, x ∈ Λ.

The corresponding eigenvalues are

λα,βn =






n1(n1 + α+ β + 1), α, β > −1,

n1(n1 + α− β + 1)− β(α+ 1), α > −1, β ≤ −1,

n1(n1 − α+ β + 1)− α(β + 1), α ≤ −1, β > −1,

(n1 + 1)(n1 − α− β), α, β ≤ −1.

According to [27], if α ≤ −2 and β = −1, then

(2.8) ∂xR
α,β
n (x) = −4(n− [−α]− [−β] + 1)(x+ 1)−2R

α+1,β+1
n−1 (x).
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Moreover, the set of the generalized Jacobi rational functions forms a complete

L2
ω

α,β
R

(Λ) -orthogonal system, i.e.,

(2.9)

∫

Λ

Rα,β
m (x)Rα,β

n (x)ωα,β
R (x)dx = 2−α−β−1ηα,βn δm,n,

where δm,n is the Kronecker symbol, and

ηα,βn =
2ᾱ+β̄+1Γ(n1 + ᾱ+ 1)Γ(n1 + β̄ + 1)

(2n1 + ᾱ+ β̄ + 1)Γ(n1 + 1)Γ(n1 + ᾱ+ β̄ + 1)
.

Thus, for any v ∈ L2
ω

α,β
R

(Λ),

(2.10)

v(x) =
∞∑

n=n0

v̂α,βn Rα,β
n (x), v̂α,βn = 2α+β+1(ηα,βn )−1

∫

Λ

v(x)Rα,β
n (x)ωα,β

R (x)dx.

Moreover, integrating (2.7) with v = Rα,β
m (x) by parts yields

(2.11)

∫

Λ

∂xR
α,β
m (x)∂xR

α,β
n (x)ωα−3,β+1

R (x)dx = 2−α−β−1λα,βn ηα,βn δm,n.

For any N ∈ N, we set

Rα,β
N = span{Rα,β

l (x), n0 ≤ l ≤ N}.

The orthogonal projection PN,α,β : L2
ω

α,β
R

(Λ) → Rα,β
N is defined by

(PN,α,βv − v, φ)
ω

α,β
R

,Λ = 0, ∀φ ∈ Rα,β
N .

For any r ∈ N, we define the space

Hr

ω
α,β
R

,A
(Λ) = { v | v is measureable on Λ and ‖v‖

r,ω
α,β
R

,A
<∞},

equipped with the semi-norm and norm,

(2.12)

‖v‖0,ωα,β
R

,A
= ‖v‖

ω
α,β
R

,Λ, |v|1,ωα,β
R

,A
= ‖(x+ 1)2∂xv‖ωα+1,β+1

R
,Λ,

|v|
k,ω

α,β
R

,A
= |(x + 1)2∂xv|k−1,ωα+1,β+1

R
,A
, k ≥ 2,

‖v‖
r,ω

α,β
R

,A
= (

r∑

k=0

|v|2
k,ω

α,β
R ,A

)
1
2 .

For any real r ≥ 0, we define the space Hr

ω
α,β
R

,A
(Λ) and its norm by space interpo-

lation as in [1].

Lemma 2.1. (cf. Theorem 3.1 of [27]). If one of the following conditions holds,

(2.13)

(i) α, β > −1, (ii) α > −1, β ≤ −r − 1 or β ∈ N−,

(iii) α ≤ −r − 1 or α ∈ N−, β > −1, (iv) α, β ≤ −r − 1 or α, β ∈ N−,

then for any v ∈ Hr

ω
α,β
R

,A
(Λ) and integers 0 ≤ µ ≤ r ≤ N + 1,

(2.14) ‖PN,α,βv − v‖
µ,ω

α,β
R ,A

≤ cNµ−r|v|
r,ω

α,β
R ,A

.



FOURIER-GENERALIZED JACOBI RATIONAL SPECTRAL METHOD 661

We also introduce the space Hµ
α,β,γ,δ(Λ), 0 ≤ µ ≤ 1 with the norm ‖v‖µ,α,β,γ,δ,Λ.

For µ = 0, H0
α,β,γ,δ(Λ) = L2

ω
γ,δ
R

(Λ). For µ = 1,

H1
α,β,γ,δ(Λ) = { v | v is measurable and ‖v‖1,α,β,γ,δ,Λ <∞},

where ‖v‖1,α,β,γ,δ,Λ = (|v|2
1,ωα,β

R
,Λ
+‖v‖2

ω
γ,δ
R

,Λ
)

1
2 . For 0 < µ < 1, the spaceHµ

α,β,γ,δ(Λ)

and its norm are defined by space interpolation. Moreover, 0H
1
α,β,γ,δ(Λ) = {v | v ∈

H1
α,β,γ,δ(Λ) and v(0) = 0}. Next let

0Rγ,δ
N = { v | v ∈ Rγ,δ

N and v(0) = 0}

and

aα,β,γ,δ(u, v) = (∂xu, ∂xv)ωα,β
R

,Λ + (u, v)
ω

γ,δ
R

,Λ, ∀u, v ∈ 0H
1
α,β,γ,δ(Λ).

If β, δ > −1, γ ≤ −1 and α − 2γ > −3, then by the definition of 0Rγ,δ
N , for any

φ ∈ 0Rγ,δ
N , φ(x) is a linear combination of the functions (1+x)γJ−γ,δ

n (x−1
x+1 ), 0 ≤ n ≤

N− [−γ]. Further, a direct calculation shows ‖∂xφ‖ωα,β
R

,Λ <∞. Therefore, 0Rγ,δ
N ⊂

0H
1
α,β,γ,δ(Λ). Accordingly, in this case, we can define the orthogonal projection

0P
1
N,α,β,γ,δ : 0H

1
α,β,γ,δ(Λ) → 0Rγ,δ

N by

(2.15) aα,β,γ,δ(0P
1
N,α,β,γ,δv − v, φ) = 0, ∀φ ∈ 0Rγ,δ

N .

Theorem 2.1. Let γ ≤ −1, δ > −1, α − 2γ > −3, γ − α − σ + 2 ∈ N, and

σ ≤ 4, θ ≤ 0. If one of the following conditions holds,

(2.16)
(i) α+ σ ≤ −r − 1 or α+ σ − 1 ∈ N−, 0 ≤ β + θ ≤ δ + 2,

(ii) α+ σ − 1 ∈ N−, β + θ − 1 ∈ N−, β > −1,

then for any v ∈ 0H
1
α,β,γ,δ(Λ)

⋂
Hr

ω
α+σ−1,β+θ−1

R
,A
(Λ) and integers 1 ≤ r ≤ N + 1,

(2.17) ‖0P 1
N,α,β,γ,δv − v‖1,α,β,γ,δ,Λ ≤ cN1−r|v|

r,ω
α+σ−1,β+θ−1

R
,A
.

We can prove Theorem 2.1 by a similar argument as in the proof of Theorem 3.3

of [27].

2.2. Fourier orthogonal approximation. Let I = (0, 2π) and Hr(I) be the

Sobolev space with the norm ‖ · ‖r,I and semi-norm | · |r,I . For any non-negative

integer m, Hm
p (I) denotes the subspace of Hm(I), consisting of all functions whose

derivatives of order up to m− 1 have the period 2π. For any real r > 0, the space

Hr
p(I) is defined by space interpolation as in [1].

For any positive integer M , we denote by ṼM (I) = span{ eilθ | |l| ≤ M}, and
VM (I) stands for the subset of ṼM (I) consisting of all real-valued functions. The

orthogonal projection PM : L2(I) → VM (I) is defined by
∫

I

(PMv(θ) − v(θ))φ(θ)dθ = 0, ∀φ ∈ VM (I).

It was shown in Theorem 2.3 of [11] that for any v ∈ Hr
p (I), r ≥ 0 and µ ≤ r,

(2.18) ‖PMv − v‖µ,I ≤ cMµ−r|v|r,I .
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2.3. Fourier-generalized Jacobi rational orthogonal approximations. We

are now in position to establish the main results on the mixed Fourier-generalized

Jacobi rational orthogonal approximations. For this purpose, let Ω = I × Λ and

introduce the space

0H
1
p,α,β,γ,δ(Ω) = { v | v is measurable on Ω, v(x, θ + 2π) = v(x, θ),

v(0, θ) = 0 and ‖v‖1,α,β,γ,δ,Ω <∞},
equipped with the following semi-norm and norm,

|v|1,α,β,Ω = (‖∂xv‖2L2

ω
α,β
R

(Λ,L2(I)) + ‖∂θv‖2L2
η(Λ,L2(I)))

1
2 ,

‖v‖1,α,β,γ,δ,Ω = (|v|21,α,β,Ω + ‖v‖2
L2

ω
γ,δ
R

(Λ,L2(I))
)

1
2 ,

where η = 1
x+1 . Besides,

(u, v)χ,Ω =

∫

Ω

u(x, θ)v(x, θ)χ(x)dxdθ, ‖v‖χ,Ω = (v, v)
1
2

χ,Ω.

For χ(x) ≡ 1, we drop the subscript χ in the notations.

Next let VM,N,α,β(Ω) = VM (I)⊗Rα,β
N (Λ) and 0VM,N,α,β(Ω) = VM (I)⊗0Rα,β

N (Λ).

The orthogonal projection PM,N,α,β : L2
ω

α,β
R

(Ω) → VM,N,α,β(Ω) is defined by

(PM,N,α,βv − v, φ)
ω

α,β
R

,Ω = 0, ∀φ ∈ VM,N,α,β(Ω).

Theorem 2.2. If one of the conditions in (2.13) holds, then for any

v ∈ Hr

ω
α,β
R ,A

(Λ, L2(I)) ∩ L2
ω

α,β
R

(Λ, Hs
p(I)), s ≥ 0 and integers 0 ≤ r ≤ N + 1,

(2.19) ‖PM,N,α,βv − v‖
ω

α,β
R ,Ω ≤ cN−r|v|Hr

ω
α,β
R

,A
(Λ,L2(I)) + cM−s|v|L2

ω
α,β
R

(Λ,Hs(I)).

Proof. Clearly, by (2.14), (2.18) and the projection theorem,

‖PM,N,α,βv − v‖
ω

α,β
R ,Ω ≤ ‖PN,α,βPMv − v‖

ω
α,β
R ,Ω

≤ ‖PN,α,βPMv − PMv‖ωα,β
R

,Ω + ‖PMv − v‖
ω

α,β
R

,Ω

≤ cN−r|PMv|Hr

ω
α,β
R

,A
(Λ,L2(I)) + cM−s|v|L2

ω
α,β
R

(Λ,Hs(I))

≤ cN−r|v|Hr

ω
α,β
R

,A
(Λ,L2(I)) + cM−s|v|L2

ω
α,β
R

(Λ,Hs(I)).

�

We now assume that β, δ > −1, γ ≤ −1 and α − 2γ > −3. Then by a simi-

lar argument as before, we can verify readily that 0VM,N,γ,δ(Ω) ⊂ 0H
1
p,α,β,γ,δ(Ω).

Therefore, in this case, we can define the orthogonal projection 0P
1
M,N,µ,α,β,γ,δ :

0H
1
p,α,β,γ,δ(Ω) → 0VM,N,γ,δ(Ω) as

(2.20)

(∂x(0P
1
M,N,µ,α,β,γ,δv − v), ∂xφ)ωα,β

R
,Ω + (∂θ(0P

1
M,N,µ,α,β,γ,δv − v), ∂θφ)η,Ω

+µ(0P
1
M,N,µ,α,β,γ,δv − v, φ)

ω
γ,δ
R

,Ω = 0, ∀φ ∈ 0VM,N,γ,δ(Ω), µ > 0.

For description of approximation result, we introduce the non-isotropic space

B
r,s
α,β,γ,δ,σ,θ(Ω)

= H
1

ω
α,β
R

(Λ,Hs−1
p (I)) ∩ L2

η(Λ,H
s
p(I)) ∩ L

2

ω
γ,δ
R

(Λ,Hs−1
p (I)) ∩Hr

ω
α+σ−1,β+θ−1

R
,A
(Λ,H1

p(I)),
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equipped with the norm

‖v‖Br,s
α,β,γ,δ,σ,θ

(Ω) = (‖v‖2
H1

ω
α,β
R

(Λ,Hs−1(I))
+ ‖v‖2

L2
η(Λ,Hs(I))

+‖v‖2
L2

ω
γ,δ
R

(Λ,Hs−1(I))
+ ‖v‖2Hr

ω
α+σ−1,β+θ−1

R
,A

(Λ,H1(I)))
1
2 .

Theorem 2.3. If β > −1, δ ≤ 0, and the conditions for (2.17) hold, then for any

s ≥ 1, integers 1 ≤ r ≤ N + 1 and v ∈ B
r,s
α,β,γ,δ,σ,θ(Ω) ∩ 0H

1
p,α,β,γ,δ(Ω),

(2.21) ‖v − 0P
1
M,N,µ,α,β,γ,δv‖1,α,β,γ,δ,Ω ≤ c(M1−s +N1−r),

where c depends only on |v|H1

ω
α,β
R

(Λ,Hs−1(I)), |v|L2
η(Λ,Hs(I)), |v|L2

ω
γ,δ
R

(Λ,Hs−1(I)),

|v|Hr

ω
α+σ−1,β+θ−1

R
,A

(Λ,L2(I)) and |v|Hr

ω
α+σ−1,β+θ−1

R
,A

(Λ,H1(I)).

Proof. By the projection theorem,

‖v − 0P
1
M,N,µ,α,β,γ,δv‖1,α,β,γ,δ,Ω ≤ c‖v − φ‖1,α,β,γ,δ,Ω, ∀φ ∈ 0VM,N,γ,δ(Ω).

We take φ = 0P
1
N,α,β,γ,δPMv. With the aid of (2.17) and (2.18), we deduce that

(2.22)

‖∂x(v − 0P
1
N,α,β,γ,δPMv)‖L2

ω
α,β
R

(Λ,L2(I))

≤ ‖∂xv − PM∂xv‖L2

ω
α,β
R

(Λ,L2(I)) + ‖∂x(PMv − 0P
1
N,α,β,γ,δPMv)‖L2

ω
α,β
R

(Λ,L2(I))

≤ cM1−s|∂xv|L2

ω
α,β
R

(Λ,Hs−1(I)) + cN1−r|PMv|Hr

ω
α+σ−1,β+θ−1

R
,A

(Λ,L2(I))

≤ cM1−s|v|H1

ω
α,β
R

(Λ,Hs−1(I)) + cN1−r|v|Hr

ω
α+σ−1,β+θ−1

R
,A

(Λ,L2(I)).

Next, due to γ ≤ −1 and δ ≤ 0, we have (1 + x)−1 ≤ ω
γ,δ
R (x) for x ∈ Λ. Moreover,

∂θPMv = PM∂θv. Therefore, we use (2.17) and (2.18) again to obtain

(2.23)

‖∂θ(v − 0P
1
N,α,β,γ,δPMv)‖L2

η(Λ,L2(I))

≤ ‖∂θv − PM∂θv‖L2
η(Λ,L2(I)) + ‖∂θ(PMv − 0P

1
N,α,β,γ,δPMv)‖L2

η(Λ,L2(I))

≤ ‖∂θv − PM∂θv‖L2
η(Λ,L2(I)) + c‖∂θPMv − 0P

1
N,α,β,γ,δ∂θPMv‖L2

ω
γ,δ
R

(Λ,L2(I))

≤ cM1−s|v|L2
η(Λ,Hs(I)) + cN1−r|∂θPMv|Hr

ω
α+σ−1,β+θ−1

R
,A

(Λ,L2(I))

≤ cM1−s|v|L2
η(Λ,Hs(I)) + cN1−r|v|Hr

ω
α+σ−1,β+θ−1

R
,A

(Λ,H1(I)).

In the same manner, we verify that

(2.24)

‖v − 0P
1
N,α,β,γ,δPMv‖L2

ω
γ,δ
R

(Λ,L2(I))

≤ ‖v − PMv‖L2

ω
γ,δ
R

(Λ,L2(I)) + ‖0P 1
N,α,β,γ,δPMv − PMv‖L2

ω
γ,δ
R

(Λ,L2(I))

≤ cM1−s|v|L2

ω
γ,δ
R

(Λ,Hs−1(I)) + cN1−r|PMv|Hr

ω
α+σ−1,β+θ−1

R
,A

(Λ,L2(I))

≤ cM1−s|v|L2

ω
γ,δ
R

(Λ,Hs−1(I)) + cN1−r|v|Hr

ω
α+σ−1,β+θ−1

R
,A

(Λ,L2(I)).

Finally, the desired result comes immediately from a combination of (2.22)-(2.24).

�
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3. Spectral method for exterior problems

In this section, we propose the mixed Fourier-generalized Jacobi rational

spectral method for exterior problems. We consider the following linear model

problem:

(3.1)





−1

ρ

∂

∂ρ
(ρ
∂

∂ρ
W (ρ, θ))− 1

ρ2
∂2

∂θ2
W (ρ, θ) + µW (ρ, θ)

= F (ρ, θ), µ > 0, ρ > 1, θ ∈ I,

W (ρ, θ + 2π) =W (ρ, θ), ρ > 1, θ ∈ I,

W (1, θ) = 0, θ ∈ I,

lim
ρ→∞

ρW (ρ, θ) = lim
ρ→∞

ρ∂ρW (ρ, θ) = 0, θ ∈ I.

We make the variable transformation

ρ = x+ 1, U(x, θ) =W (ρ, θ), f(x, θ) = F (ρ, θ).

Then (3.1) is changed to

(3.2)




−∂x((x + 1)∂xU(x, θ)) − 1

x+ 1
∂2θU(x, θ) + µ(x+ 1)U(x, θ)

= (x + 1)f(x, θ), x > 0, θ ∈ I,

U(x, θ + 2π) = U(x, θ), x > 0, θ ∈ I,

U(0, θ) = 0, θ ∈ I,

lim
x→∞

xU(x, θ) = lim
x→∞

x∂xU(x, θ) = 0, θ ∈ I.

In order to derive a proper weak formulation of (3.2), we introduce the bilinear

form with µ > 0,

Aµ(u, v) =

∫

Ω

(x+ 1)∂xu(x, θ)∂xv(x, θ)dxdθ +

∫

Ω

1

x+ 1
∂θu(x, θ)∂θv(x, θ)dxdθ

+µ

∫

Ω

(x+ 1)u(x, θ)v(x, θ)dxdθ.

Obviously

(3.3) Aµ(u, v) ≤ (µ+ 1)‖u‖1,−3,0,−3,0,Ω‖v‖1,−3,0,−3,0,Ω,

(3.4) Aµ(v, v) ≥ min(µ, 1)‖v‖21,−3,0,−3,0,Ω.

We now look for the solution of (3.2) in the space 0H
1
p,−3,0,−3,0(Ω). In this

case, lim
x→∞

xU(x, θ) = lim
x→∞

x∂xU(x, θ) = 0 for θ ∈ I. Accordingly, for any v ∈
0H

1
p,−3,0,−3,0(Ω), lim

x→∞
(x + 1)∂xU(x, θ)v(x, θ) = 0, Therefore, by multiplying (3.2)

by v ∈ 0H
1
p,−3,0,−3,0(Ω) and integrating the resulting equation by parts over Ω, we

obtain a weak formulation of (3.2). It is to find U ∈ 0H
1
p,−3,0,−3,0(Ω) such that

(3.5) Aµ(U, v) = (f, v)
ω

−3,0
R ,Ω ∀v ∈ 0H

1
p,−3,0,−3,0(Ω).

The mixed spectral scheme for (3.5) is to seek uM,N ∈ 0VM,N,−3,0(Ω) such that

(3.6) Aµ(uM,N , φ) = (f, φ)
ω

−3,0
R ,Ω, ∀φ ∈ 0VM,N,−3,0(Ω).
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Theorem 3.1. Let U and uM,N be the solutions of (3.5) and (3.6), respectively.

If µ > 0 and U ∈ B
r,s
−3,0,−3,0,1,0(Ω) ∩ 0H

1
p,−3,0,−3,0(Ω) with s ≥ 1 and integers

1 ≤ r ≤ N + 1, then

(3.7) ‖U − uM,N‖1,−3,0,−3,0,Ω ≤ c(M1−s +N1−r).

Proof. Let UM,N = 0P
1
M,N,µ,−3,0,−3,0U. Then by (2.20) and (3.5),

(3.8) Aµ(UM,N , φ) = Aµ(U, φ) = (f, φ)
ω

−3,0
R ,Ω.

Subtracting (3.8) from (3.6) yields

(3.9) Aµ(uM,N − UM,N , φ) = 0.

Therefore uM,N = UM,N . Finally, we use (2.21) with α = γ = −3, β = δ = θ = 0

and σ = 1 to obtain the desired result. �

4. Numerical results

In this section, we describe the numerical implementations and present some

numerical results.

Let ψk(x) = R
−3,−1
k (x), k ≥ 4. Clearly, ψk(0) = 0 and {ψk(x)}Nk=4 spans the

space 0R−3,0
N (Λ). The basis functions are chosen as

φ1k,m(x, θ) =
1√
2π
ψk(x) sin(mθ), 4 ≤ k ≤ N, 1 ≤ m ≤M,

φ2k,m(x, θ) =
1√
2π
ψk(x) cos(mθ), 4 ≤ k ≤ N, 0 ≤ m ≤M.

4.1. Linear problem. We begin with the linear problem (3.1). Under the previ-

ous basis functions, we write the numerical solution as

uM,N(x, θ) =
∑

4≤k≤N

∑

1≤m≤M

u1k,mφ
1
k,m(x, θ) +

∑

4≤k≤N

∑

0≤m≤M

u2k,mφ
2
k,m(x, θ).

Take φ = φ
q
j,l, q = 1, 2 in (3.6). Then by the orthogonality of trigonometric

functions, we obtain a sequence of one-dimensional problems:

(4.1)

N∑

k=4

(

∫

Λ

(x+ 1)∂xψk(x)∂xψj(x)dx + l2
∫

Λ

1

x+ 1
ψk(x)ψj(x)dx

+µ

∫

Λ

(x+ 1)ψk(x)ψj(x)dx)u
q
k,l = d(l, q)gqj,l, 4 ≤ j ≤ N, q = 1, 2,

where d(0, 2) = 1, d(l, q) = 2 otherwise, and gqj,l = (f, φqj,l)ω−3,0
R ,Ω.

For deriving a compact matrix form of (4.1), we introduce the matrices A =

(aj,k), B = (bj,k) and C = (cj,k) with the following entries:

aj,k =

∫

Λ

(x+ 1)∂xψk(x)∂xψj(x)dx, bj,k =

∫

Λ

1

x+ 1
ψk(x)ψj(x)dx,

cj,k =

∫

Λ

(x+ 1)ψk(x)ψj(x)dx.
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With the aid of (2.1), (2.2) and (2.8), a direct calculation shows

aj,k =





− 32j2(j+2)(j−3)(j−2)
(2j+3)(2j+1)(2j−3)(2j−1) , j = k − 3,

96(j3−2j2+1)(j−3)
(2j+1)(2j−3)(2j−1) , j = k − 2,

− 480(j4−5j3+7j2−j−2)(j−3)
(2j+1)(2j−5)(2j−3)(2j−1) , j = k − 1,

320(j2−3j+2)(j−3)2

(2j−5)(2j−3)(2j−1) , j = k,

− 480(j4−9j3+28j2−34j+12)(j−4)
(2j−7)(2j−5)(2j−3)(2j−1) , j = k + 1,

96(j3−8j2+20j−15)(j−5)
(2j−7)(2j−5)(2j−3) , j = k + 2,

− 32(j−6)(j−5)(j−3)2(j−1)
(2j−9)(2j−7)(2j−5)(2j−3) , j = k + 3,

0, otherwise,

bj,k =





32(j+2)(j−2)(j−3)
(2j+3)(2j+1)(2j−3)(2j−1) , j = k − 3,

− 32(j2−j+4)(j−3)
j(2j+1)(2j−3)(2j−1) , j = k − 2,

− 32(j4−4j3+j2+6j−40)(j−3)
j(2j+1)(2j−5)(2j−3)(2j−1)(j−1) , j = k − 1,

64(j4−6j3+15j2−18j+20)(j−3)
j(2j−5)(2j−3)(2j−1)(j−2)(j−1) , j = k,

− 32(j4−8j3+19j2−12j−40)(j−4)
(2j−7)(2j−5)(2j−3)(2j−1)(j−2)(j−1) , j = k + 1,

− 32(j2−5j+10)(j−5)
(2j−7)(2j−5)(2j−3)(j−2) , j = k + 2,

32(j−6)(j−5)(j−1)
(2j−9)(2j−7)(2j−5)(2j−3) , j = k + 3,

0, otherwise,

cj,k =






128(j−3)(j−2)
(2j−3)(2j−1)(j−1) , j = k − 1,

128(j−3)2

(2j−3)(j−2)(j−1) , j = k,

128(j−4)(j−3)
(2j−5)(2j−3)(j−2) , j = k + 1,

0, otherwise.

Furthermore, we set

~X
q
l = (uq4,l, u

q
5,l, · · · , u

q
N,l),

~G
q
l = (gq4,l, g

q
5,l, · · · , g

q
N,l), q = 1, 2.

Then, we have from (4.1) that

[A+ l2B+ µC]~Xq
l = d(l, q)~Gq

l , q = 1, 2.

To examine the accuracy of the above scheme, we test the scheme on several

examples.

Example 1. We take µ = 1 in (3.1), and test the exact solution U(x, θ) =
x

x+1 sin(1 + θ)e−
x
2 , which decays exponentially as x increases with oscillation. In

Figures 4.1 and 4.2, we plot the discrete L2− and L∞−errors against various M

with N = 2M, which indicates an exponential convergence rate.
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Example 2. We take µ = 1 in (3.1), and test the exact solution U(x, θ) =
x sin(1+θ)

(x+1)k+1
2

, k > 3
2 , which decays algebraically at infinity with oscillation. In Figures

4.3 and 4.4, we plot the discrete L2− and L∞−errors against various M with

N = 2M and k = 3, 4, 5, respectively. It is clear that in all cases, the errors decay

at certain algebraic rate. It also shows that the smoother the exact solution is, the

smaller the numerical errors will be.
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4.2. Nonlinear problem. The proposed method is also useful for some non-

linear problems. For instance, we consider the following nonlinear problem (see

[19]):

(4.2)




∂tW (ρ, θ, t)−∆W (ρ, θ, t) +W 2(ρ, θ, t) = F (ρ, θ, t), ρ > 1, θ ∈ Ī , t ∈ (0, T ],

W (ρ, θ + 2π, t) =W (ρ, θ, t), ρ > 1, θ ∈ Ī , t ∈ [0, T ],

W (ρ, θ, 0) =W0(ρ, θ), ρ > 1, θ ∈ Ī ,

W (1, θ, t) = 0, lim
ρ→∞

ρW (ρ, θ, t) = lim
ρ→∞

ρ∂ρW (ρ, θ, t) = 0, θ ∈ Ī , t ∈ [0, T ],
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where the Laplacian:

∆W (ρ, θ, t) =
∂2W (ρ, θ, t)

∂ρ2
+

1

ρ

∂W (ρ, θ, t)

∂ρ
+

1

ρ2
∂2W (ρ, θ, t)

∂θ2
.

We make the variable transformation

ρ = x+ 1, U(x, θ, t) =W (ρ, θ, t), U0(x, θ) =W0(ρ, θ), f(x, θ, t) = F (ρ, θ, t).

Then (4.2) is changed to

(4.3)




(x+ 1)∂tU(x, θ, t)− (x+ 1)∂2xU(x, θ, t) − ∂xU(x, θ, t)− 1

x+ 1
∂2θU(x, θ, t)

+(x+ 1)U2(x, θ, t) = (x+ 1)f(x, θ, t), x > 0, θ ∈ Ī , t ∈ (0, T ],

U(x, θ + 2π, t) = U(x, θ, t), x > 0, θ ∈ Ī , t ∈ [0, T ],

U(x, θ, 0) = U0(x, θ), x > 0, θ ∈ Ī ,

U(0, θ, t) = 0, lim
x→∞

xU(x, θ, t) = lim
x→∞

x∂xU(x, θ, t) = 0, θ ∈ Ī , t ∈ [0, T ].

Multiplying (4.3) by v(x, θ, t) and integrating the resulting equation by parts, we

derive a weak formulation. It is to find U(t) ∈ 0H
1
p,−3,0,−3,0(Ω) such that

(4.4)



(∂tU(t), v)
ω

−3,0
R

,Ω + (∂xU(t), ∂xv)ω−3,0
R

,Ω + (∂θU(t), ∂θv)η,Ω + (U2(t), v)
ω

−3,0
R

,Ω

= (f(t), v)
ω

−3,0
R ,Ω,

U(x, θ, 0) = U0(x, θ).

The mixed spectral scheme for (4.4) is to seek uM,N(x, θ, t) ∈ 0VM,N,−3,0(Ω)

such that

(4.5)




(∂tuM,N(t), φ)
ω

−3,0
R

,Ω + (∂xuM,N(t), ∂xφ)ω−3,0
R

,Ω + (∂θuM,N(t), ∂θφ)η,Ω

+(u2M,N(t), φ)
ω

−3,0
R

,Ω = (f(t), φ)
ω

−3,0
R

,Ω, ∀φ ∈ 0VM,N,−3,0(Ω),

uM,N(x, θ, 0) = PM,N,−3,0U0(x, θ).

We next write the numerical solution as

uM,N(x, θ, t) =
∑

4≤k≤N

∑

1≤m≤M

u1k,m(t)φ1k,m(x, θ) +
∑

4≤k≤N

∑

0≤m≤M

u2k,m(t)φ2k,m(x, θ).

Denote by τ the mesh size in time t. The fully discrete scheme for (4.5) is as follows,

(4.6)

2(uM,N(t+ τ), φ)
ω

−3,0
R

,Ω + τ(∂xuM,N(t+ τ), ∂xφ)ω−3,0
R

,Ω + τ(∂θuM,N(t+ τ), ∂θφ)η,Ω

+τ(u2M,N (t+ τ), φ)
ω

−3,0
R

,Ω = 2(uM,N(t), φ)
ω

−3,0
R

,Ω − τ(∂xuM,N(t), ∂xφ)ω−3,0
R

,Ω

−τ(∂θuM,N(t), ∂θφ)η,Ω − τ(u2M,N (t), φ)
ω

−3,0
R ,Ω + τ(f(t+ τ) + f(t), φ)

ω
−3,0
R ,Ω.
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Take φ = φ
q
j,l, q = 1, 2 in (4.6). By the orthogonality of trigonometric functions,

we also obtain a sequence of one-dimensional problems:
(4.7)

N
∑

k=4

(

2

∫

Λ

(x+ 1)ψkψjdx+ τ

∫

Λ

(x+ 1)∂xψk∂xψjdx+ l
2
τ

∫

Λ

1

x+ 1
ψkψjdx

)

u
q
k,l(t+ τ )

+τd(l, q)(u2
M,N (t+ τ ), φq

j,l)ω−3,0
R

,Ω
=

N
∑

k=4

(

2

∫

Λ

(x+ 1)ψkψjdx− τ

∫

Λ

(x+ 1)∂xψk∂xψjdx

−l2τ

∫

Λ

1

x+ 1
ψkψjdx

)

u
q
k,l(t) + d(l, q)gqj,l(t), 4 ≤ j ≤ N, q = 1, 2,

where d(0, 2) = 1 , d(l, q) = 2 otherwise, and

g
q
j,l(t) = τ(f(t+ τ) + f(t), φqj,l)ω−3,0

R ,Ω − τ(u2M,N (t), φqj,l)ω−3,0
R ,Ω, q = 1, 2.

Next let A = (aj,k), B = (bj,k) and C = (cj,k) be the same as in the last subsection,
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and set

~X
q
l (t) = (uq4,l(t), u

q
5,l(t), · · · , u

q
N,l(t))

T , ~G
q
l (t) = (gq4,l(t), g

q
5,l(t), · · · , g

q
N,l(t))

T , q = 1, 2.

Then, we have from (4.7) that

(4.8)
[τA + l2τB + 2C]~Xq

l (t+ τ) + τd(l, q)(u2M,N (t+ τ), φqj,l)ω−3,0
R ,Ω

= [−τA− l2τB + 2C]~Xq
l (t) + d(l, q)~Gq

l (t).

To examine the accuracy of the above scheme, we test the scheme on several

examples.

Example 3. We test the exact solution U(x, θ, t) = x sin(1+θ) sin(t)
x+1 e−

x
2 , which

decays exponentially as x increases with oscillation. In Figures 4.5 and 4.6, we plot

the discrete L2− and L∞−errors at t = 1 against various M with N = 2M and

τ = 0.01, 0.001, 0.0001, respectively. Clearly, the errors decay exponentially as

M and N increase and τ decreases. It is also observed from Figure 4.5 that for

fixed τ = 0.01 and the mode M ≤ 25, the total numerical errors are dominated

by the approximation errors in the space and so decay fast as M increases. But

for M > 25, the total numerical errors are dominated by the approximation errors

in time t. Thus, the numerical results keep the same accuracy, even if M and N
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increase again. A similar situation happens in other cases, see Figures 4.5-4.6 and

4.9-4.10.
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Example 4. We test the exact solution U(x, θ, t) = x sin(1+θ) sin(t)

(x+1)k+1
2

, k > 3
2 , which

decays algebraically at infinity with oscillation. In Figures 4.7 and 4.8, we plot the

discrete L2− and L∞−errors at t = 1 against various M with N = 2M, τ = 0.0001

and k = 3, 4, 5, respectively. It is clear that in all cases, the errors decay at certain

algebraic rate. We also observe that the numerical results with k = 5 are better

than that with k = 3, 4.
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In Figures 4.9 and 4.10, we plot the discrete L2− and L∞−errors at t = 1

against various M with N = 2M, k = 5 and τ = 0.01, 0.001, 0.0001, respectively,

which shows that the numerical results with τ = 0.0001 are better than that with

τ = 0.01, 0.001.

In Figures 4.11 and 4.12, we plot the discrete L2− and L∞−errors against various

t with N = 2M = 30, k = 5 and τ = 0.001, which demonstrates the stability of

scheme (4.6) for long time calculation.
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5. Concluding Remarks

In this paper, we proposed the mixed Fourier-generalized Jacobi rational

spectral method for two-dimensional exterior problems, and established some basic

results on the mixed Fourier-generalized Jacobi rational orthogonal approximations.

These results form the mathematical foundation of the related spectral method for

various two-dimensional problems on unbounded or exterior domains. To compare

with the existing rational spectral method, the suggested method not only enlarges

applications and simplifies numerical analysis, but also leads to very efficient nu-

merical algorithms.

As examples of applications, we provided the mixed spectral schemes for two

model exterior problems, and analyzed the convergence of the linear problem. In

particular, by choosing suitable basis functions, we are able to design proper nu-

merical algorithms, such that the resultant linear discrete systems are symmetric

and sparse. Hence they can be solved efficiently. The numerical results demonstrate

their high accuracy.
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