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HYBRID STRESS FINITE VOLUME METHOD FOR LINEAR

ELASTICITY PROBLEMS

YONGKE WU, XIAOPING XIE, AND LONG CHEN

Abstract. A hybrid stress finite volume method is proposed for linear elasticity equations.
In this new method, a finite volume formulation is used for the equilibrium equation, and a
hybrid stress quadrilateral finite element discretization, with continuous piecewise isoparametric
bilinear displacement interpolation and two types of stress approximation modes, is used for the
constitutive equation. The method is shown to be free from Poisson-locking and of first order
convergence. Numerical experiments confirm the theoretical results.
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1. Introduction

The Finite Volume Method (FVM) is a popular class of discretization techniques
for partial differential equations. One main reason for its increasing popularity is
that FVM combines the geometric flexibility of the Finite Element Method (FEM)
with the local conservation of physical quantities; see [27] for more interesting
properties of FVM. By these virtues, FVM has been extensively used in the fields
of Computational Fluid Dynamics (CFD), heat and mass transfer (see, eg [20, 22,
25, 30, 41, 44]).

In the context of Computational Solid Mechanics (CSM), however, the use of
FVM has not been further explored, whereas FEM plays the dominate role because
of its runaway success. Recently to simulate of multiphysical problems using flow,
solid mechanics, electromagnetic, heat transfer, etc. in a coupled manner, there is
increasing demand to discretize the solid mechanics using FVM [17].

Wilkins [47] made an early attempt of using FVM concept in CSM by us-
ing an alternative approximation to derivatives in a cell. Oñate, Cervera and
Zienkiewicz [29] showed that FVM could be considered to be a particular case
of FEM with a non-Galerkin weighting. In recent years, there has been much
effort in the development and numerical investigation of FVM in CSM (see, eg
[6, 9, 18, 19, 24, 40, 46]).

In this paper, we shall construct a coupling method of FVM and the hybrid
stress FEM [32, 36, 50] for linear elasticity problems and present a complete nu-
merical analysis for a priori error estimates. The idea follows from Wapperom and
Webster [45], where FEM and FVM was coupled to simulate viscoelastic flows, and
from Chen [12], where a class of high order finite volume methods was developed
for second order elliptic equations by combining high order finite element methods
and a linear finite volume method. We use hybrid stress FEM for the constitutive
equation, and FVM for the equilibrium equation by introducing piecewise constant
test functions in a dual mesh. We choose PS-stress mode [32] or ECQ4-mode [50]
to approximate the stress tensor, and use isoparametric bilinear element to approx-
imate the displacement. By doing so, our new method can inherit some virtues
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of hybrid stress FEM, e.g. the robustness with respect to Poisson locking. Mean-
while, the equilibrium equation holds locally (on every control volume). Note that
the governing equations for solid body and fluid mechanics are the same but only
differ in constitutive relations. Our method can be readily used to simulate the
coupling of fluid flows and solid body deformation.

We shall analyze our new method following the mixed FEM theory [8, 10]. To
the authors best knowledge, there are only handful rigorous analysis of mixed FVM
on general quadrilateral meshes for elliptic equations [13, 14, 15, 16] and no such
results for linear elasticity. Our discretization will result in a generalized saddle
point system in the form

(1)

(

A BT

C 0

)(

σ

u

)

=

(

0
f

)

.

The analysis of the saddle point system (1) is much more involved than the symmet-
ric case B = C. In addition to the verification of the inf-sup condition for operators
B and C, we need to prove that their kernels match: dim(ker(B)) = dim(ker(C))
and a inf-sup condition of A on these two null spaces [8, 10]. Fast solvers for the
non-symmetric saddle point system (1) is also more difficult than the symmetric
case.

We shall overcome these difficulties by a perturbation of B to B̃ using the tech-
nique developed in [54]. We show that B̃ = DC with a symmetric and positive

definite matrix D. Therefore ker(B̃) = ker(C) and furthermore, by a scaling, (1)
becomes symmetric. Note that although our system is in the mixed form, the stress
unknowns can be eliminated element-wise and the resulting Schur complement is
symmetric and positive definite (SPD). We can then solve this SPD system ef-
ficiently by using multigrid solvers or preconditioned conjugate gradient method
with multilevel preconditioners.

In this paper, we use notation a . b (or a & b) to represent that there exists a
constant C independent of mesh size h and the Lamé constant λ such that a ≤ Cb
(or a ≥ Cb), and use a h b to denote a . b . a.

The rest of this paper is organized as follows. In section 2, we describe the model
problem, introduce the isoparametric bilinear element, and review the hybrid stress
FEM. Section 3 defines our hybrid stress finite volume method based on PS or
ECQ4 stress mode. Section 4 presents stability analysis. Section 5 derives a priori
error estimates. In the final section, we give some numerical results in support of
theoretical ones.

2. Preliminary

In this section, we present the model problem and introduce isoparametric ele-
ments and hybrid finite element methods.

2.1. A model problem. Let Ω ⊂ R2 be a bounded polygonal domain with bound-
ary Γ = ΓD ∪ ΓN , where meas(ΓD) > 0. We consider the following linear elasticity
problem

(2)















−div σ = f in Ω,
σ = Cǫ(u) in Ω,
u = 0 on ΓD,
σn = g, on ΓN

where σ ∈ R2×2
sym denotes the symmetric stress tensor field, u = (u, v)T ∈ R2 the

displacement field, ǫ(u) = 1
2 (∇u + (∇u)T ) the strain tensor, f ∈ R2 the body
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loading density, g ∈ R2 the surface traction, n the unit outward vector norm to
ΓN , and C the elasticity module tensor with

(3) Cǫ(u) = 2µǫ(u) + λdivuI, C
−1σ =

1

2µ

(

σ −
λ

2(µ+ λ)
tr(σ) I

)

.

Here I is the 2× 2 identity tensor, tr(σ) the trace of the stress tensor σ, and µ, λ

the Lamé parameters given by µ =
E

2(1 + ν)
, λ =

Eν

(1 + ν)(1− 2ν)
for plane strain

problems, and by µ =
E

2(1 + ν)
, λ =

Eν

(1 + ν)(1 − ν)
for plane stress problems, with

0 < ν < 0.5 the Poisson ratio and E the Young’s modulus.
The weak formulation of (2) is: Find (σ,u) ∈ L2(Ω;R2×2

sym)× (H1
0,D)2 such that



















∫

Ω

ǫ(u) : τdxdy =

∫

Ω

C
−1σ : τdxdy for all τ ∈ L2(Ω;R2×2

sym)

∫

Ω

σ : ǫ(v)dxdy =

∫

Ω

f · vdxdy +

∫

ΓN

g · vds for all v ∈ (H1
0,D)2.

(4)

where L2(Ω;R2×2
sym) denotes the space of square-integrable symmetric tensors, (H1

0,D)2 =

{v ∈ (H1(Ω))2 : v|ΓD
= 0}. The existence and uniqueness of the weak solution to

(4) can be found in [52].
We shall consider a coupling method of FVM and FEM for equations (2). The

Neumann type boundary condition can be build into the weak formulation. For
simplicity of exposition, we consider only the case ΓN = ∅. Note that in this case
it holds the compatibility condition

∫

Ω
tr(σ) = 0.

In this paper, we will use ‖ · ‖k and | · |k to denote Hk norm and semi-norm for
both vectors and tensors. And use ‖ · ‖ to denote L2 norm for both vectors and
tensors.

2.2. Isoparametric transformation. Let {Th}h>0 be conventional quadrilateral
meshes of Ω. Let hK denote the diameter of quadrilateral K ∈ Th, and h =
max
K∈Th

hK . Let Zi(xi, yi), 1 ≤ i ≤ 4 be four vertices of K, and Ti the sub-triangle of

K with vertices Zi−1, Zi and Zi+1 (the index on Zi is modulo four). Define

ρK = min
1≤i≤4

{ maximal radius of circles inscribed in Ti}.

Throughout this paper, we assume that {Th}h>0 satisfy the following shape
regular hypothesis: There exits a constant ̺ > 2 independent of h such that for all
h > 0 and K ∈ Th,

(5) hK ≤ ̺ρK .

We introduce two mesh conditions proposed by Shi [37].

Condition (A). The distance dK between the midpoints of the diagonals of any
K ∈ Th is of order o(hK) for all elements K ∈ Th as h → 0.

Condition (B). The distance dK between the midpoints of the diagonals of any
K ∈ Th is of order O(h2

K) for all elements K ∈ Th as h → 0.

The weaker condition (A) will be used in the analysis of stability and the stronger
one (B) is used in the optimal order of convergence (see Sections 4-5 for details).

All quadrilaterals produced by a bi-section scheme of mesh subdivisions satisfy
the stronger condition (B), i.e., dK = O(h2

K) [37].
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Let K̂ = [−1, 1]× [−1, 1] be the reference element with vertices Ẑi, 1 ≤ i ≤ 4.

There exits a unique invertible bilinear mapping FK that maps K̂ onto K with
FK(Ẑi) = Zi, 1 ≤ i ≤ 4 (Figure 1). The mapping FK is given by

-ξ

6η
1

-1

1-1

Ẑ1 Ẑ2

Ẑ3Ẑ4

-FK

�
�
�
�
�
�
�
((((

(
C
C
C
C
C
C
C
C
CC

hhhhhhhhhhh -

6

x

y

Z1
Z2

Z3Z4

K

K̂

Figure 1. Bilinear transformation FK maps a reference element
K̂ (in the left) to the element K (in the right).

(6)

(

x
y

)

= FK(ξ, η) =

(

a0 + a1ξ + a2η + a12ξη
b0 + b1ξ + b2η + b12ξη

)

,

where (x, y) ∈ K, (ξ, η) ∈ K̂, and








a0 b0
a1 b1
a2 b2
a12 b12









=
1

4









1 1 1 1
−1 1 1 −1
−1 −1 1 1
1 −1 1 −1

















x1 y1
x2 y2
x3 y3
x4 y4









.

Remark 2.1. By the choice of the ordering of vertices (Figure 1), we always have
a1 > 0, b2 > 0. Let O1 and O2 be mid-points of two diagonals of K ∈ Th. Note

that vector
−−−→
O1O2 = −2〈a12, b12〉 and therefore a212 + b212 = 4d2K . Under condition

(A) or condition (B), |a12| and |b12| are high order terms of hK . Especially when K
is a parallelogram, it holds a12 = b12 = 0, and FK is reduced to an affine mapping.
�

The Jacobi matrix of the transformation FK is

DFK(ξ, η) =

(

∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

)

=

(

a1 + a12η a2 + a12ξ
b1 + b12η b2 + b12ξ

)

,

and the Jacobian of FK is

JK(ξ, η) = det(DFK) = J0 + J1ξ + J2η,

with J0 = a1b2 − a2b1, J1 = a1b12 − a12b1, J2 = a12b2 − a2b12. Denote by F−1
K the

inverse of FK . Then we have

DF−1
K ◦ FK(ξ, η) =

(

∂ξ
∂x

∂ξ
∂y

∂η
∂x

∂η
∂y

)

=
1

JK(ξ, η)

(

b2 + b12ξ −a2 − a12ξ
−b1 − b12η a1 + a12η

)

.

As pointed out in [54], we have the following elementary geometric properties.
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Lemma 2.2. [54] For any K ∈ Th, under the shape regular hypothesis (5), we have

max
(ξ,η)∈K̂

JK(ξ, η)

min
(ξ,η)∈K̂

JK(ξ, η)
<

h2
K

2ρ2K
≤

̺2

2
,(7)

a212 + b212 <
1

16
h2
K ,(8)

ρ2K < 4(a21 + b21) < h2
K ,(9)

ρ2K < 4(a22 + b22) < h2
K .(10)

2.3. Hybrid FEM. One can eliminate the stress σ in (2) to obtain a formulation
involving only displacement u as the unknown. Then traditional Lagrange finite
element spaces can be used to approximate the displacement. The stress approxi-
mation will be recovered by taking derivatives of the displacement approximation.
There are two drawbacks along this direction. First, the recovered stress is less
accurate. Second, for standard lower order elements, locking phenomenon could
occur when λ → ∞ as ν → 0.5, i.e., when the material is nearly incompressible.
Mathematical understanding of locking effects can be found in [1, 5, 42].

Mixed methods based on Hellinger–Reissner variational principle approximating
both stress and displacement can overcome these difficulties. The construction of
a conforming or nonconforming and symmetric finite element spaces for the stress
tensor, however, turns out to be highly non-trivial [2, 3, 4, 23, 49], since the weak
solution, (σ,u), of the problem (2) is required to be in H(div,Ω;Rd×d

sym)× L2(Ω)d

for d = 2 or 3. The desirable stress elements requires a large number of degrees of
freedom, e.g. 24 for a low order conforming triangular element [3] and 162 for a
conforming tetrahedral element [2]!

Another kind of mixed formulations widely used in engineering is the hybrid FEM
based on the domain-decomposed Hellinger–Reissner principle [31, 32, 33, 34, 35,
36, 48, 50, 51, 53, 56], where the weak solution, (σ,u), of the problem (2) is required
to be in L2(Ω;Rd×d

sym)×H1(Ω)d. In [32] Pian and Sumihara proposed a hybrid stress
quadrilateral FEM (abbr. PS) which produces more accurate solutions than the
traditional low order displacement finite elements and free from Poisson-locking.
Xie and Zhou [50] presented a new hybrid stress finite element (called ECQ4) by
using a different stress mode. This element was also shown by numerical benchmark
tests to be locking-free and can produce even more accurate approximation solutions
than PS element, especially when λ is large.

We now give a brief introduction of the hybrid FEM. For simplicity we abbreviate

the symmetric tensor τ =

(

τ11 τ12
τ12 τ22

)

to τ = (τ11, τ22, τ12)
t. The 5-parameters

stress mode on K̂ for PS element [32] is

(11) τ̂ =





τ̂ 11

τ̂ 22

τ̂ 12



 =









1 0 0 η
a2
2

b22
ξ

0 1 0
b21
a2
1
η ξ

0 0 1 b1
a1
η a2

b2
ξ









βτ , βτ ∈ R
5,

and the 5-parameters stress mode for ECQ4 element [50] is

(12) τ̂ =





τ̂ 11

τ̂ 22

τ̂ 12



 =









1− b12
b2

ξ a12a2

b22
ξ a12b2−a2b12

b22
ξ η

a2
2

b22
ξ

b1b12
a2
1

η 1− a12

a1
η a1b12−a12b1

a2
1

η
b21
a2
1
η ξ

b12
a1

η a12

b2
ξ 1− b12

b2
ξ − a12

a1
η b1

a1
η a2

b2
ξ









βτ .
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Denote

Σ := {τ ∈ L2(Ω;R2×2
sym) :

∫

Ω

tr(τ )dxdy = 0}.

Then the corresponding stress spaces for PS and ECQ4 elements are

(13) ΣPS
h = {τ ∈ Σ : τ̂ = τ |K ◦ FK is of the form of (11) for all K ∈ Th},

(14) ΣEC
h = {τ ∈ Σ : τ̂ = τ |K ◦ FK is of the form of (12) for all K ∈ Th}.

In the following sections, we use one symbol Σh for either ΣPS
h or ΣEC

h . When
all quadrilaterals are parallelograms, PS and ECQ4 elements are equivalent since
a12 = b12 = 0.

For elements PS and ECQ4, the piecewise isoparametric bilinear interpolation is
used for the displacement approximation, i.e. the displacement space Vh is defined
as

(15) Vh = {v ∈ H1
0 (Ω)

2 : v̂ = v|K ◦ FK ∈ Q1(K̂)2 for all K ∈ Th},

where Q1(K̂) denotes the set of bilinear polynomials on K̂.
The hybrid stress FEM is formulated as: Find (σh,uh) ∈ Σh × Vh such that

a(σh, τh) + b(uh, τ h) = 0 for all τh ∈ Σh,(16)

b(vh,σh) = −f(vh) for all vh ∈ Vh,(17)

where

a(σ, τ ) =

∫

Ω

τ : (C−1σ)dxdy =
1

2µ

∫

Ω

(

σ : τ −
λ

2(µ+ λ)
tr(σ)tr(τ )

)

dxdy,(18)

b(v, τ ) = −

∫

Ω

ǫ(v) : τdxdy,(19)

f(v) =

∫

Ω

f · vdxdy.(20)

The classical analysis of hybrid FEM can be found in Zhou and Xie [56]. Recently
Yu, Xie and Carstensen [52] gave a rigorous uniform convergence analysis for PS
and ECQ4 elements. We shall mainly follow their approach to prove the inf-sup
conditions.

3. Hybrid FVM

This section is devoted to the construction of a hybrid stress FVM which is a
coupling version of FVM and hybrid stress FEM based on PS or ECQ4 stress mode.
We will use FVM for the equilibrium equation (the first equation in (2)) and use
FEM for the constitutive equation (the second equation in (2)).

Let {Xi = (xi, yi), 1 ≤ i ≤ N} be the interior nodes set of Th, where N denotes
the number of interior nodes. We construct a dual partition T ∗

h = {K∗
i , 1 ≤ i ≤ N},

where K∗
i is the dual element (control volume) of the node Xi shown in Figure

2(a). In this figure, Oil, 1 ≤ l ≤ 4 are the centers of the l−th quadrilateral element

neighboring to Xi, which are mapping from the center of the reference element K̂
by bilinear transformations, andMil, 1 ≤ l ≤ 4 are midpoints of all edges connected
with Xi. In addition, for all quadrilateral elements K ∈ Th, we call the restriction
region DK

l of the dual element K∗
il, 1 ≤ l ≤ 4 in K as the l−th control sub-volume

of K; see Figure 2(b).
Define a piecewise constant vector space V ∗

h on T ∗
h as

(21) V ∗
h := {v ∈ (L2(Ω))2 : v|K∗

i
is a constant vector, for all 1 ≤ i ≤ N}.
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Figure 2. (a) Dual element K∗
i (Oi1Mi1Oi2Mi2Oi3Mi3Oi4Mi4)

of the node Xi. (b) Quadrilateral element K ∈ Th and its four
sub-volumes, where MK

i (i = 1, · · · , 4) are the mid-points of the
four edges of K and OK is the center of K.

By the definition, we can easily check that dimV ∗
h = dimVh.

We first present a weak form coupling FEM and FVM: Find (σh,uh) ∈ Σh×Vh,
such that

a(σh, τ ) + b(uh, τ ) = 0 for all τ ∈ Σh,(22)

c(v∗,σh) = f(v∗) for all v∗ ∈ V ∗
h ,(23)

where a(·, ·), b(·, ·) and f(·) are defined in (18)-(20), respectively, and

c(v∗,σh) = −
∑

K∈Th

N
∑

i=1

∫

∂K∗

i ∩K

σhn · v∗ds.

We introduce a minor modification of the bilinear form b(·, ·), i.e.

b̃(uh, τ ) = −

∫

Ω

ǫ̃(uh) : τdxdy.

Here, by following [54], the modified strain tensor ǫ̃(v) is defined as

ǫ̃(v) =

(

∂̃u
∂x

1
2 (

∂̃u
∂y + ∂̃v

∂x)
1
2 (

∂̃u
∂y + ∂̃v

∂x)
∂̃v
∂y

)

,

with the modified partial derivatives ∂̃v
∂x ,

∂̃v
∂y on K ∈ Th given by

(JK
∂̃v

∂x
|K ◦ FK)(ξ, η) =

∂y

∂η
(0, 0)

∂v̂

∂ξ
−

∂y

∂ξ
(0, 0)

∂v̂

∂η
= b2

∂v̂

∂ξ
− b1

∂v̂

∂η
,

(JK
∂̃v

∂y
|K ◦ FK)(ξ, η) = −

∂x

∂η
(0, 0)

∂v̂

∂ξ
+

∂x

∂ξ
(0, 0)

∂v̂

∂η
= −a2

∂v̂

∂ξ
+ a1

∂v̂

∂η
.

Let χi (1 ≤ i ≤ N) be the characteristic function on K∗
i , and ϕi (1 ≤ i ≤ N) the

nodal base of the interior node Xi. We define a mapping rh : Vh → V ∗
h by

(24) rhv =

N
∑

i=1

αiχi, for all v =

N
∑

i=1

αiϕi ∈ Vh.

It is easy to see that rh is a one to one and onto operator from Vh to V ∗
h . We

can then pull back the bilinear form c(·, ·) defined on V ∗
h × Σh to Vh × Σh by the
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mapping rh, i.e.

(25) c(v,σh) := c(rhv,σh) for all v ∈ Vh, σh ∈ Σh.

Our hybrid stress FVM is based on the following modified weak form: Find
(σh,uh) ∈ Σh × Vh, such that

a(σh, τ ) + b̃(uh, τ ) = 0 for all τ ∈ Σh,(26)

c(v,σh) = f(rhv) for all v ∈ Vh.(27)

Note that (26) is still in the FEM form while in (27), by choosing v∗ = χKi
, the

equilibrium equation

−

∫

∂K∗

i

σhn ds =

∫

K∗

i

f dx

holds in each control volume K∗
i , i.e., it is in the FVM form.

Define A : Σh → Σh as

a(σ, τ ) = (Aσ, τ ) for all σ ∈ Σh, τ ∈ Σh,

B̃t : Vh → Σh and B̃ : Σh → Vh as

b̃(v, τ ) = (B̃tv, τ ) = (v, B̃τ ) for all v ∈ Vh, τ ∈ Σh,

Ct : Vh → Σh and C : Σh → Vh as

c(v, τ ) = (Ctv, τ ) = (v, Cτ ) for all v ∈ Vh, τ ∈ Σh,

and f̃ : Vh → R as (f̃ ,v) = f(rhv).
We can write (26)-(27) in the form of

(28)

(

A B̃t

C 0

)(

σ

u

)

=

(

0

f̃

)

In the following sections, we will focus on our new FVM method based on the
modified weak forms (26)-(27) or equivalently the saddle point system (28).

4. Stability analysis

This section is to establish some stability results which are uniform with respect
to the Lamé constant λ and get the well-posedness of (26)-(27). We shall focus on
PS stress mode first and then use a perturbation argument to prove similar results
for ECQ4 stress mode.

According to the mixed FEM theory [8, 10], we need to establish several inf-sup
conditions and continuity conditions.

• Kernel inf-sup conditions: There exists a constant α1 > 0 independent of
h, λ such that

sup
τ∈ker(B̃)

a(σ, τ )

‖τ‖
≥ α1‖σ‖ for all σ ∈ ker(C),(29)

sup
σ∈ker(C)

a(σ, τ ) > 0 for all τ ∈ ker(B̃) \ {0}.(30)

As pointed out in [8], by Open Mapping Theorem the above statement is
also equivalent to the existence of a constant α2 > 0 independent of h, λ
such that

sup
σ∈ker(C)

a(σ, τ )

‖σ‖
≥ α2‖τ‖ for all τ ∈ ker(B̃),(31)

sup
τ∈ker(B̃)

a(σ, τ ) > 0 for all σ ∈ ker(C) \ {0}.(32)
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In a finite dimensional case (30) and (32) can be replaced by

(33) dim(ker(B̃)) = dim(ker(C)).

• Discrete inf-sup conditions for b̃ and c: For any v ∈ Vh, it holds

|v|1 . sup
06=τ∈Σh

b̃(v, τ )

‖τ‖
,(34)

|v|1 . sup
06=τ∈Σh

c(v, τ )

‖τ‖
.(35)

• Continuity conditions: For any v ∈ Vh, σ, τ ∈ Σh, it holds

a(σ, τ ) . ‖σ‖‖τ‖,(36)

b̃(v, τ ) . |v|1‖τ‖,(37)

c(v, τ ) . |v|1‖τ‖.(38)

4.1. Continuity conditions. The continuity conditions (36) and (37) are easy
to prove; see, for example, [52]. We only give a proof of (38).

Theorem 4.1. For any v ∈ Vh and τ ∈ Σh, the uniform continuity condition (38)
holds.

Proof. For any v ∈ Vh and τ ∈ Σh, we have

c(v, τ )

=−
∑

K∈Th

N
∑

i=1

∫

∂K∗

i ∩K

τn · rhvds =
∑

K∈Th

N
∑

i=1

∫

∂K∗

i ∩K

τn · (v − rhv)ds

.
∑

K∈Th

N
∑

i=1

(

∫

∂K∗

i ∩K

|v − rhv|
2ds

)1/2(
∫

∂K∗

i ∩K

|τ |2ds

)1/2

.
∑

K∈Th

(h−1
K ‖v − rhv‖

2
0,K + hK

4
∑

j=1

|v − rhv|
2
1,DK

j
)1/2(h−1

K ‖τ‖20,K + hK |τ |21,K)1/2

.
∑

K∈Th

|v|1,K‖τ‖0,K . |v|1‖τ‖,

where in the second identity we have used the fact that
∑

K∈Th

N
∑

i=1

∫

∂K∗

i ∩K
τn ·v = 0

since v ∈ Vh ⊂ H1(Ω)2 and τ is a polynomial tensor inside an element K ∈ Th,
and in the last inequality we have used the estimate ( [13], Lemma 2.4)

‖v − rhv‖0,K . hK |v|1,K for all v ∈ Vh.

�

4.2. Kernel inf-sup conditions. We will first verify the dimension of the null
space of B̃ and C equals. Then we prove the inf-sup conditions (29) and (31) by

choosing τ = σ. We will make use of the following special relation of the matrix B̃
and C.

Theorem 4.2. For PS stress mode, there exists a symmetric and positive definite
matrix D such that B̃ = DC. Therefore ker(B̃) = ker(C).
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As a consequence of Theorem 4.2, we can rewrite our discretization based on PS
stress mode as

(39)

(

A B̃t

B̃ 0

)(

σ

u

)

=

(

0

Df̃

)

.

Namely we obtain the same matrix as the (modified) hybrid FEM but a different
way to assemble the load. An analog result of the linear finite volume method for
the Poisson equation was established in [7, 21, 39].

Since Σh is piecewise independent, we can easily eliminate σ and obtain a sym-
metric and positive definite system for which we can use multigrid methods to
compute the solution in a fast way. The size of the SPD problem is the same as
that from the displacement method using the isoparametric bilinear element.

The proof of Theorem 4.2 is technical. The idea is to calculate the element-wise
matrix. We first introduce some notation. Denote

Φ =





1 ξ η 0 0 0 0 0 0
0 0 0 1 ξ η 0 0 0
0 0 0 0 0 0 1 ξ η



 .

On an element K ∈ Th, we can rewrite (11) and (12) as





τ̂ 11

τ̂ 22

τ̂ 12



 = ΦAβτ , where

for PS stress form,

A = APS =

































1 0 0 0 0

0 0 0 0
a2
2

b22
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1

0 0 0
b21
a2
1

0

0 0 1 0 0
0 0 0 0 a2

b2

0 0 0 b1
a1

0

































,

and for ECQ4 stress form,

(40) A = AEC = APS +































0 0 0 0 0

− b12
b2

a12a2

b22

a12b2−a2b12
b22

0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

b1b12
a2
1

−a12

a1

a1b12−a12b1
a2
1

0 0

0 0 0 0 0

0 a12

b2
− b12

b2
0 0

b12
a1

0 −a12

a1
0 0































=: APS + δKA .

When the quadrilateral is a parallelogram, δKA = 0 since a12 = b12 = 0. In general,
the non-zero element of APS is O(1), and the non-zero elements of δKA is o(1) when
condition (A) is satisfied. Therefore δKA is considered as a high order perturbation.

For any v = (u, v)t ∈ Vh with nodal values v(Zi) = (ui, vi)
t on K ∈ Th, let

(41) v̂ =

4
∑

i=1

(

ui

vi

)

Ni(ξ, η) =

(

U0 + U1ξ + U2η + U12ξη
V0 + V1ξ + V2η + V12ξη

)

,
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where Ni, 1 ≤ i ≤ 4, are bases of bilinear function on K̂

N1(ξ, η) =
1

4
(1− ξ)(1 − η), N2(ξ, η) =

1

4
(1 + ξ)(1 − η),

N3(ξ, η) =
1

4
(1 + ξ)(1 + η), N4(ξ, η) =

1

4
(1− ξ)(1 + η),

and









U0 V0

U1 V1

U2 V2

U12 V12









=
1

4









1 1 1 1
−1 1 1 −1
−1 −1 1 1
1 −1 1 −1

















u1 v1
u2 v2
u3 v3
u4 v4









.

Then, we can write

JK







∂̃u
∂x
∂̃v
∂y

∂̃u
∂y + ∂̃v

∂x






◦ FK

= Φ





























b2 −b1 0 0 0
0 0 −b1 0 0
0 0 b2 0 0
0 0 0 a1 0
0 0 0 0 a1
0 0 0 0 −a2

−a2 a1 0 −b1 0
0 0 a1 0 −b1
0 0 −a2 0 b2









































U1 +
b1
a1
V1

U2 +
b2
a1
V1

U12

V2 −
a2

a1
V1

V12













=: ΦBv5,

with v5 = (U1 +
b1
a1
V1, U2 +

b2
a1
V1, U12, V2 −

a2

a1
V1, V12)

t.
Using above notation, for any τ ∈ Σh, v ∈ Vh and K ∈ Th, it can be verified by

direct calculation that

(CKτ ,v)K = −
N
∑

i=1

∫

∂K∗

i ∩K

τn · rhvds = (βτ )tAtHBv5,(42)

(τ , B̃t
Kv)K =

∫

K

τ : ǫ̃(v)dxdy = (βτ )tAtH̃Bv5,(43)

where

H = diag(4, 2, 2, 4, 2, 2, 4, 2, 2),

H̃ =
4

3
diag(3, 1, 1, 3, 1, 1, 3, 1, 1) =

∫

K̂

ΦtΦdξdη.
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For PS stress form,

At
PSHB =













4 0 0 0 0
0 4 0 0 0
0 0 4 0 0
0 0 0 2 0
0 0 0 0 2



























b2 −b1 0 0 0
0 0 0 a1 0

−a2 a1 0 −b1 0

0 0 J0

a1
0 b1J0

a2
1

0 0 a2J0

b22
0 J0

b2















=: DAB,

(44)

At
PSH̃B =













4 0 0 0 0
0 4 0 0 0
0 0 4 0 0
0 0 0 4

3 0
0 0 0 0 4

3



























b2 −b1 0 0 0
0 0 0 a1 0

−a2 a1 0 −b1 0

0 0 J0

a1
0 b1J0

a2
1

0 0 a2J0

b22
0 J0

b2















=: D̃AB.

(45)

For ECQ4 stress form,

At
ECHB = At

PSHB + 2δEC , At
ECH̃B = At

PSH̃B +
4

3
δEC ,(46)

where

(47) δEC =















0 0 −b12
a1b1−a2b2

a1b2
0 b12

a2
1
J0

0 0 a12

b22
J0 0 a12

a1b2
(a2b2 − a1b1)

0 0 a2a12

a1
− b1

b22
J2 −

a1b12
b2

0 b1b12
b2

− a2J1

a2
1

− a12b2
a1

0 0 0 0 0
0 0 0 0 0















.

Now we are in the position to prove Theorem 4.2.

Proof. Define V = (u1, u2, u3, u4, v1, v2, v3, v4)
t, U = (U0, U1, U2, U12, V0, V1, V2, V12)

t,

G =













0 1 0 0 0 b1
a1

0 0

0 0 1 0 0 b2
a1

0 0

0 0 0 1 0 0 0 0
0 0 0 0 0 −a2

a1
1 0

0 0 0 0 0 0 0 1













, T =

























1 1 1 1 0 0 0 0
−1 1 1 −1 0 0 0 0
−1 −1 1 1 0 0 0 0
1 −1 1 −1 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 −1 1 1 −1
0 0 0 0 −1 −1 1 1
0 0 0 0 1 −1 1 −1

























.

Some simple calculations show

v5 = (U1 +
b1
a1

V1, U2 +
b2
a1

V1, U12, V2 −
a2
a1

V1, V12)
t = GU =

1

4
GTV .

Using (44) and (45), we see that, for PS stress mode, the matrices B̃ and C restricted
on K ∈ Th are of the forms

B̃K =
1

4
T tGtAt

BD̃ =
1

4
T tdiag(4, 4, 4,

4

3
, 4, 4, 4,

4

3
)GtAt

B,

CK =
1

4
T tGtAt

BD =
1

4
T tdiag(4, 4, 4, 2, 4, 4, 4, 2)GtAt

B.

Let DK := 1
4T

tdiag(1, 1, 1, 23 , 1, 1, 1,
2
3 )T . Since TT t = 4I8×8, where I8×8 is an

identity matrix, it holds

B̃K = DKCK .
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Thus, we obtain B̃ = DC. The matrix D is symmetric and positive definite from
the fact that DK is symmetric and positive defined. �

Condition (C). The Q1−P0 inf-sup condition for Stokes equations holds, i.e., for
all q ∈ W̄h := {q ∈ L2(Ω) : q|K ∈ P0 for all K ∈ Th}

(48) ‖q‖ . sup
v∈Vh

∫

Ω divv q dxdy

|v|1
.

It is well known that the only unstable case for Q1 − P0 for Stokes equations is
the checkerboard mode. So any quadrilateral mesh which breaks the checkerboard
mode is sufficient for the uniform coercivity condition (49).

The proof of the following lemma can be found in [52].

Lemma 4.3. ([52]) Let the partition Th satisfy the shape regular condition (5)
and the condition (C). Then for PS stress mode, it holds the uniform coercivity
condition

(49) a(τ , τ ) & ‖τ‖2 for all τ ∈ ker(B̃).

By Theorem 4.2 and Lemma 4.3, we can take σ = τ in (29) to get the following
theorem.

Theorem 4.4. Let the partition Th satisfy the shape regular condition (5) and the
condition (C). Then the uniform discrete kernel inf-sup conditions (29) and (31)
hold.

4.3. Discrete inf-sup conditions. We show the following results for b̃(·, ·)and
c(·, ·).

Theorem 4.5. Let the partition {Th}h>0 satisfy the shape regularity condition (5).
Then for PS stress mode the uniform discrete inf-sup conditions (34) and (35) hold.

Proof. It suffices to prove that for any v ∈ Vh, there exists τv ∈ Σh such that

‖ǫ̃(v)‖20,K . ‖τv‖
2
0,K . min

{

∫

K

ǫ̃(v) : τ vdxdy,−
N
∑

i=1

∫

∂K∗

i ∩K

τ vn · rhvds

}

.

(50)

In fact, if (50) holds, by the Korn inequality, we have

‖τv‖|v|1 .

(

∑

K∈Th

‖τv‖
2
0,K

)1/2(
∑

K∈Th

‖ǫ̃(v)‖20,K

)1/2

.
∑

K∈Th

‖τv‖
2
0,K .

∫

K

ǫ̃(v) : τ vdxdy,

and similarly

‖τv‖|v|1 .
∑

K∈Th

‖τv‖
2
0,K . −

∑

K∈Th

N
∑

i=1

∫

∂K∗

i ∩K

τvn · rhvds.

Then the inf-sup conditions (34) and (35) follow.
Now we turn to prove (50). For any v ∈ Vh, K ∈ Th, taking τv ∈ Σh as

[τ̂v11, τ̂ v22, τ̂v12]
t = ΦAPSβv
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with βv = 1
max

(ξ,η)∈K̂

JK(ξ,η) (A
t
PSAPS)

−1ABv
5, then by (42) and (43), we have

−
N
∑

i=1

∫

∂K∗

i ∩K

τvn · rhvds =
1

max
(ξ,η)∈K̂

JK
(v5)tAt

B(A
t
PSAPS)

−1DABv
5,

∫

K

ǫ̃(v) : τ vdxdy =
1

max
(ξ,η)∈K̂

JK
(v5)tAt

B(A
t
PSAPS)

−1D̃ABv
5.

Direct calculations yield
∫

K

τ v : τvdxdy ≤ max
(ξ,η)∈K̂

JK(ξ, η)(βv)
tAt

PSH̃APSβv

≤
1

max
(ξ,η)∈K̂

JK
(v5)tAt

B(A
t
PSAPS)

−1D̃ABv
5.

Note that At
PSAPS = diag(1, 1, 1, 1+

b21
a2
1
+

b41
a4
1
, 1+

a2
2

b22
+

a4
2

b42
), then the second inequality

of (50) holds.
For the first inequality in (50), some calculations show

∫

K

τ v : τvdxdy ≥ min
(ξ,η)∈K̂

JK(ξ, η)βt
vA

t
PS

∫

K̂

ΦtΦdξdη APSβv

= min
(ξ,η)∈K̂

JK(ξ, η)βt
vA

t
PSAPSD̃βv

& min
(ξ,η)∈K̂

JK(ξ, η)βt
vβv,

and
∫

K

ǫ̃(v) : ǫ̃(v)dxdy ≤
1

min
(ξ,η)∈K̂

JK(ξ, η)
(v5)tBt

∫

K̂

ΦtΦdξdη Bv5

.
1

min
(ξ,η)∈K̂

JK(ξ, η)
(v5)tBtBv5 .

1

min
(ξ,η)∈K̂

JK(ξ, η)
h2
K(v5)tv5.

By the definition of βv , we have

v5 = max
(ξ,η)∈K̂

JK(ξ, η)A−1
B (At

PSAPS)βv,

and A−1
B = 1

|AB |A
∗
B , where |AB| =

J4
0

a1b22
h h5

K , and A∗
B is the adjoint matrix of AB

with non-zero elements O(h4
K). Thus

(v5)tv5 .

(

max
(ξ,η)∈K̂

JK(ξ, η)
)2

h2
K

βt
vβv.

Therefore, from Lemma 2.2 it follows the desirable inequality
∫

K

ǫ̃(v) : ǫ̃(v)dxdy .

∫

K

τv : τ vdxdy.

�

In summary, by Theorems 4.1, 4.2, 4.4, 4.5, and the theory of mixed methods
in [8, 10], we arrive at the following well-posedness result for our new method
(26)-(27).
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Theorem 4.6. Let the partition Th satisfy the shape regular condition (5) and the
condition (C). Then there exists a unique solution (σh,uh) ∈ Σh ×Vh for the weak
problem (26)-(27) such that

‖σh‖+ |uh|1 . ‖f‖.

4.4. ECQ4 element. In this subsection, we will use a perturbation argument to
prove similar stability results for ECQ4 stress mode. We first introduce a well
known perturbation result, which can be found in classic books of linear functional
analysis.

Lemma 4.7. Let L be a linear operator between Banach spaces. Suppose L−1 exists
and ‖L−1‖ ≤ C. Then for any operator δ with ‖δ‖ < 1

C , L+ δ is invertible and

‖(L+ δ)−1‖ ≤
C

1− ‖L−1δ‖
.

Now let LPS =

(

A B̃
C 0

)

, then by (46) and (47), we see that the operator for

ECQ4 is LEC = LPS + δEC , where δEC is a high order term under condition (A).
The following theorem follows from Lemma 4.7.

Theorem 4.8. Let the partition Th satisfy the shape regular condition (5) and the
condition (A) and (C). Then, for sufficiently small h, LEC is invertible and L−1

EC

is uniformly stable. Namely there exists a unique solution (σh,uh) ∈ Σh × Vh for
the weak problem (26)-(27) such that

‖σh‖+ |uh|1 . ‖f‖.

5. Uniform a priori error estimates

This section is to derive uniform priori error estimates for our hybrid stress
FVM. In addition to the stability conditions established in the previous section,
some approximation and consistency results of finite element spaces are required.
We first present an approximation result for the affine space

Z(f) = {τ ∈ Σh : c(v, τ ) = (f , rhv) for all v ∈ Vh}.

Lemma 5.1. Let (σ,u) ∈ H1(Ω;R2×2
sym

)× (H1
0 (Ω) ∩H2(Ω))2 be the weak solution

of the problem (2). Under the same conditions as in Theorem 4.5, it holds

(51) inf
θ∈Z(f)

‖σ − θ‖ . inf
τ∈Σh

∑

K∈Th

(‖σ − τ‖0,K + hK |σ − τ |1,K) . h‖σ‖1.

Here H1(Ω;R2×2
sym

) denotes H1−integrable symmetric tensor space.

Proof. For any τ ∈ Σh, there exists ζ ∈ Σh ( [10], Chapter II, Proposition 1.2),
such that

c(v, ζ) = c(v, τ )− (f , rhv) for all v ∈ Vh,

and

‖ζ‖ . sup
v∈Vh

c(v, ζ)

|v|1
.

It is easy to see θ = τ − ζ ∈ Z(f), and

‖σ − θ‖ ≤ ‖σ − τ‖+ ‖ζ‖.
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For any v ∈ Vh,

c(v, ζ)

= c(v, τ )− (f , rhv) = c(v, τ )−
N
∑

i=1

∫

K∗

i

−divσ · rhvdxdy

= −
∑

K∈Th

N
∑

i=1

∫

∂K∗

i ∩K

(τ − σ)n · (rhv − v)ds

.

(

∑

K∈Th

‖σ − τ‖20,K + h2
K |σ − τ |21,K

)1/2

|v|1

Then

‖σ − θ‖ ≤ ‖σ − τ‖+ ‖ζ‖ .
∑

K∈Th

(‖σ − τ‖0,K + hK |σ − τ |1,K) .

For any K ∈ Th, let QKσ = 1
|K|

∫

K σdxdy. Choosing τ =
∑

K∈Th

χKQKσ ∈ Σh, we

get

‖σ − θ‖ .
∑

K∈Th

(‖σ − τ‖0,K + hK |σ − τ |1,K) . h‖σ‖1.

�

We then present a consistency error estimate.

Lemma 5.2. Let πh : H2(Ω)2 → Vh be the isoparametric bilinear interpolation
operator. Under Condition (B), it holds

(52) ‖ǫ̃(πhv)− ǫ(πhv)‖ . h‖v‖2 for all v ∈ H2(Ω)2.

Proof. For any element K ∈ Th, by scaling technique and interpolation theory, we
have

‖ǫ̃(πhv)− ǫ(πhv)‖
2
0,K

.
max{a212, b

2
12}

min
(ξ,η)∈K̂

JK(ξ, η)
|π̂hv̂|

2
1,K̂

.
max{a212, b

2
12}

min
(ξ,η)∈K̂

JK(ξ, η)

(

|v̂|2
1,K̂

+ |v̂|2
2,K̂

)

.
max{a212, b

2
12}

min
(ξ,η)∈K̂

JK(ξ, η)

(

|v|21,K + h2
K |v|22,K

)

.

The result (52) then follows from the assumption that dK = O(h2
K). �

We are in the position to state our a priori error estimates.

Theorem 5.3. Let (σ,u) ∈ H1(Ω;R2×2
sym

)× (H1
0 (Ω)∩H2(Ω))2 be the weak solution

of the problem (2). Assume the partition Th satisfy the shape regular condition
(5) and the condition (B) and (C). Then the problem (26)-(27) admits a unique
solution (σh,uh) ∈ Σh × Vh such that

(53) ‖σ − σh‖+ |u− uh|1 . h(‖σ‖1 + ‖u‖2).
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Proof. For any θ ∈ Z(f ) and v ∈ Vh, since σh − θ ∈ ker(C), by (29), it holds

‖σh − θ‖

. sup
τ∈ker(B̃)

a(σh − θ, τ )

‖τ‖
= sup

τ∈ker(B̃)

a(σh − σ, τ ) + a(σ − θ, τ )

‖τ‖

. sup
τ∈ker(B̃)

b̃(uh, τ )− b(u, τ )

‖τ‖
+ ‖σ − θ‖ = sup

τ∈ker(B̃)

b̃(v, τ )− b(u, τ )

‖τ‖
+ ‖σ − θ‖

. |u− v|1 + ‖ǫ̃(v)− ǫ(v)‖+ ‖σ − θ‖.

Using the triangle inequality and Lemma 5.1 and 5.2 and taking v = πhu in the
above inequality, we get

‖σ − σh‖ . inf
θ∈Z(f)

‖σ − θ‖+ |u− πhu|1 + ‖ǫ̃(πhu)− ǫ(πhu)‖ . h(‖σ‖1 + ‖u‖2).

We estimate the approximation of the displacement as follows. For any v ∈ Vh,
by the inf-sup condition (34), we have

|uh − v|1 . sup
τ∈Σh

b̃(uh − v, τ )

‖τ‖
= sup

τ∈Σh

b̃(uh, τ )− b(u, τ ) + b(u, τ )− b̃(v, τ )

‖τ‖

. sup
τ∈Σh

b̃(uh, τ )− b(u, τ )

‖τ‖
+ |u− v|1 + ‖ǫ̃(v)− ǫ(v)‖

= sup
τ∈Σh

a(σh − σ, τ )

‖τ‖
+ |u− v|1 + ‖ǫ̃(v)− ǫ(v)‖

. ‖σ − σh‖+ |u− v|1 + ‖ǫ̃(v)− ǫ(v)‖.

Again using the triangle inequality and taking v = πhu, we obtain

|u− uh|1 . |u− πhu|1 + ‖ǫ̃(πhu)− ǫ(πhu)‖ + ‖σ − σh‖ . h(‖σ‖1 + ‖u‖2).

�

Remark 5.4. If we consider the original hybrid stress FV scheme (22)-(23), the
results of Theorem 5.3 still hold with Condition (B) being eliminated for PS stress
mode or being weakened to Condition (A) for ECQ4 stress mode.

6. Numerical experiments

We present some numerical results on several benchmark problems in this section
to verify our theoretic results. We refer to [52] for similar examples using hybrid
stress FEM. We use 4 × 4 Gaussian quadrature in all the examples to compute
stiffness matrixes and errors. Notice that 2× 2 Gaussian quadrature is accurate for
computing the stiffness matrix of hybrid stress FVM.

We classify our examples into two categories: plane stress tests and plane strain
tests. For each example, we test on both regular meshes, i.e., uniform rectangular
meshes, and irregular meshes. Notice that on rectangular meshes the stress modes of
PS and ECQ4 are identical. In the plane stress tests, we set ν = 0.25 and E = 1500.
In the plane strain tests, we set E = 1500 and let ν → 0.5. We list numerical
results of eσ = ‖σ − σh‖/‖σ‖ for the stress error, and of eu = |u − uh|1/|u|1 for
the displacement error. We start with two initial meshes shown in Fig 3 and 4 and
obtain a sequence of meshes by bisection scheme, i.e. connect the midpoints of the
opposite edges.
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6.1. Plane stress tests. We will use two plane stress beam models to test our
new FVM method.

Example 6.1 (Plane stress test 1). A plane stress beam modeled with rectangular
domain is tested, where the origin of the coordinates x, y is at the midpoint of
the left end, the body force f = (0, 0)t, the surface traction g on ΓN = {(x, y) ∈
[0, 10]×[−1, 1] : x = 10 or y = ±1} given by g|x=10 = (−2Ey, 0)t, g|y=±1 = (0, 0)t,
and the exact solution is given by

u =

(

−2xy
x2 + ν(y2 − 1)

)

, σ =

(

−2Ey 0
0 0

)

.

The numerical results are listed in Table 1.

Example 6.2 (Plane stress test 2). The body force f = −(6y2, 6x2)t, the surface
traction g on ΓN = {(x, y) : x = 10, −1 ≤ y ≤ 1} is g = (0, 2000 + 2y3)t, and the
exact solution is given by

u =
1 + ν

E
(y4, x4)t, σ =

(

0 2(x3 + y3)
2(x3 + y3) 0

)

.

The numerical results are listed in Table 2.
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Figure 3. Domain of Example 6.1-6.4 and the partition of the
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Table 1. The results of eu and eσ for the new FVM in Example 6.1.

10× 2 20× 4 40× 8 80× 16 160× 32
Regular mesh eu 0.0363 0.0182 0.0091 0.0045 0.0023

eσ 0 0 0 0 0
PS: eu 0.4510 0.2208 0.0738 0.0212 0.0064

Irregular mesh eσ 0.5601 0.3591 0.1952 0.0998 0.0502
ECQ4: eu 0.4551 0.2214 0.0737 0.0212 0.0064

Irregular mesh eσ 0.5644 0.3604 0.1954 0.0998 0.0502

Table 2. The results of eu and eσ for the new FVM in Example 6.2.

10× 2 20× 4 40× 8 80× 16 160× 32
Regular meshes eu 0.01096 0.0583 0.0299 0.0151 0.0076

eσ 0.0904 0.0489 0.0251 0.0127 0.0063
PS: eu 0.1882 0.0990 0.0516 0.0263 0.0132

Irregular meshes eσ 0.1874 0.0982 0.0506 0.0256 0.0129
ECQ4: eu 0.1886 0.0992 0.0517 0.0263 0.0132

Irregular meshes eσ 0.2020 0.1063 0.0546 0.0276 0.0138

Table 3. The results of eu and eσ for the new FVM in Example
6.3: regular meshes

ν 5× 1 10× 2 20× 4 40× 8
0.499 eu 0.0993 0.0497 0.0248 0.0124

eσ 0 0 0 0
0.4999 eu 0.0995 0.0497 0.0249 0.0124

eσ 0 0 0 0
0.49999 eu 0.0995 0.0497 0.0249 0.0124

eσ 0 0 0 0

Table 4. The results of eu and eσ for the new FVM based on PS
stress in Example 6.3: irregular mesh.

ν 10× 2 20× 4 40× 8 80× 16 160× 32
0.499 eu 0.4438 0.2159 0.0726 0.0213 0.0067

eσ 0.5879 0.3650 0.1959 0.0999 0.0502
0.4999 eu 0.4438 0.2158 0.0726 0.0213 0.0068

eσ 0.5882 0.3650 0.1959 0.0999 0.0502
0.49999 eu 0.4438 0.2158 0.0726 0.0213 0.0068

eσ 0.5883 0.3650 0.1959 0.0999 0.0502

6.2. Plane strain tests. We will use two plane strain pure bending cantilever
beams to test our hybrid stress FVM method.

Example 6.3 (Plane strain test 1). A plane strain pure bending cantilever beam
on rectangular domain Ω = {(x, y) : 0 < x < 10, −1 < y < 1} is used to
test locking-free performance. The body force f = (0, 0)t, the surface traction g

on ΓN = {(x, y) ∈ [0, 10] × [−1, 1] : x = 10 or y = ±1} given by g|x=10 =
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Table 5. The results of eu and eσ for the new FVM based on
ECQ4 stress in Example 6.3: irregular meshes.

ν 10× 2 20× 4 40× 8 80× 16 160× 32
0.499 eu 0.4492 0.2169 0.0727 0.0213 0.0067

eσ 0.5909 0.3660 0.1961 0.0999 0.0502
0.4999 eu 0.4492 0.2169 0.0727 0.0213 0.0068

eσ 0.5911 0.3660 0.1961 0.0999 0.0502
0.49999 eu 0.4491 0.2169 0.0727 0.0213 0.0068

eσ 0.5912 0.3660 0.1961 0.0999 0.0502

Table 6. The results of eu and eσ for the new FVM in Example
6.4: regular meshes.

ν 10× 2 20× 4 40× 8 80× 16 160× 32
0.499 eu 0.1023 0.0544 0.0282 0.0143 0.0072

eσ 0.2390 0.0680 0.0291 0.0140 0.0069
0.4999 eu 0.1022 0.0544 0.0282 0.0143 0.0072

eσ 0.3514 0.0920 0.0316 0.0142 0.0069
0.49999 eu 0.1022 0.0544 0.0282 0.0143 0.0072

eσ 0.3748 0.1045 0.0360 0.0150 0.0070

(−2Ey, 0)t, g|y=±1 = (0, 0)t, and the exact solution reads as

u =

(

−2(1− ν2)xy
(1− ν2)x2 + ν(1 + ν)(y2 − 1)

)

, σ =

(

−2Ey 0
0 0

)

.

The numerical results are listed in Tables 3-5.

Example 6.4 (Plane strain test 2). The body force f = −(6y2, 6x2)t, the surface
traction g on ΓN = {(x, y) : x = 10, −1 ≤ y ≤ 1} is given by g = (0, 2000+ 2y3)t,
and the exact solution reads as

u =
1 + ν

E
(y4, x4)t, σ =

(

0 2(x3 + y3)
2(x3 + y3) 0

)

.

The numerical results are listed in Tables 6-8.

Table 7. The results of eu and eσ for the new FVM based on PS
stress in Example 6.4: irregular meshes.

ν 10× 2 20× 4 40× 8 80× 16 160× 32
0.499 eu 0.1967 0.0954 0.0490 0.0249 0.0126

eσ 0.4921 0.1491 0.0663 0.0322 0.0160
0.4999 eu 0.1970 0.0954 0.0490 0.0249 0.0126

eσ 0.8380 0.1884 0.0697 0.0326 0.0160
0.49999 eu 0.1971 0.0953 0.0490 0.0249 0.0126

eσ 0.9494 0.2132 0.0751 0.0334 0.0161

From Tables 1-8, we have the following observations.

(1) Hybrid stress FVM is of first order convergence rate for the displacement
and stress approximations in all the plane stress and strain tests.
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Table 8. The results of eu and eσ for the new FVM based on
ECQ4 stress in Example 6.4: irregular meshes.

ν 10× 2 20× 4 40× 8 80× 16 160× 32
0.499 eu 0.1871 0.0969 0.0503 0.0256 0.0129

eσ 0.2297 0.1185 0.0604 0.0304 0.0152
0.4999 eu 0.1871 0.0969 0.0503 0.0256 0.0129

eσ 0.2298 0.1185 0.0604 0.0304 0.0152
0.49999 eu 0.1871 0.0969 0.0503 0.0256 0.0129

eσ 0.2298 0.1185 0.0604 0.0304 0.0152

(2) The method is locking free in the plane strain tests in the sense that it
yields uniform results as λ → ∞ or Poisson ratio ν → 0.5. Especially, on
coarse meshes the method based on ECQ4 stress mode behaves better than
that on PS stress mode; compare the second column of Table 7 and 8.

7. Summary and future work

We have proposed for the stress-displacement fields linear elasticity problems a
hybrid stress finite volume method which couples a finite volume formulation with
a hybrid stress finite element formulation. The method is shown to be uniformly
convergent with respect to the Lamé constant λ. Due to the elimination of stress
parameters at the element level, the computational cost of this approach is almost
the same as that of the standard bilinear element.

In future work we shall consider a posteriori error estimate and the supercon-
vergence recovery for the stress along the line of [55, 38].
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